MPGD TPC Electronics

P. Colas CEA/Irfu Université Paris Saclay

Is it possible to define a range of parameters for a readout chip satisfying the requirements of a majority of applications?

Acknowledgement:

Material from Luciano Musa's lecture at CCAS, Beijing, 2008 and talk from Hans Muller, CERN at European Strategy Detector R&D Roadmap symposium, 2021.

Signal formation in a TPC

- A single particle (typicall 100s of MeV or TeV) passing though a gas frees electrons, loosing 1 or 2 keV per cm (non-destructive measurement)
- The freed electrons (single or in small clusters) are driven by an electric field over O(m) distances to a detecting endplate, where an avalanche is produced to amplify them and give rise to a signal with 2 components: one from the electrons and the other from the ions.
- Depending on the type of amplification, the base signal shapes differ

Signal induced by a moving charge

Parallel Plate Ion Chamber

$$Q_{A,el} = -q - \frac{x}{d}$$

$$Q_{A,ion} = q - \frac{x}{d}$$

A constant induced current flows in the external circuit

$$i = \frac{dQ_{A,el}}{dt} = -\frac{q}{d} \frac{dx}{dt}$$

A static charge is not measurable (only way: electrometer)
So particle detectors must use currents induced by moving charges
(possibly integrated through a capacitor to measure charges)
(see Flavio Loddo's lecture)

Signals vary with application

- HEP usually needs to detect MIPs
- In Nuclear Physics slow hadrons and High Z nuclei produce order of several 100s or 1000s times MIPs. Also alpha emitters are usually in the several MeV range.
- In the study of low-energy events (dark matter, action) nuclear recoil energies of few 100 eV are searched for.

Shaping

- The natural signal shape is the result of a superposition of 100s of single primary electrons, arriving at different times on a pad, due to diffusion, and then undergoing an avalanche (gains of 1 or a few 1000).
- To relate the pulse height to the total deposited charge, the signal are shaped, so that they have all the same duration and shape.
- The signal is usually concentrated in a high frequency region: it can be enhanced and noise suppressed by filtering out lower frequencies.

Impulse Response Function

PASA amplifiershaper

Sampling ADC on each detector channel running at appropriate frequency

Case of a resistive-capacitive anode

- Resistive anodes are used to protect the detector and the electronics by quenching the sparks.
- A resistive anode will deform (delay) the signal while spreading it on neighboring channels.
- The sampling capability of a TPC electronics allows the waveforms to be recorded and analyzed to improve the position measurement.
- The shaping time must be matched to the duration of the signals. Shaping too short makes you loose the signal. Shaping too large degrades the time measurement.

Brief History: from discrete electronics to chips

ALEPH and DELPHI TPC's at LEP in the 1980's had a discrete electronics. Preamplifiers were single channel integrated circuits. O(20,000) of these allowed to readout the pads.

At the end of the 1990's a breakthrough occurred when STAR at RHIC introduced Front-end cards carrying several multichannel chips.

L. Musa, Lecture in CAS TPC school, Beijing, 2008

• STAR TPC (RHIC) Front-end cards

• 47 m3, 136608 channels

Negative polarity

 Front-end unit → 32 channels (17.5 cm x 7.5 cm)

Analogue Memory + low sampling rateADC

 Similar to the FEE for the TPC of the NA49 Experiment (CERN)

• ALICE TPC (LHC) Front-end cards

- 50 m3, 557568 channels
- ALICE TPC Read Out
- Front-end unit → 128 channels (19.cm x 15.5 cm)
- Analogue Memory + low sampling rate ADC
- Evolved in Super-ALTRO in the 2nd decade. Integrated filter

155 mm

190 mm

Digital tail cancellation (case of a wire chamber)

15/06/2021 P. Colas - TPC electronics 12

ALICE upgrade with 4-GEMs (May 2020) 524 160 pads

Micromegas TPC for ILC: fully integrated AFTER-based electronics

- New 300 points flat connectors
- New front end: keep naked AFTER chips and remove double diodes (count on resistive foil to protect against sparks)
- New Front End Mezzanine (FEMI)
- New backend ready for up to 12 modules
- New DAQ, 7-module ready and more compact format
- New trigger discriminator and logic (FPGA).

Integrated electronics for 7-module test

A fully integrated module: 1728 channels connected with 1 optical fiber, one LC cable and 1 HV cable

15/06/2021

17

Injection of saturating charges (saturation at 1 pC)

For tracks pointing nearly perpendicular to the detection plane, a very high charge can be integrated. This leads to saturation of the preamp and/or of the ADC.

Evolution of the AFTER family: Add self-triggering capability -> DREAM and AGET

In parallel, evolution of ALTRO: SAMPA for ALICE (see Marco Bregant)

Future evolution : see Damien Neyret's talk

Constraints and limitations

- Real estate, packing factor: the number of channels that you can equip by unit of surface depends on the technology of your ASIC. Today, 1 channel can fit in about 10 mm²
- Longitudinal diffusion spreads the charge and thus the signal duration. The
 effect of track angle is of the same order.
- Number of ADC bits (discussed later) constraints dE/dx accuracy and saturation
- Power pulsing and load leveling: when you have bunch train crossing periods with large inter-train periods without interaction (ILC case), you would like to switch off the power on the amplifiers to lower their consumption, or spread power-consumming operations (Analog to Digital conversion for instance) in the inter-train time.
- Saturation effects (case of 90° incidence tracks) examples of HARPO

parameters

- sampling frequency: must be matched to the pulses you want to see.
 25 to 40 MHz is well adapted for a typical gas TPC.
- memory depth: must be sufficient to keep all the information. For analog memories (switched capacitor arrays) this is technologically limited to 1000-2000 buckets
- Noise: 500 e- equivalent is achievable. But there is a trade-off with peaking time
- Sensitivity: min signal that can be distinguished from noise.
- number of ADC bits, peaking time, integration time etc... and how to adapt to longitudinal diffusion and to the case of a resistive anode...

How many ADC bits are needed?

The spatial resolution as measured in a Micromegas beam test, as a function of the number of ADC bits used

(12 is the actual number of ADC bits and lower numbers are obtained by rounding up the amplitude to this accuracy).

9 bits largely suffice

For dE/dx (better than 5% accuracy needed) -> 9 to 10 bits required Attention should be paid to saturation, but this limitation is already at the amplifier level.

12 bits is an overkill. Costs power.

CONCLUDING REMARKS

- Technology evolution: a new technology is always more performant, and more expensive, but an old technology becomes obsolete. It is always best to use the technology currently up-to-date (130 nm, 65nm) and commonly used in industry.
- Choice between
 - many dedicated ASICs or
 - few versatile ASICs
- Timescale problem: Test electronics is always necessary to develop a new detector, but cannot be as performant as the target electronics