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Disclaimers and Apologies.

I’m not an experimentalist let alone a statistics expert, so apologies if
some things are too pedestrian and others too complicated ...

Half (if not most) of the talk will actually be about “how to estimate”,
because
I We don’t actually have good methods to properly do that (yet)
I It’s important to understand the limitations before we can talk about

implementation

I will focus on perturbative QCD predictions and theory uncertainties due
to missing higher corrections
I Many things (likely) carry over to other types of theory predictions

While I have tried to capture the general state of affairs, for expedience,
illustrative examples are taken from my own work
(and since I’ll be a bit critical, I want to avoid “bashing” the work of others)
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Overview

What Am I Talking About?

Pendulum example

We have a formula to obtain the quantity of interest (g) from the observed
quantities (number of swings/time)

This formula is the theory prediction

The theory uncertainty is due to the fact that in many cases the formula
itself is not fully exact (e.g. derived in some approximation)

I It is not the inexact knowledge of parameters needed in the (otherwise
exact) formula (like the length of the pendulum)
These are the usual systematics (parametric uncertainties)

I Note: Sometimes certain parametric uncertainties are also called a theory uncertainty just
because they primarily enter via the theory predictions (e.g. parton distribution functions).
For this talk these are not theory uncertainties.

⇒ The Challenge: How to account for the inexactness of the formula itself?
I The theory uncertainty is different from other systematics because a priori

there is no auxiliary measurement to improve inexactness
I But wait until the end of the talk ...
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Overview

In Collider Physics

Data
Lagrangian
parameters

Measured
cross sections

(or limits)

Theory predictionsTheory predictions

There is an almost continuous spectrum of interpretation steps with typically
increasing dependence on theory predictions

Often it is separated somewhere in the middle

Let us consider the simplest case (toward the right)

σmeasured
i = σpredicted

i (x)

I where x denotes the parameter(s) of interest to be determined
I Precise method to obtain x is not relevant for now (e.g. the fitting methodology)

We never know the exact formula for σpredicted
i (x)

I In fact, often (toward the left) we do not even have a formula, just a program
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Overview

Sources of Inexactness.

All the approximations we have to make when deriving σpredicted

Perturbative expansion in coupling constants: αs, αem

σpredicted = c0︸︷︷︸
LO

+ α c1︸ ︷︷ ︸
NLO

+ α2 c2︸ ︷︷ ︸
NNLO

+α3c3 + · · ·︸ ︷︷ ︸
neglected

I Usually the most relevant (QCD), so I will entirely focus on this one

Various other expansions (usually used implicitly at their lowest order)

I Kinematic power expansions: pT /Q (e.g. in parton showers, resummation)
I Nonperturbative power expansions: Λ/Q

I Mass expansions: mq/Q

I Usually less relevant for uncertainty
(and thus frequently ignored)

To account for inexactness, we quote
an uncertainty for our prediction

σpredicted = σorder ± ∆σorder
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Overview

What Should ∆σ Actually Represent or Mean?

16
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30

σpredicted = c0︸︷︷︸
LO

+ αc1︸ ︷︷ ︸
NLO

+ α2c2︸ ︷︷ ︸
NNLO

+ α3c3 + · · ·︸ ︷︷ ︸
neglected

= σ ± ∆σ

1 Estimate of difference to true result: ∆σ ≈ |σtrue − σ|

2 Estimate of missing next order(s): ∆σ ≈ α3 c3

I Same as above if series converges well (uncertainty on uncertainty is small)
I Only condition we can check, so how most theorists tend to think about it
I I’m happy when uncertainty covers highest-order result, unhappy when not

3 However, in implementation it is practically always used as some “1σ”
I |σtrue − σ| ≤ ∆σ with 68% “probability”
I But “probability” in what sense?
I And what probability distribution?
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Overview

And How Is It Distributed?

Theorist: “Do not use a Gaussian, it should be a flat distribution”
Translation: “The central value shouldn’t be the most likely”

A flat box of size ∆σ makes no sense (obviously too aggressive)

How about a central flat region with some (gaussian) tails?
I How large is the flat vs. tail region? What does ∆σ cover?

My opinion: Use whatever distribution suits you (Gaussian, log-normal)
Until someone demonstrates that the choice actually matters
I And if it does matter, you’re so sensitive to theory uncertainties that you have

much bigger problems ...

And if a theorist complains, you can go ahead and easily measure their
true mental distribution, by asking:
“Which percentage of [citations on paper, monthly salary, postdoc funding, ...] are
you willing to loose if the next order is outside your uncertainty? 68%? 95%?”

(I’m only half-joking ... just please never ask me this question)
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Overview

Even Bigger Challenge: Correlations.

Correlations can be crucial as soon as several predictions σi are used
simultaneously

Prototype of extrapolation that happens in many data-driven methods

σSR(X) =
[
σCR(Y )

]
measured

×
[
σSR(X)

σCR(Y )

]
predicted︸ ︷︷ ︸

needed
︸ ︷︷ ︸

measure precisely
︸ ︷︷ ︸

theory uncertainties cancel

I Cancellation of theory uncertainties is often taken for granted, but in fact
crucially relies on precise correlations

Whenever we deal with differential spectrum
I Integrated cross section often more precisely predicted than spectrum

(There are theoretical reasons for that.)
I Any shape uncertainty which cancels in integral inherently requires

(long-range) anticorrelation across spectrum
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Scale Variations

Scale Variations.

(The ugly present)
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Scale Variations

Scale Variations in a Nutshell.

The prevalent method to estimate ∆σ in perturbative QCD predictions

σ = c0 + α(µ0) c1 + α2(µ0) c2 + · · ·
= c0 + α(µ) c1 + α2(µ)(c1 b0 lnµ/µ0 + c2) + · · ·︸ ︷︷ ︸

neglected

The scale µ is our choice of how we perform the expansion
I All-order result does not depend on this choice, i.e. it is µ-independent
I The truncated series does depend on this choice, and this residual µ

dependence is cancelled by neglected higher-order terms

Scale variations exploit this by taking the difference between two choices
to estimate the typical size of neglected higher-order terms

σNLO ≡ σ|µ0 = c0 + α(µ0) c1

∆σNLO = σ|µ − σ|µ0 = α2(µ) c1 b0 lnµ/µ0 + · · ·
I Basically just a convenient way to estimate size of missing c2 from known c1
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Scale Variations

Scale Variations Are Not Very Reliable.

Basic problem: Nothing really guarantees that c2 ≈ c1b0 is a good
approximation
I Many known examples where resulting ∆σ is underestimated
I σ1 can be accidentally small due to internal cancellations
I There can be new structures in c2 that are not yet present in c1

Most people would probably agree that it would be good to have
something better
I But we have gotten used to the ugliness and very good at ignoring it
I And despite everything, scale variations are extremely convenient and we

don’t really have anything better either
I And anyway, there is no way to really know ∆σ, so instead of loosing sleep

over it, it is much more satisfying to just go on and calculate c2

There have been a few efforts to develop alternative methods
I Have their own limitations, none has gotten much traction
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Scale Variations

Typical Pitfalls in Practice.

Prone to various pitfalls
I Underestimation, fake asymmetry, extreme case: one-sidedness
I Bound to happen somewhere in a spectrum

Minimal fix: Take maximal absolute deviation as symmetric uncertainty
I Unfortunately often not done, instead scale variations get silently interpreted

as “uncertainties”
I There are thousands of theory papers quoting asymmetric (or even

one-sided) “scale uncertainties”
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Scale Variations

Conceptual Limitations.

Even if with sufficient care scale variations give a reasonable size for ∆σ,
they have a much bigger conceptual problem/limitation

Scales are not physical parameters with a true but uncertain value
I The choice of µ is not the actual source of uncertainty
I Varying µ is not a propagation of its uncertainty
I At higher orders, µ does not become better known, rather truncated series

becomes less dependent on it
I At any given order, there might be no (sensible) value of µ at all that

captures the true result

They cannot be used to capture or derive correlations between σi
I Scales used for different σi a priori have nothing to do with each other

⇒ Best we can do is come up with theoretically motivated (but still
more-or-less ad hoc) model for correlations between σi
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Scale Variations

Implementation Options.

77 Worst: Treat µ itself as nuisance parameter
I Usually out of desire to capture correlations or shape uncertainty
I All of the above pitfalls apply

7 Less bad: σi ± θi∆σi
I with ∆σi from max-abs envelope (at least avoids pitfalls)
I Treat θi as nuisance parameters
I Main issue: Missing proper correlations

(X) Least bad: σi ± θa∆ia ± θb∆ib ± · · ·
I As above, but including some theoretically motivated correlation model
I Try to identify and separate independent uncertainty “sources” a, b, ...
I ∆ia estimated from (max-abs envelope of) suitably chosen scale variations
I θa,b,... are mutually independent nuisance parameters
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Scale Variations

Example: Correlation Model in Jet Binning.
[Stewart, FT, arXiv:1107.2117]

σtot =

∫ pcut
T

0

dpT
dσ

dpT︸ ︷︷ ︸ +

∫ ∞
pcut
T

dpT
dσ

dpT︸ ︷︷ ︸
σ0(pcut

T ) + σ≥1(pcut
T )

Naive scale variation fails

Instead, parametrize in terms of
I yield: overall normalization
I migration: induced by binning cut

σ0 σ≥1 σtot

θy ∆0y ∆1y ∆0y+∆1y

θcut ∆cut −∆cut 0

I ∆iy and ∆cut can be estimated
at FO or via resummation

pTpcut
T

d
σ
/
d
p
T

σ0(p
cut
T ) σ≥1(p

cut
T )

Resummation
Peak

Fixed Order
Tail

Transition

0
0

2

4

6

8

10

10 20 30 40 50 60 70 80 90 100

Ecm=7TeV

pcut
T [GeV]

σ
0
(p

cu
t

T
)
[p
b
]

mH =165GeV

gg → H+0 jet (NNLO)

µ=mH/4

µ=mH/2

µ=mH

combined incl. unc.
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Scale Variations

Example: STXS Uncertainty Scheme for gg → H.

Stage 1.2

= 0-jet

pHjj
T

≥ 2-jet

mjj [350,∞]

≃ 2-jet

& 3-jet

& 3-jet

≃ 2-jet

pH
T

0

10
350

700

1000

mjj

1500

∞

mjj [0, 350]

200

120

60

0

pH
T

= 1-jet

pH
T [0, 200]

0 ∞25
∞0 25

gg→H

pH
T [200,∞]

300

200

pH
T

∞
650

450

0.15

pHj
T /pH

T

Parametrize in terms of migration unc. across various bin boundaries
Becomes more and more arbitrary with more bins
I How to separate ∆cut for given boundary among subbins
I Which bin boundaries to consider independent vs. correlated
I Danger of overestimation/double-counting with too many small bins
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Scale Variations

Example: Scale Variations for Z pT Spectrum.
[Ebert, Michel, Stewart, FT, arXiv:2006.11382]
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Define independent, and thus uncorrelated, sources of pert. uncertainties
Estimate each from max-abs envelope of suitably chosen scale variations
I In this context (resummation), we have up to six different scales to play with

Added in quadrature to get total uncertainty band
X Achieves desired decorrelation across spectrum
X Lower-order bands cover best central value
7 Anticorrelations (shape) within each source still not captured
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Scale Variations

Another Implementation: Envelope Propagation.
[SIMBA, Bernlochner et al., arXiv:2007.04320]

Repeat fit with varied theory inputs
from various scale choices

1.8 2.0 2.2 2.4 2.6
0.0

0.5

1.0

1.5

2.0

⇒

4.70 4.75 4.80
14.0

14.5

15.0

15.5

16.0

16.5

Propagates the envelope, which can be useful in particular for spectra
X Maintains behaviour of individual scale variations

(i.e. some form of anticorrelated shape uncertainty)
X Avoids overestimate from only taking edges of uncertainty band
7 Theory uncertainties cannot affect central fit result
7 Correlations could still be rather arbitrary

⇒ How to actually take and interpret envelope in fit results?
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Theory Nuisance Parameters

Theory Nuisance Parameters.

(The promise of a less ugly future)
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Theory Nuisance Parameters

What We Should be Doing.

σ = c0 + α(µ0) c1 + α2(µ0) c2 + · · ·

1) Identify the actual source of uncertainty
The unknown, neglected higher-order terms: c2, c3, . . .

2) Identify the knowns and parametrize the unknowns
We typically know a lot about the general structure of c2 even without
explicitly calculating it
I µ dependence, color structure, partonic channels, kinematic structure, ...
I All we want is an uncertainty estimate, so it is sufficient to consider dominant

contributions or limits

Suitably parametrize the remaining unknown pieces/contributions
I Best case: Unknowns are a few numbers
I More generally, one or more unknown functions

3) Treat the remaining unknowns as nuisance parameters
Figure out allowed range based on theory arguments
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Theory Nuisance Parameters

Advantages of Theory Nuisance Parameters.

Theory nuisance parameters (TNPs) are genuine parameters with a true but
uncertain value

Renders the whole problem much more well-defined
We get all benefits of truly parametric uncertainties
X Encode correct correlations, straightforward to propagate everywhere
X Can be constrained by measurements (auxiliary and/or primary)

There will typically be several parameters
I Much safer against accidental underestimate of any one parameter
I Total theory uncertainty becomes Gaussian due to central-limit theorem

Can even lead to reduced theory uncertainties
I Can fully exploit partially known higher-order information
I Can also reduce theory uncertainties at a later time

Price to pay
Predictions become quite a bit more complex
I Need to implement complete next order in terms of unknown parameters
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Theory Nuisance Parameters

Example: Z pT Spectrum.
[FT, work in progress ...]
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-10

-5
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Dependence on pT is determined by resummation (RG structure)
X Correlations in pT spectrum are fully captured/predicted
X Similarly, correlations in predictions for different Q, Ecm, processes

Underlying TNPs are anomalous dimensions and boundary conditions
required at each resummation order
I Illustration: Show θi = (0± 2)θtrue

i with known θtrue
i at this order
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Theory Nuisance Parameters

Estimating Allowed Size of TNPs.
[FT, work in progress ...]

Anomalous dimensions Boundary conditions

1-loop 2-loop 3-loop 4-loop 5-loop
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ne
ri

c
si

ze
In practice, one still to estimate the possible generic size of the TNPs

Just the usual exercise for estimating possible size of a systematic

Possible based on what we know about structure of perturbation theory
I Illustration: Estimate based on leading color and nf dependence
I Works very well for many known perturbative series
→ See backup for example of functional TNP
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Theory Nuisance Parameters

Summary.

Theory uncertainties are indeed ugly business

Be aware of limitations of current methods like scale variations
I Not particularly reliable, cannot predict correlations
→ See backup for “Herwig vs.Pythia”

Best way is to avoid theory uncertainties
I Yes, but “avoiding” often secretly means “canceling” them, which relies on

correlations, and we’re back to the previous point

Theory nuisance parameters can overcome these limitations

A paradigm change, but the obvious way forward (at least to me)

Just at the start, many things still to investigate, gathering experience, ...
I Your feedback is most welcome ...

Thanks for your attention
(and apologies for running over time)
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Backup

Additional Slides
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Backup

2-Point Systematics: “Herwig vs. Pythia”.

Take difference of two predictions as the uncertainty
Usually done out of desperation for lack of anything better

If the two are close: does not mean actual uncertainty is small
I They might just be doing the same (possibly wrong) thing.
I Completely underestimates

If the two are very different: does not mean actual uncertainty is large
I One might just be wrong or not as good as the other
I Might just be comparing apples with bananas (not even oranges)
I Completely overestimates

If both can be considered equally good approximations: Treat just like a
scale variation
I Difference between two approximations may (or may not) give an estimate of

size of neglected terms
I All caveats/pitfalls of scale variations apply
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Backup

Functional TNPs.

Strategy: Parametrize by exploiting known functional dependence and/or
expanding in known limits

Example: Beam function matching coefficients depend on parton
momentum fraction x (similar to splitting functions)

I Can construct a parametrization based on expanding around x→ 1
[Billis, Ebert, Michel, FT, arXiv:1909.00811]
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