
1G. Cowan / RHUL Physics CERN Summer Student Lectures / Statistics Lecture 4

Summer Student Lectures
CERN / Zoom
29 June – 2 July 2021

Glen Cowan
Physics Department
Royal Holloway, University of London
g.cowan@rhul.ac.uk
www.pp.rhul.ac.uk/~cowan

Statistics for Particle Physicists
Lecture 4

https://indico.cern.ch/event/1051046/



2G. Cowan / RHUL Physics CERN Summer Student Lectures / Statistics Lecture 4

Outline

Lecture 1: Introduction, probability, 

Lecture 2:  Parameter estimation

Lecture 3:  Hypothesis tests

Lecture 4:  Further methods:  

From hypothesis tests to Machine Learning
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Particle Physics context for a hypothesis test

high pT
muons

high pT jets 
of hadrons

missing transverse energy

p p

G. Cowan / RHUL Physics

A simulated SUSY event (“signal”):
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Background events

This event from Standard 
Model ttbar production also
has high  pT jets and muons,
and some missing transverse
energy.

→ can easily mimic a 
signal event.

G. Cowan / RHUL Physics
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Classification of proton-proton collisions
Proton-proton collisions can be considered to come in two classes:

signal (the kind of event we’re looking for, y = 1)
background (the kind that mimics signal, y = 0)

For each collision (event), we measure a collection of features:
x1 = energy of muon x4 = missing transverse energy
x2 = angle between jets x5 = invariant mass of muon pair
x3 = total jet energy x6 = ...

The real events don’t come with true class labels, but computer-
simulated events do.  So we can have a set of simulated events 
that consist of a feature vector x and true class label y (0 for 
background, 1 for signal):

(x, y)1, (x, y)2, ..., (x, y)N
The simulated events are called “training data”.
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Distributions of the features
If we consider only two 
features x = (x1, x2), we can 
display the results in a scatter 
plot (red:  y = 0, blue: y = 1).

The test’s critical region is  defined by a “decision boundary” –
without knowing the event type, we can classify them by seeing 
where their measured features lie relative to the boundary.

For each real event test the 
hypothesis that it is background.

(Related to this:  test that a sample 
of events is all background.)

For real events, the dots are 
black (true type is not known).
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Decision function, test statistic
A surface in an n-dimensional 
space can be described by

scalar 
function constant

Different values of the constant
tc result in a family of surfaces.

Problem is reduced to finding 
the best decision function or test 
statistic t (x).
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Distribution of t(x)

f(t|H1)f(t|H0)

W

By forming a test statistic t(x), the boundary of the critical region in 
the n-dimensional x-space is determined by a single single value tc.

tc
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Types of decision boundaries
So what is the optimal boundary for the critical region, i.e., what
is the optimal test statistic t(x)?

First find best t(x), later address issue of optimal size of test.

Remember x-space can have many dimensions.

“cuts” linear non-linear
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Test statistic based on likelihood ratio 
How can we choose a test’s critical region in an ‘optimal way’, in 
particular if the data space is multidimensional?

Neyman-Pearson lemma states:
For a test of H0 of size α, to get the highest power with respect to the
alternative H1 we need for all x in the critical region W

inside W and  ≤ cα outside, where cα is a constant chosen to give a 
test of the desired size.

Equivalently, optimal scalar test statistic is

N.B. any monotonic function of this is leads to the same test.
G. Cowan / RHUL Physics

”likelihood 
ratio (LR)”
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Neyman-Pearson doesn’t usually help
We usually don’t have explicit formulae for the pdfs f (x|s), f (x|b), 
so for a given x we can’t evaluate the likelihood ratio

Instead we may have Monte Carlo models for signal and 
background processes, so we can produce simulated data:

generate x ~ f (x|s)     →     x1,..., xN
generate x ~ f (x|b)     →     x1,..., xN

This gives samples of “training data” with events of known type.

Use these to construct a statistic that is as close as possible to the 
optimal likelihood ratio (→ Machine Learning).
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Approximate LR from histograms
Want t(x) = f(x|s)/ f(x|b) for x here

N (x|s) ≈ f(x|s)

N (x|b) ≈ f(x|b)

N
(x
|s)

N
(x
|b
)

One possibility is to generate
MC data and construct
histograms for both
signal and background.

Use (normalized) histogram 
values to approximate LR:

x

x

Can work well for single 
variable.
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Approximate LR from 2D-histograms
Suppose problem has 2 variables.  Try using 2-D histograms:

Approximate pdfs using N (x,y|s), N (x,y|b) in corresponding cells.
But if we want M bins for each variable, then in n-dimensions we
have Mn cells; can’t generate enough training data to populate.

→ Histogram method usually not usable for n > 1 dimension.

signal back-
ground
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Strategies for multivariate analysis

Neyman-Pearson lemma gives optimal answer, but cannot be
used directly, because we usually don’t have f (x|s), f (x|b).

Histogram method with M bins for n variables requires that
we estimate Mn parameters (the values of the pdfs in each cell),
so this is rarely practical.

A compromise solution is to assume a certain functional form
for the test statistic t (x) with fewer parameters; determine them
(using MC) to give best separation between signal and background.

Alternatively, try to estimate the probability densities f (x|s) and 
f (x|b) (with something better than histograms) and use the 
estimated pdfs to construct an approximate likelihood ratio.
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Multivariate methods    (Machine Learning)
Many new (and some old) methods:

Fisher discriminant
(Deep) Neural Networks
Kernel density methods
Support Vector Machines
Decision trees

Boosting
Bagging
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Software 

Rapidly growing area of development – two resources:

scikit-learn
Python-based tools for Machine Learning
scikit-learn.org
Large user community

TMVA, Höcker, Stelzer, Tegenfeldt, Voss, Voss, physics/0703039
Distributed with ROOT  (root.cern.ch)
Variety of classifiers
Good manual, widely used in HEP



G. Cowan / RHUL Physics CERN Summer Student Lectures / Statistics Lecture 4 17

Linear test statistic

Suppose there are n input variables:  x = (x1,..., xn).  

Consider a linear function:

For a given choice of the coefficients w = (w1,..., wn) we will
get pdfs f (y|s) and f (y|b) :
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Linear test statistic

Fisher:  to get large difference between means and small widths 
for f (y|s) and f (y|b),  maximize the difference squared of the
expectation values divided by the sum of the variances:

Setting ∂J / ∂wi = 0 gives:

,
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The Fisher discriminant

The resulting coefficients wi define a Fisher discriminant.

Coefficients defined up to multiplicative constant; can also
add arbitrary offset, i.e., usually define test statistic as

Boundaries of the test’s
critical region are surfaces 
of constant y(x), here linear 
(hyperplanes):
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Fisher discriminant for Gaussian data

Suppose the pdfs of the input variables, f (x|s) and f (x|b), are both 
multivariate Gaussians with same covariance but different means:

f (x|s)  = Gauss(μs, V)

f (x|b)  = Gauss(μb, V)

Same covariance 
Vij = cov[xi, xj]

In this case it can be shown 
that the Fisher discriminant is

i.e., it is a monotonic function of the likelihood ratio and thus
leads to the same critical region.  So in this case the Fisher
discriminant provides an optimal statistical test.



G. Cowan / RHUL Physics CERN Summer Student Lectures / Statistics Lecture 4 21



G. Cowan / RHUL Physics CERN Summer Student Lectures / Statistics Lecture 4 22



G. Cowan / RHUL Physics CERN Summer Student Lectures / Statistics Lecture 4 23



G. Cowan / RHUL Physics CERN Summer Student Lectures / Statistics Lecture 4 24

This is called the single layer 
perceptron:
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The activation function

Can use e.g. the ”logistic 
sigmoid”:

or (esp. with deep neural
networks) the “Rectified 
Linear Unit” (ReLU) function:

x

h(x)
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Network training
For each of the training events we have the feature vector
and true event type (class label):

xa = (x1,..., xn),  ya = 0,1,  a = 0,...,N

We have a functional form for the decision function t(x; w) that
depends on a vector of weights w.

Use the training data to determine the weights by minimizing
a “loss function”.  Various possibilities, e.g.,

quadratic loss function

cross
entropy
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Fisher (linear): Neural network:
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Neural network example from LEP II
Signal:  e+e- → W+W- (often 4 well separated hadron jets)

Background:  e+e- → qqgg (4 less well separated hadron jets)

←  input variables based on jet
structure, event shape, ...
none by itself gives much separation.

Neural network output:

(Garrido, Juste and Martinez, ALEPH 96-144)
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Finally
Four lectures only enough for a brief introduction to:

Probability, frequentist & Bayesian approaches
Parameter estimation, maximum likelihood
Hypothesis tests, p-values, limits
Intro to Machine Learning

Many other important areas:
Treatment of systematic uncertainties (nuisance parameters)
Profile likelihood ratio tests, asymptotics,...

Final thought:  once the basic formalism is fixed, most of the 
work focuses on writing down the likelihood, e.g., P(x|θ), and 
including in it enough parameters to adequately describe the data 
(true for both Bayesian and frequentist approaches).
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Extra slides
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How is it we don’t have f(x|H)?
In a Monte Carlo simulation of a complex process, the 
fundamental hypothesis does not predict the pdf for the finally 
measured variables x but rather for some intermediate set of 
”latent” variables, say, z1.  
So in step 1 we sample z1 ~ f(z1|H), followed by many further 
intermediate steps:

z2 ~ f(z2|z1)
z3 ~ f(z3|z2)

⠇
x ~ f(x|zn)

So even though H is fully defined and we can generate x
according to it, the formula for f(x|H) is an enormous integral 
that we cannot compute:

See, e.g., Kyle Cranmer, Johann 
Brehmer, Gilles Louppe, The frontier of 
simulation-based inference, 
arXiv:1911.01429 [stat.ML], PNAS 
doi.org/10.1073/pnas.1912789117
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Proof of Neyman-Pearson Lemma

G. Cowan / RHUL Physics

Consider a critical region W and suppose the LR 
satisfies the criterion of the Neyman-Pearson 
lemma:

P(x|H1)/P(x|H0)  ≥  cα for all x in W, 
P(x|H1)/P(x|H0)  ≤  cα for all x not in W.

δW+

Try to change this into a different critical 
region W′ retaining the same size α, i.e.,

δW-

W′

W

To do so add a part δW+, but to keep the 
size α, we need to remove a part δW-, i.e., 
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Proof of Neyman-Pearson Lemma (2)

G. Cowan / RHUL Physics

δW+But we are supposing the LR is higher for 
all x in δW- removed than for the x in 
δW+ added, and therefore

δW-

W′

The right-hand sides are equal and therefore 
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Proof of Neyman-Pearson Lemma (3)

G. Cowan / RHUL Physics

Note W and δW+ are disjoint, and 
W′ and δW- are disjoint, so by 
Kolmogorov’s 3rd axiom,

We have

Therefore

δW+

δW-

W′
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Proof of Neyman-Pearson Lemma (4)

G. Cowan / RHUL Physics

And therefore 

i.e. the deformed critical region W′ cannot have higher power 
than the original one that satisfied the LR criterion of the 
Neyman-Pearson lemma.


