CP-violation in the dark sector

Venus Keus

In collaboration with D. Sokolowska, S. Moretti, S. F. King, D. Rojas, J. Hernandez

LHC Higgs Working Group WG3 (BSM) Extended Higgs Sector subgroup meeting 6-7 July 2021

(日) (日) (日) (日) (日) (日) (日)

•000	00	000000000	0
Introduction	3HDM	Collider probes	Summary

The Standard Model

Its current formulation was finalised in the 70's and predicted:

- the W & Z bosons discovered in 1983
- the top quark discovered in 1995
- the tau neutrino discovered in 2000
- the Brout-Englert-Higgs mechanism <u>a</u> scalar boson discovered in 2012

Introduction	3HDM	Collider probes	Summary
0000	oo		O
What the SM is	missing		

- a suitable Dark Matter candidate
- sufficient amount of CP-violation
 - Ш Ш 173.1 GeV u с t g QUARKS up charm top gluon BOSONS d Ь γ photon down strange bottom GUAGE е μ **EPTONS** electron Z boson muon tau <0.17 MeV <1.0 eV w e-neutrino #-neutrino τ-neutrino W boson Higas **SCALAR BOSON**

 \Rightarrow scalar extensions of the SM

06.07.2021 3/18

Venus Keus (Helsinki)

06.07.2021 4/18

Introduction		3HD	M	Collider probes	Summary	
0000			00		000000000	0
-	1. A.	1. A. A.		COLIDIA		

Experimental probes of 3HDMs

- Collider experiments
 - 2021: LHC-RUN-III
 - 2026: HL-LHC
 - 2028: CEPC
- DM experiments
 - 2020: XENONnT
 - 2022: CTA
- GW experiments
 - 2027: DECIGO
 - 2034: LISA mission
- Precision experiments
 - 2020: (g − 2)_µ
 - 2020: Advanced ACME

two scalar doublets + the SM Higgs doublet ϕ_1, ϕ_2 ϕ_3 $\phi_1 = \begin{pmatrix} H_1^+ \\ \frac{H_1 + iA_1}{\sqrt{2}} \end{pmatrix}, \phi_2 = \begin{pmatrix} H_2^+ \\ \frac{H_2 + iA_2}{\sqrt{2}} \end{pmatrix}, \phi_3 = \begin{pmatrix} G^+ \\ \frac{h + iG^0}{\sqrt{2}} \end{pmatrix}$

Introduction	3HDM	Collider probes	Summary
0000	⊙●		O
3HDM with dark (CPV	DM √, CP	√ √

DM is protected by a Z_2 symmetry (-, -, +):

 $\phi_1 \rightarrow -\phi_1, \phi_2 \rightarrow -\phi_2, \text{ SM fields} \rightarrow \text{SM fields}, \phi_3 \rightarrow \phi_3$

 Z_2 symmetry respected by the vacuum (0, 0, v):

$$\phi_1 = \begin{pmatrix} H_1^+ \\ \frac{H_1 + iA_1}{\sqrt{2}} \end{pmatrix}, \qquad \phi_2 = \begin{pmatrix} H_2^+ \\ \frac{H_2 + iA_2}{\sqrt{2}} \end{pmatrix}, \qquad \phi_3 = \begin{pmatrix} G^+ \\ \frac{\nu + h + iG^0}{\sqrt{2}} \end{pmatrix}$$

DM candidate: the lightest state among $S_{1,2,3,4}$ (mixture of $H_{1,2}, A_{1,2}$)

Only ϕ_3 can couple to fermions $\phi_u = \phi_d = \phi_e = \phi_3$ and $h_i = h$ $-\mathcal{L}_{Y_{II}kawa} = Y_{II} \overline{Q}'_{I} i\sigma_{2} \phi_{II}^{*} u_{R}'$ $+Y_d \bar{Q}_1 \phi_d d_R$ $+Y_e \bar{L}'_l \phi_e e'_B + h.c.$

No contributions to electric dipole moments (EDMs)

Dark CPV

[JHEP 12, 014 (2016)], [Phys. Rev. D 101, 073007 (2020)]

Venus Keus (Helsinki)

7/18

Introduction	3HDM	Collider probes	Summary
0000	oo		O
3HDMs:	the crown jewel of	of scalar extensions	

Collider probes of 3HDMs

Introduction	3HDM	Collider probes	Summary
0000	oo		O
Production t	hresholds of $S_i S$; at e^+e^- colliders	

The $e^+e^- ightarrow Z^* ightarrow S_iS_i$ cross section for A, B and C scenarios

a smoking gun signature of CP-violation in 3HDMs

Eur. Phys. J. C 80, no.2, 135 (2020)

Venus Keus (H	elsin	KI)	
---------------	-------	-----	--

EL OQO

イロト イヨト イヨト

Introduction	3HDM	Collider probes	Summary
0000	00	00000000	0

Significance of the signal over the SM background

For all our BPs, the final state of the $e^+e^- \rightarrow Z^* \rightarrow S_iS_j$ process is $\not\!\!E_T \bar{f}f$,

$$\begin{split} e^+e^- &\to Z^* \to S_1S_j \to S_1S_1Z^* \to S_1S_1\bar{ff}, \\ e^+e^- \to Z^* \to S_iS_j \to S_1Z^*S_1Z^* \to S_1S_1\bar{ffff}, \qquad (i,j=2,3,4) \end{split}$$

The main SM background is through

 $e^+e^- \to ZZ \to \bar{f}f\nu\bar{\nu}, \qquad e^+e^- \to W^+W^- \to \Gamma^-\bar{\nu}\,I^+\nu, \qquad e^+e^- \to Zh \to \bar{f}f\not\!\!\!\! E_T$

background decreases with increasing energy and is ≤ 1.8 pb

Eur. Phys. J. C 80, no.2, 135 (2020)

10/18

06.07.2021

Venus Keus (Helsinki)

The differential $ar{f\!f} o Z^* o ZZ$ cross section at hadron and lepton colliders

[JHEP 12, 014 (2016)]	. €	이 2 6 - 비로 - 네트 2 - 네립 - 네미
Venus Keus (Helsinki)	Dark CPV	06.07.2021 11/18

Introduction	3HDM	Collider probes	Summary
0000	00	00000000	0

CP-violating asymmetries

In the cross section of the $\bar{f}f \rightarrow ZZ$ process $\sigma(f_{\delta}\bar{f}_{\bar{\delta}} \rightarrow Z_{\eta}Z_{\bar{\eta}}) \equiv \sigma_{\eta,\bar{\eta}} = \sum_{\delta,\bar{\delta}} \mathcal{M}_{\eta,\bar{\eta}}^{\delta,\bar{\delta}} [\Theta] \, \mathcal{M}_{\eta,\bar{\eta}}^{\star\delta,\bar{\delta}} [\Theta],$

with $\delta, \overline{\delta}$: helicities of incoming f, \overline{f} and $\eta, \overline{\eta}$: helicities of the outgoing ZZ we define

Phys. Rev. D 101, 095023 (2020)

・ロト < 団ト < 三ト < 三ト < 三ト < ロト

Venus Keus (Helsinki)

06.07.2021 12/18

	0000	00	0000000000	0	
Introduction STIDIVI Collider probes Summa				Summary	

Other CP-violating asymmetries

Introduction	3HDM	Collider probes	Summary
0000	00	0000000000	0
Inert cascade	e decavs at the l	_HC	

Tree level process: $q\bar{q} \rightarrow Z^* \rightarrow H_1A_{1,2} \rightarrow H_1H_1Z^* \rightarrow H_1H_1\bar{f}f$

(may be possible in 2HDM)

Loop level ggF process: $gg \rightarrow h \rightarrow H_1H_2 \rightarrow H_1H_1\gamma^* \rightarrow H_1H_1\bar{f}f$

Loop level VBF process: $q_i q_j \rightarrow H_1 H_2 \rightarrow H_1 H_1 \gamma^* \rightarrow H_1 H_1 \bar{f} f$

(smoking gun signature of 3HDM)

Benchmark	$m_{H_2} - m_{H_1}$	$m_{A_1} - m_{H_1}$	$m_{A_2}-m_{H_1}$	$m_{H_1^\pm}-m_{H_1}$	$m_{H_2^\pm}-m_{H_1}$
A50	50	75	125	75	125
I5	5	10	15	90	95

[JHEP 05, 030 (2018)]

<ロト < 目 < 目 > < 目 > < 目 > < 目 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Venus Keus (Helsinki)

06.07.2021 14/18

Introduction	3HDM	Collider probes	Summary
0000	oo		O
LHC cross section	for $\mathcal{E}_T \overline{II}$ and \mathcal{E}_T	qq for scenario A50	

Decay channels	$BR(H_2 \to H_1X)$	tree-level	ggF	VBF
$H_2 \rightarrow b\bar{b}H_1$	1.88e-01	2.49e-03	1.18e-07	2.05e-06
$H_2 \rightarrow s\bar{s}H_1$	2.00e-01	1.97e-03	1.26e-07	2.19e-06
$H_2 \to c\bar{c}H_1$	2.00e-01	3.94e-03	1.26e-07	2.19e-06
$H_2 \rightarrow d\overline{d}H_1$	2.00e-01	3.54e-03	1.26e-07	2.19e-06
$H_2 \rightarrow u \overline{u} H_1$	2.00e-01	1.97e-03	1.26e-07	2.19e-06
$H_2 \to \tau^+ \tau^- H_1$	6.56e-02	8.09e-04	4.13e-08	7.15e-07
$H_2 \rightarrow \mu^+ \mu^- H_1$	6.69e-02	8.22e-04	4.21e-08	7.29e-07
$H_2 \rightarrow e^+ e^- H_1$	6.69e-02	1.34e-03	4.21e-08	7.29e-07

[JHEP 05, 030 (2018)]

< 由 > < 目 > < 目 > < 目 > < 目 > < 日 > < < 回 > < ○ < ○

Venus Keus (Helsinki)

06.07.2021 15/18

Introduction	3HDM	Collider probes	Summary
0000	00	000000000	0
I HC cross section	for $F_{\tau} \overline{I}$ and F_{τ}	a for scenario 15	

Decay channels	$BR(H_2 \to H_1X)$	tree-level	ggF	VBF
$H_2 \rightarrow s \overline{s} H_1$	2.22e-01	5.71e-03	9.70e-04	7.93e-06
$H_2 \rightarrow c\bar{c}H_1$	1.63e-01	1.52e-03	7.12e-05	5.82e-06
$H_2 \rightarrow d\overline{d}H_1$	2.28e-01	3.74e-03	9.96e-05	8.14e-06
$H_2 \rightarrow u \overline{u} H_1$	2.28e-01	4.80e-03	9.96e-05	8.14e-06
$H_2 \rightarrow \tau^+ \tau^- H_1$	7.55e-03	1.13e-03	3.30e-06	2.70e-07
$H_2 \rightarrow \mu^+ \mu^- H_1$	7.54e-02	7.47e-04	3.30e-05	2.69e-06
$H_2 \rightarrow e^+ e^- H_1$	7.59e-02	1.73e-03	3.32e-05	2.71e-06

[JHEP 05, 030 (2018)]

Introduction	3HDM	Collider probes	Summary
0000	00	00000000	0
()hservable	heavy scalar DM		

Monojet and dijet channels in the heavy DM mass region:

Venus Keus (Helsinki)

06.07.2021 17/18

Introduction	3HDM	Collider probes	Summary
0000	oo		●
Summary			

3HDMs are very well motivated and accessible through

- Production thresholds of $S_i S_j$ at e^+e^- colliders
- The $\bar{f}f \rightarrow Z^* \rightarrow ZZ$ with the ZZZ vertex
- CP-violating asymmetries
- Inert cascade decays
- Observable heavy scalar DM

and many non-collider complementary observables.

1 = 1 = 1 = 1 0 0 0

BACKUP SLIDES

The background to the inert cascade decay

The background process, *h* decay into two charged scalars, cross section for $m_{DM} = 54$ GeV.

scenario	cross section (pb)
A50	6.77e-09
I5	7.91e-08
I10	4.19e-08

< □ > < 同 >

HS, VBS and ggF processes in inert cascade decays

《日本《母本《日本《日本《日本》

$H_2 \rightarrow H_1 \bar{f} f$ processes in inert cascade decays

Venus Keus (Helsinki)

SM+S

Dark CPV

06.07.2021 22/18

Sar

2HDM

Dark CPV observables: the ZZZ vertex

$$e\Gamma_{ZZZ}^{\alpha\beta\mu} = ie\frac{q^2 - M_Z^2}{M_Z^2} [f_4(q^{\alpha}g^{\mu\beta} + q^{\beta}g^{\mu\alpha}) + f_5\epsilon^{\mu\alpha\beta\rho}(p_1 - p_2)_{\rho}]$$

$$Z_{\mu}^{*}$$

$$S_i, \qquad P_1^{*}$$

$$S_j$$

$$Z_{\beta}^{*}$$

$$S_j$$

$$Z_{\beta}^{*}$$

$$S_i, \qquad P_1^{*}$$

$$S_j$$

$$Z_{\beta}^{*}$$

$$S_j$$

V. Keus, S. F. King, S. Moretti, D. Sokolowska, et al., [JHEP 12, 014 (2016)]

Venus Keus (Helsinki)

06.07.2021 23/18

< □ > < □ > <</pre>

▶ ▲ 토 ▶ 토 = ∽ ۹.0~

the SM Higgs doublet + a scalar singlet

Φ

S

SM + scalar singlet

DM √, CPV ×

DM protected by a Z_2 symmetry (+, -) from decaying to SM particles.

 $\text{SM fields} \to \text{SM fields}, \quad \phi \to \phi, \quad \textbf{S} \to -\textbf{S}$

The Lagrangian and the vacuum are Z_2 symmetric: $\langle \phi \rangle = v, \ \langle S \rangle = 0$

$$\mathcal{L} = \mathcal{L}_{SM} + \frac{1}{2} (\partial S)^2 - m_s^2 S^2 - \lambda_s S^4 - \lambda_{hs} \phi^2 S^2$$

Tension: all relevant interactions are governed by the same coupling!

Venus Keus (Helsinki)

the SM Higgs doublet + a scalar doublet $\phi_1 \qquad \phi_2$ $\phi_1 = \begin{pmatrix} G^+ \\ \frac{h+iG^0}{\sqrt{2}} \end{pmatrix} \qquad \phi_2 = \begin{pmatrix} H^+ \\ \frac{H+iA}{\sqrt{2}} \end{pmatrix}$

'문▶ ◀ 문▶ '문| = ' • ○ < @

2HDM 0000

Z₂-symmetric 2HDM

DM \checkmark , CPV \times

2HDM

DM is protected by a Z₂ symmetry (+, -) from decaying to SM particles: SM fields \rightarrow SM fields, $\phi_1 \rightarrow \phi_1$, $\phi_2 \rightarrow -\phi_2$

 $Z_2 \text{ symmetry: only } \phi_1 \text{ couples to fermions } \phi_u = \phi_d = \phi_e = \phi_1$ $-\mathcal{L}_{Yukawa} = Y_u \bar{Q}'_L i\sigma_2 \phi^*_u u'_R + Y_d \bar{Q}'_L \phi_d d'_R + Y_e \bar{L}'_L \phi_e e'_R + \text{h.c.}$

 Z_2 symmetry respected by the vacuum: $\phi_1 = \begin{pmatrix} G^+ \\ \frac{\nu+h+iG^0}{\sqrt{2}} \end{pmatrix}, \quad \phi_2 = \begin{pmatrix} H^+ \\ \frac{H+iA}{\sqrt{2}} \end{pmatrix}$

<u>DM candidate</u>: the lightest neutral particle from the dark doublet $HH \rightarrow h \rightarrow SM, \quad HA \rightarrow Z \rightarrow SM, \quad HH^{\pm} \rightarrow W^{\pm} \rightarrow SM$

Tension: all scalar interactions are governed by the same coupling! Gauge couplings are fixed!

Venus Keus (Helsinki)

CP-violating 2HDM

Break the Z_2 symmetry and let the two doublets mix

$$\phi_1 = \begin{pmatrix} \phi_1^+ \\ \frac{\nu_1 + h_1^0 + ia_1^0}{\sqrt{2}} \end{pmatrix}, \quad \phi_2 = \begin{pmatrix} \phi_2^+ \\ \frac{\nu_2 + h_2^0 + ia_2^0}{\sqrt{2}} \end{pmatrix}$$

No Dark Matter candidate!

Mixing doublets means h_i (mixtures of $h_{1,2}^0, a_{1,2}^0$) are CP-mixed states

contributing to electric dipole moments (EDMs).

CP-violation is very constrained!

V. Keus, S. F. King, S. Moretti, K. Yagyu, [JHEP 04, 048 (2016)] V. Keus, N. Koivunen, K. Tuominen, [JHEP 09, 059 (2018)]

> < = > = = < < <

DM ×. CPV √

2HDM

The $ff \rightarrow Z^* \rightarrow ZZ$ process at the LHC

[Eur.Phys.J. C78 (2018) 165]

2HDM 0000