2HDM with Soft CP-violation: Future LHC Search

Ying-nan Mao

Department of Physics, Wuhan University of Technology

(Dated: July 7, 2021)

- Online talk at LHC Higgs Working Group WG3 (BSM): Extended Higgs Sector subgroup meeting, July 6-7, 2021.
- Based on our paper [Phys. Rev. D **102** (2020), 075029, arXiv: 2003.04178], in collaboration with Kingman Cheung, Adil Jueid, and Stefano Moretti.

I. INTRODUCTION AND MOTIVATION

- CP-violation has been discovered in the meson sector.
- Besides this, there may also other effects: for example, electric dipole moments (EDM, low energy) or collider effects (LHC etc., high energy).
- CP-violation is also a necessary condition to explain the baryon asymmetry in the Universe: quantitatively not enough in the SM, that's why we need new physics.
- Two-Higgs-Doublet Model (2HDM) is a widely studied new physics model which can induce new CP-violation sources, and here we choose it as an example to study its observable CP-violation effects: sensitive to future EDM tests, and future LHC measurements will also provide complementary cross checks to the EDM tests.

II. THE MODEL AND CONSTRAINTS

We consider the 2HDM with soft Z_2 -symmetry to avoid terrible FCNC

• Mainly following the conventions in [A. Arhrib *et al.*, JHEP **04** (2011), 089; etc].

$$\mathcal{L} = |D\phi_1|^2 + |D\phi_2|^2 - V(\phi_1, \phi_2).$$

• Potential with a soft broken Z_2 -symmetry $(\phi_1 \rightarrow \phi_1, \phi_2 \rightarrow -\phi_2)$:

$$V(\phi_{1},\phi_{2}) = -\frac{1}{2} \left[m_{1}^{2}\phi_{1}^{\dagger}\phi_{1} + m_{2}^{2}\phi_{2}^{\dagger}\phi_{2} + \left(m_{12}^{2}\phi_{1}^{\dagger}\phi_{2} + \text{H.c.}\right) \right] + \left[\frac{\lambda_{5}}{2} \left(\phi_{1}^{\dagger}\phi_{2}\right)^{2} + \text{H.c.} \right] \\ + \frac{1}{2} \left[\lambda_{1} \left(\phi_{1}^{\dagger}\phi_{1}\right)^{2} + \lambda_{2} \left(\phi_{2}^{\dagger}\phi_{2}\right)^{2} \right] + \lambda_{3} \left(\phi_{1}^{\dagger}\phi_{1}\right) \left(\phi_{2}^{\dagger}\phi_{2}\right) + \lambda_{4} \left(\phi_{1}^{\dagger}\phi_{2}\right) \left(\phi_{2}^{\dagger}\phi_{1}\right) \right]$$

• Nonzero m_{12}^2 will break the Z_2 symmetry softly.

• Scalar doublets: $\phi_1 \equiv (\varphi_1^+, (v_1 + \eta_1 + i\chi_1)/\sqrt{2})^T, \ \phi_2 \equiv (\varphi_2^+, (v_2 + \eta_2 + i\chi_2)/\sqrt{2})^T.$

- Here $m_{1,2}^2$ and $\lambda_{1,2,3,4}$ must be real, while m_{12}^2 and λ_5 can be complex \rightarrow CP-violation.
- The vacuum expected value (VEV) for the scalar fields: $\langle \phi_1 \rangle \equiv (0, v_1)^T / \sqrt{2}, \langle \phi_2 \rangle \equiv (0, v_2)^T / \sqrt{2}$, and we denote $t_\beta \equiv |v_2/v_1|$.
- m_{12}^2 , λ_5 , and v_2/v_1 can all be complex, but we can always perform a rotation to keep at least one of them real, thus we choose v_2/v_1 real.
- A relation: $\text{Im}(m_{12}^2) = v_1 v_2 \text{Im}(\lambda_5).$
- Diagonalization: (a) Charged Sector

$$G^{\pm} = c_{\beta}\varphi_1^{\pm} + s_{\beta}\varphi_2^{\pm}, \quad H^{\pm} = -s_{\beta}\varphi_1^{\pm} + c_{\beta}\varphi_2^{\pm}.$$

• Diagonalization: (b) Neutral Sector

$$G^0 = c_\beta \chi_1 + s_\beta \chi_2, \quad A = -s_\beta \chi_1 + c_\beta \chi_2.$$

- For the CP-conserving case, A is a CP-odd mass eigenstate.
- For CP-violation case, $(H_1, H_2, H_3)^T = R(\eta_1, \eta_2, A)^T$, with

$$R = \begin{pmatrix} 1 & & \\ & c_{\alpha_3} & s_{\alpha_3} \\ & -s_{\alpha_3} & c_{\alpha_3} \end{pmatrix} \begin{pmatrix} c_{\alpha_2} & s_{\alpha_2} \\ & 1 \\ -s_{\alpha_2} & c_{\alpha_2} \end{pmatrix} \begin{pmatrix} c_{\beta+\alpha_1} & s_{\beta+\alpha_1} \\ -s_{\beta+\alpha_1} & c_{\beta+\alpha_1} \\ & & 1 \end{pmatrix}$$

• SM limit: $\alpha_{1,2} \to 0$.

• Mixing angle α_2 is the key parameter which measures the CP-violation effects in the 125 GeV Higgs boson (denoted as H_1 here, whose properties are SM-like).

- Parameter Set (8): $(m_1, m_2, m_{\pm}, \beta, \alpha_1, \alpha_2, \alpha_3, \operatorname{Re}(m_{12}^2)).$
- Relation:

$$m_3^2 = \frac{c_{\alpha_1+2\beta}(m_1^2 - m_2^2 s_{\alpha_3}^2)/c_{\alpha_3}^2 - m_2^2 s_{\alpha_1+2\beta} t_{\alpha_3}}{c_{\alpha_1+2\beta} s_{\alpha_2} - s_{\alpha_1+2\beta} t_{\alpha_3}}$$

or equivalently

$$t_{\alpha_3} = \frac{\left(m_3^2 - m_2^2\right) \pm \sqrt{\left(m_3^2 - m_2^2\right)^2 s_{2\beta+\alpha_1}^2 - 4\left(m_3^2 - m_1^2\right)\left(m_2^2 - m_1^2\right) s_{\alpha_2}^2 c_{2\beta+\alpha_1}^2}}{2\left(m_2^2 - m_1^2\right) s_{\alpha_2} c_{2\beta+\alpha_1}}$$

• Useful for different scenarios: mass-splitting scenario or nearly mass-degenerate scenario for the two heavy scalars $H_{2,3}$; in this talk we only discuss the phenomenology for nearly mass-degenerate scenario for simplify.

Yukawa Couplings:

- Three types of interaction: $\bar{Q}_L \phi_i d_R$, $\bar{Q}_L \tilde{\phi}_i u_R$, $\bar{L}_L \phi_i \ell_R$, with $\tilde{\phi}_i \equiv i\sigma_2 \phi_i^*$.
- The Z_2 symmetry is helpful to avoid the FCNC problem, and with this symmetry, each kind of the above bilinear can couple only to one scalar doublet.
- Four different types (I, II, III, IV)

Z_2 Number	ϕ_1	ϕ_2	Q_L	u_R	d_R	L_L	ℓ_R	Z,γ,W	Coupling	$\bar{u}_i u_i$	$\bar{d_i}d_i$	$\bar{\ell}_i \ell_i$
Type I	+	_	+	_	_	+	_	+	Type I	ϕ_2	ϕ_2	ϕ_2
Type II	+	-	+	_	+	+	+	+	Type II	ϕ_2	ϕ_1	ϕ_1
Type III	+	_	+	_	_	+	+	+	Type III	ϕ_2	ϕ_2	ϕ_1
Type IV	+	_	+	_	+	+	_	+	Type IV	ϕ_2	ϕ_1	ϕ_2

Useful interactions:

$$\mathcal{L} \supset \sum c_{V,i} H_i \left(\frac{2m_W^2}{v} W^+ W^- + \frac{m_Z^2}{v} Z Z \right) - \sum \left(\frac{m_f}{v} \right) \left(c_{f,i} H_i \bar{f}_L f_R + \text{H.c.} \right)$$

$c_{V,1}$	$c_{V,2}$	$c_{V,3}$					
$c_{\alpha_1}c_{\alpha_2}$	$-c_{\alpha_3}s_{\alpha_1}-c_{\alpha_1}s_{\alpha_2}s_{\alpha_3}$	$-c_{\alpha_1}c_{\alpha_3}s_{\alpha_2}+s_{\alpha_1}s_{\alpha_3}$					

$$c_{f,i} = R_{ij}c_{f,j}$$
 where $j = \eta_1, \eta_2, A$

Type	c_{u,η_1}	c_{u,η_2}	$c_{u,A}$	c_{d,η_1}	c_{d,η_2}	$c_{d,A}$	c_{ℓ,η_1}	c_{ℓ,η_2}	$c_{\ell,A}$
Ι	0	s_{β}^{-1}	$-\mathrm{i}t_{\beta}^{-1}$	0	s_{β}^{-1}	$\mathrm{i}t_{\beta}^{-1}$	0	s_{β}^{-1}	$\mathrm{i} t_\beta^{-1}$
II	0	s_{β}^{-1}	$-\mathrm{i}t_{\beta}^{-1}$	c_{β}^{-1}	0	$-\mathrm{i}t_{\beta}$	c_{β}^{-1}	0	$-\mathrm{i}t_{\beta}$
III	0	s_{β}^{-1}	$-\mathrm{i}t_{\beta}^{-1}$	0	s_{β}^{-1}	$\mathrm{i}t_{\beta}^{-1}$	c_{β}^{-1}	0	$-\mathrm{i}t_{\beta}$
IV	0	s_{β}^{-1}	$-\mathrm{i}t_{\beta}^{-1}$	c_{β}^{-1}	0	$-it_{\beta}$	0	s_{β}^{-1}	$\mathrm{i} t_\beta^{-1}$

Constraints from low- and high-energy experiments:

- Electron EDM sets very strict constraints, but in Type II and III models, a cancellation between different contributions to EDM leads to the result that large |α₂| ~ O(0.1) is still allowed [see Refs. S. Inoue *et al.*, Phys. Rev. D 89, 115023 (2014); Y.-N. Mao and S.-H. Zhu, Phys. Rev. D 90, 115024 (2014); L. Bian *et al.*, Phys. Rev. Lett. 115, 021801 (2015); L. Bian and N. Chen, Phys. Rev. D 95, 115029 (2017); etc.]
- Type II model: $|\alpha_2| \lesssim 0.1$ due to neutron EDM test.
- Type III model: $|\alpha_2| \lesssim 0.3$ due to global fit for Higgs signal strengths.
- m_{2,3} ≥ 700 GeV is favored and β depends weakly on heavy scalars mass in cancellation scenario, thus for m_{2,3} ~ 700 GeV, β ≃ 0.79; small α₁ is favored and α₃ is free in a very large region ~ (0.3 1.1) for the nearly mass-degenerate scenario.

III. BENCHMARK POINTS

We choose the benchmark points based on the following reasons:

- Fix m₂ = 700 GeV satisfying the constraints on charged Higgs m_± > 800 GeV [M. Misiak *et al.*, JHEP 06 (2020), 175], and thus β = 0.79;
- For the key parameter α₂, take its largest allowed number (0.1 for Type II and 0.3 for Type III) for both models to obtain largest CP-violation effects.
- We choose $\alpha_1 = 0.02$ at its best-fit point and $\alpha_3 = 0.8$ as a central value, and choose $\mu^2 \equiv \operatorname{Re}(m_{12}^2)/s_{2\beta} = (450 \text{ GeV})^2$ near its largest value due to vacuum stability: CP-violation effects are not sensitive to the values of these parameters;
- Last, calculate m_3 from other parameters.

Summary on the benchmark points and derived couplings:

TABLE I: Benchmark Points for Two-Higgs-doublet Models with Soft CP-violation.

	m_1	m_2	m_3	m_{\pm}	β	α_1	α_2	α_3	$\mu^2 \equiv \mathrm{Re}(m_{12}^2)/s_{2\beta}$
Type II (BP1)	$125 \mathrm{GeV}$	$700 \mathrm{GeV}$	$699~{ m GeV}$	$800 {\rm GeV}$	0.79	0.02	0.1	0.8	$(450 \text{ GeV})^2$
Type III (BP2)	$125 \mathrm{GeV}$	$700 { m ~GeV}$	$696 {\rm GeV}$	$800 {\rm GeV}$	0.79	0.02	0.3	0.8	$(450 { m ~GeV})^2$

TABLE II: Couplings derived from the benchmark points in Table I.

	$c_{t,1}$	$c_{t,2}$	$c_{t,3}$	$c_{V,1}$	$c_{V,2}$	$c_{V,3}$
Type II (BP1)	1.01 - 0.099i	0.603 - 0.707i	-0.767 - 0.687i	0.995	-0.086	-0.055
Type III (BP2)	0.974 - 0.293i	0.460 - 0.679i	-0.906 - 0.659i	0.955	-0.226	-0.192

IV. PHENOMENOLOGICAL STUDIES

Two examples: (A) Final state distribution for $pp \to t\bar{t}H_1 \to \ell^+\ell^-\nu\bar{\nu} + 4b$

- $t\bar{t}H_1$ cross section can reach about 383 fb at $\sqrt{s} = 13$ TeV LHC with $p_T^H > 50$ GeV.
- A lot of CP-observables, and the best one is to study the azimuthal angle $\Delta \phi$ between the two leptons from top quarks: its asymmetry $\mathcal{A} \equiv \frac{N(\Delta \phi > \pi/2) - N(\Delta \phi < \pi/2)}{N(\Delta \phi > \pi/2) + N(\Delta \phi < \pi/2)}$ is sensitive to the CP-structure in $t\bar{t}H_1$ coupling which is helpful to prob CP-violation.

(B) VBF channel: $pp(VV) \to H_{2,3} \to t\bar{t}({}^{1}S) \to b\bar{b}\ell^{+}\ell^{-}\nu\bar{n}u$ (in preparation)

- The VBF vertex $H_{2,3}VV$ must be CP-even at tree level, while the decay vertex $t\bar{t}H_{2,3}$ must contain CP-odd component to form the ¹S state, which can be measured through final state distribution.
- The discovery of ${}^{1}S$ state $t\bar{t}$ pair from VBF $H_{2,3}$ resonance will be the signature of CP-violation.
- No interference with SM background due to CP analysis: behave as a perfect peak structure.
- Interference between $H_{2,3}$ is important: peak cross section almost $\propto [c_{V,2} \text{Im}(c_{t,2}) + c_{V,3} \text{Im}(c_{t,3})]^2 \sim s_{\alpha_2}^2$, and ³P state almost disappears since $c_{V,2} \text{Re}(c_{t,2}) + c_{V,3} \text{Re}(c_{t,3}) \ll 1$.
- Cross sections for ¹S and ³P states are shown in the upper plot, for the largest allowed $\alpha_2 = 0.3, \sigma_{VV \to H_{2,3} \to t\bar{t}(^1S)} \times Br^2_{t \to b\ell\nu}$ can reach about 0.8 fb for $m_{2,3} \sim 700$ GeV.

V. SUMMARY

- We chose the widely studied 2HDM with soft CP-violation to analyze its high- and lowenergy constraints, and showed that a large CP-violation mixing angle $\alpha_2 \simeq 0.1(0.3)$ is still allowed for Type II(III) model.
- We chose two processes to study the CP-violation effects at LHC: asymmetry of lepton azimuthal angle for $pp \rightarrow t\bar{t}H_1 \rightarrow \ell^+\ell^-\nu\bar{\nu} + 4b$, and the ¹S $t\bar{t}$ state from VBF $H_{2,3}$ resonance as the probe of CP-violation (in preparation).
- For the VBF process, ${}^{3}P$ state is negligible and ${}^{1}S$ state will not interfere with SM background, $\sigma_{1S} \times Br_{t \to b\ell\nu}^2$ can reach about 0.8 fb for the largest allowed CP-violation angle $\alpha_2 = 0.3$, and the spin-correlation can be probed through final state distribution.

e end thank you! ynmao@whut.edu.cn