
https://root.cern

ROOT
Data Analysis Framework

ROOT Packaging Survey
Results and discussion

https://root.cern

The questions

1. What can the ROOT development team do that would help you with packaging ROOT on
your distribution?

2. Is builtin, patched LLVM/Clang an issue for you? Why?

3. How important for you is it that ROOT uses system packages for its dependencies in
general vs bundled dependencies (ROOT builtins)?

4. Which options do you enable when building ROOT for your distribution?Do you rely on
default values or do you specify a value for all options?

5. Do you foresee any issues in continued maintenance of ROOT in your distribution if it
moves to require C++14 or later?

6. Which sustainability issues do you foresee for ROOT in your distribution? That is, what
would it take for ROOT to still be maintained in your distribution 5 years from now?

2

1. What can we do to help?
In general, the current status seems to be fine for most packagers. However, we can still
improve in some areas:

▶ Enable building ROOT modules separately (PyROOT, TMVA, RooFit cited multiple
times)

● Better isolation for CI environments, improved testing

● Shorten builds

● For PyROOT: easier to install for different Python versions (e.g. 3.8 and 3.9)

▶ Share LLVM/Clang between vanilla cling and ROOT

● Less security issues

3

CERN login required to file bugs Moving to Github issues solved it

2. Is builtin LLVM an issue?

The general opinion is that unbundling LLVM/Clang would be good. Critical points:

▶ Distribution policies (e.g. for security)

▶ Too long builds

▶ External builds while still using static libraries doesn’t improve on security

4

Snap

Spack

Homebrew Arch
Gentoo

Conda

NO YES

3. System Packages
Other bundled dependencies follow similar reasoning wrt builtin LLVM/Clang:

▶ Offer the option of bundling is not a problem per se

● It shouldn’t be the only option

● It could lead to clobber files from system packages (e.g. XRootD)

▶ Use system packages as much as possible

▶ At best, avoid bundled dependencies:

● Security flaws can be fixed in one single place (upstream) and faster

● Lose the power of community for bugfixes and improvement

● Old lingering code with no interest in updating it

● Waste of hardware (copies of the same package occupy disk and RAM)

5

4. Which options are enabled?

▶ Most maintainers (with the exception being Snap) specify all the options to have
more stability between releases.

▶ Renaming build options, or changing their default behavior can be a burden on
package maintainers, as bugs can appear with no apparent changes on their part.

▶ Binary distributions tend to enable as much as possible (i.e. all options with
dependencies available in the distribution are usually enabled).

6

5. Can we move to C++14?

▶ All package maintainers seem to be ok with moving to C++17!

▶ CentOS7 and older Debian versions (not present in the survey) wouldn’t support the
move due to old compilers

● Only affects the official distribution package

7

6. Sustainability issues

▶ Possible issue is current maintainers stepping down from their role

▶ In most cases another person should be ready to step in

▶ Biggest effort is the initial creation of the package

▶ Maintenance is comparably easier, if build system doesn’t change drastically

8

Extras!

▶ CUDA support is burdensome (Arch separates packages, Snap doesn’t support it)

▶ Make sure RPATH is set correctly (to avoid scripts that modify LD_LIBRARY_PATH)

▶ Enable roottest build against a ROOT installation

▶ Update CMake version (current 3.9 on Linux/MacOs, 3.16 on Windows)

● Features: FetchContent (3.11), PROCESSOR_AFFINITY (3.12), BUILD_RPATH_USE_ORIGIN (3.14),
CXX_STANDARD=20 (3.12)

● Distros: CentOS7 (3.17), Fedora 33 (3.18), Ubuntu 20.04 (3.16), Debian 10 (3.13), Ubuntu 18.04 (3.10)

9

https://cmake.org/cmake/help/latest/module/FetchContent.html
https://cmake.org/cmake/help/latest/prop_test/PROCESSOR_AFFINITY.html#prop_test:PROCESSOR_AFFINITY
https://cmake.org/cmake/help/latest/prop_tgt/BUILD_RPATH_USE_ORIGIN.html#prop_tgt:BUILD_RPATH_USE_ORIGIN
https://cmake.org/cmake/help/v3.12/prop_tgt/CXX_STANDARD.html

Thanks!

