### Theory Uncertainties.

(aka The Ugly)

#### Frank Tackmann

Deutsches Elektronen-Synchrotron

PHYSTAT Systematics, Nov. 02, 2021







### Disclaimers and Apologies.

- I'm not an experimentalist let alone a statistics expert, so apologies if some things are too pedestrian and others too complicated ...
- Half (if not most) of the talk will actually be about "how to estimate", because
  - We don't actually have good methods to properly do that (yet)
  - It's important to understand the limitations before we can talk about implementation
- I will focus on perturbative QCD predictions and theory uncertainties due to missing higher corrections
  - Many things (likely) carry over to other types of theory predictions
- While I have tried to capture the general state of affairs, for expedience, illustrative examples are taken from my own work (and since I'll be a bit critical, I want to avoid "bashing" the work of others)

2021-11-02 | Frank Tackmann 1/28.

### Overview.

### What Am I Talking About?

#### Pendulum example

- We have a formula to obtain the quantity of interest (g) from the observed quantities (number of swings/time)
- This formula is the theory prediction
- The theory uncertainty is due to the fact that in many cases the formula itself is not fully exact (e.g. derived in some approximation)
  - It is not the inexact knowledge of parameters needed in the (otherwise exact) formula (like the length of the pendulum)
    - These are the usual systematics (parametric uncertainties)
  - Note: Sometimes certain parametric uncertainties are also called a theory uncertainty just because they primarily enter via the theory predictions (e.g. parton distribution functions). For this talk these are not theory uncertainties.

2021-11-02 | Frank Tackmann 2/28

### What Am I Talking About?

#### Pendulum example

- We have a formula to obtain the quantity of interest (g) from the observed quantities (number of swings/time)
- This formula is the theory prediction
- The theory uncertainty is due to the fact that in many cases the formula itself is not fully exact (e.g. derived in some approximation)
  - It is not the inexact knowledge of parameters needed in the (otherwise exact) formula (like the length of the pendulum)
    - These are the usual systematics (parametric uncertainties)
  - Note: Sometimes certain parametric uncertainties are also called a theory uncertainty just because they primarily enter via the theory predictions (e.g. parton distribution functions). For this talk these are not theory uncertainties.

#### ⇒ The Challenge: How to account for the inexactness of the formula itself?

- ► The theory uncertainty is different from other systematics because a priori there is no auxiliary measurement to improve inexactness
- But wait until the end of the talk ...

2021-11-02 | Frank Tackmann 3/28.

### In Collider Physics



There is an almost continuous spectrum of interpretation steps with typically increasing dependence on theory predictions

### In Collider Physics



There is an almost continuous spectrum of interpretation steps with typically increasing dependence on theory predictions

- Often it is separated somewhere in the middle
- Let us consider the simplest case (toward the right)

$$\sigma_i^{\mathrm{measured}} = \sigma_i^{\mathrm{predicted}}(x)$$

- lacktriangle where x denotes the parameter(s) of interest to be determined
- lacktriangle Precise method to obtain x is not relevant for now (e.g. the fitting methodology)
- ullet We *never* know the exact formula for  $\sigma_i^{
  m predicted}(x)$ 
  - In fact, often (toward the left) we do not even have a formula, just a program

2021-11-02 | Frank Tackmann 5/28.

#### Sources of Inexactness.

#### All the approximations we have to make when deriving $\sigma^{ m predicted}$

ullet Perturbative expansion in coupling constants:  $lpha_s, lpha_{
m em}$ 

$$\sigma^{
m predicted} = \underbrace{c_0}_{
m LO} + \underbrace{\alpha \, c_1}_{
m NLO} + \underbrace{\alpha^2 \, c_2}_{
m NNLO} \, \underbrace{+ \alpha^3 c_3 + \cdots}_{
m neglected}$$

- ▶ Usually the most relevant (QCD), so I will entirely focus on this one
- Various other expansions (usually used implicitly at their lowest order)
  - ightharpoonup Kinematic power expansions:  $p_T/Q$  (e.g. in parton showers, resummation)
  - Nonperturbative power expansions:  $\Lambda/Q$
  - Mass expansions: m<sub>q</sub>/Q
  - Usually less relevant for uncertainty (and thus frequently ignored)

2021-11-02 | Frank Tackmann 6/28.

#### Sources of Inexactness.

#### All the approximations we have to make when deriving $\sigma^{ m predicted}$

• Perturbative expansion in coupling constants:  $\alpha_s, \alpha_{
m em}$ 

$$\sigma^{ ext{predicted}} = \underbrace{c_0}_{ ext{LO}} + \underbrace{\alpha c_1}_{ ext{NLO}} + \underbrace{\alpha^2 c_2}_{ ext{NNLO}} + \underbrace{\alpha^3 c_3 + \cdots}_{ ext{neglected}}$$

- Usually the most relevant (QCD), so I will entirely focus on this one
- Various other expansions (usually used implicitly at their lowest order)
  - ightharpoonup Kinematic power expansions:  $p_T/Q$  (e.g. in parton showers, resummation)
    - Nonperturbative power expansions: Λ/Q
    - Mass expansions: m<sub>q</sub>/Q
    - Usually less relevant for uncertainty (and thus frequently ignored)

To account for inexactness, we quote an uncertainty for our prediction

$$\sigma^{
m predicted} = \sigma_{
m order} \, \pm \, \Delta \sigma_{
m order}$$



### What Should $\Delta \sigma$ Actually Represent or Mean?

$$\sigma^{ ext{predicted}} = c_0 + \alpha c_1 + \alpha^2 c_2 + \alpha^3 c_3 + \cdots$$

$$= \sigma \pm \Delta \sigma$$
neglected
$$= c_0 + \alpha c_1 + \alpha^2 c_2 + \alpha^3 c_3 + \cdots$$

$$= \sigma \pm \Delta \sigma$$
neglected
$$= c_0 + \alpha c_1 + \alpha^2 c_2 + \alpha^3 c_3 + \cdots$$

$$= c_0 + \alpha c_1 + \alpha^2 c_2 + \alpha^3 c_3 + \cdots$$

$$= c_0 + \alpha c_1 + \alpha^2 c_2 + \alpha^3 c_3 + \cdots$$

$$= c_0 + \alpha c_1 + \alpha^2 c_2 + \alpha^3 c_3 + \cdots$$

$$= c_0 + \alpha c_1 + \alpha^2 c_2 + \alpha^3 c_3 + \cdots$$

$$= c_0 + \alpha c_1 + \alpha c_1 + \alpha^2 c_2 + \alpha^3 c_3 + \cdots$$

$$= c_0 + \alpha c_1 + \alpha c_1 + \alpha^2 c_2 + \alpha^3 c_3 + \cdots$$

$$= c_0 + \alpha c_1 + \alpha c_1 + \alpha^2 c_2 + \alpha^3 c_3 + \cdots$$

$$= c_0 + \alpha c_1 + \alpha c_1 + \alpha^2 c_2 + \alpha^3 c_3 + \cdots$$

$$= c_0 + \alpha c_1 + \alpha c_1 + \alpha^2 c_2 + \alpha^3 c_3 + \cdots$$

$$= c_0 + \alpha c_1 + \alpha c_1 + \alpha c_2 + \alpha^3 c_3 + \cdots$$

$$= c_0 + \alpha c_1 + \alpha c_2 + \alpha c_3 + \cdots$$

$$= c_0 + \alpha c_1 + \alpha c_2 + \alpha c_3 + \cdots$$

$$= c_0 + \alpha c_1 + \alpha c_2 + \alpha c_3 + \cdots$$

$$= c_0 + \alpha c_1 + \alpha c_2 + \alpha c_3 + \cdots$$

$$= c_0 + \alpha c_1 + \alpha c_2 + \alpha c_3 + \cdots$$

$$= c_0 + \alpha c_1 + \alpha c_2 + \alpha c_3 + \cdots$$

$$= c_0 + \alpha c_1 + \alpha c_2 + \alpha c_3 + \cdots$$

$$= c_0 + \alpha c_1 + \alpha c_2 + \alpha c_3 + \cdots$$

$$= c_0 + \alpha c_1 + \alpha c_2 + \alpha c_3 + \cdots$$

$$= c_0 + \alpha c_1 + \alpha c_2 + \alpha c_3 + \cdots$$

$$= c_0 + \alpha c_1 + \alpha c_2 + \alpha c_3 + \cdots$$

$$= c_0 + \alpha c_1 + \alpha c_2 + \alpha c_3 + \cdots$$

$$= c_0 + \alpha c_1 + \alpha c_2 + \alpha c_3 + \cdots$$

$$= c_0 + \alpha c_1 + \alpha c_2 + \alpha c_3 + \cdots$$

$$= c_0 + \alpha c_1 + \alpha c_2 + \alpha c_3 + \cdots$$

$$= c_0 + \alpha c_1 + \alpha c_2 + \alpha c_3 + \cdots$$

$$= c_0 + \alpha c_1 + \alpha c_2 + \alpha c_3 + \cdots$$

$$= c_0 + \alpha c_1 + \alpha c_2 + \alpha c_3 + \cdots$$

$$= c_0 + \alpha c_1 + \alpha c_2 + \alpha c_3 + \cdots$$

$$= c_0 + \alpha c_1 + \alpha c_2 + \alpha c_3 + \cdots$$

$$= c_0 + \alpha c_1 + \alpha c_2 + \alpha c_3 + \cdots$$

$$= c_0 + \alpha c_1 + \alpha c_2 + \alpha c_3 + \cdots$$

$$= c_0 + \alpha c_1 + \alpha c_2 + \alpha c_3 + \cdots$$

$$= c_0 + \alpha c_1 + \alpha c_2 + \alpha c_3 + \cdots$$

$$= c_0 + \alpha c_1 + \alpha c_2 + \alpha c_3 + \cdots$$

$$= c_0 + \alpha c_1 + \alpha c_2 + \alpha c_3 + \cdots$$

$$= c_0 + \alpha c_1 + \alpha c_2 + \alpha c_3 + \cdots$$

$$= c_0 + \alpha c_1 + \alpha c_2 + \alpha c_3 + \cdots$$

$$= c_0 + \alpha c_1 + \alpha c_2 + \alpha c_3 + \cdots$$

$$= c_0 + \alpha c_1 + \alpha c_2 + \alpha c_3 + \cdots$$

$$= c_0 + \alpha c_1 + \alpha c_2 + \alpha c_3 + \cdots$$

$$= c_0 + \alpha c_1 + \alpha c_2 + \alpha c_3 + \cdots$$

$$= c_0 + \alpha c_1 + \alpha c_2 + \alpha c_3 + \cdots$$

$$= c_0 + \alpha c_1 + \alpha c_2 + \alpha c_3 + \cdots$$

$$= c_0 + \alpha c_1 + \alpha c_2 + \alpha c_3 + \cdots$$

$$= c_0 + \alpha c_1 + \alpha c_2 + \alpha c_3 + \cdots$$

$$= c_0 + \alpha c_1 + \alpha c_2 + \alpha c_3 + \cdots$$

$$= c_0 + \alpha c_1 + \alpha c_2 + \alpha c_3 + \cdots$$

$$= c_0 + \alpha c_1 + \alpha c_2 + \alpha c_3 + \cdots$$

$$= c_0 + \alpha$$



- **1** Estimate of difference to true result:  $\Delta \sigma \approx |\sigma^{\rm true} \sigma|$
- ② Estimate of missing next order(s):  $\Delta\sigmapproxlpha^3\,c_3$ 
  - Same as above if series converges well (uncertainty on uncertainty is small)
  - Only condition we can check, so how most theorists tend to think about it
  - I'm happy when uncertainty covers highest-order result, unhappy when not
- lacktriangle However, in implementation it is practically always used as some "1 $\sigma$ "
  - $|\sigma^{\rm true} \sigma| < \Delta \sigma$  with 68% "probability"
  - ▶ But "probability" in what sense?
  - And what probability distribution?

2021-11-02 | Frank Tackmann 8/28.

#### And How Is It Distributed?

Theorist: "Do not use a Gaussian, it should be a flat distribution"

Translation: "The central value shouldn't be the most likely"

- A flat box of size  $\Delta \sigma$  makes no sense (obviously too aggressive)
- How about a central flat region with some (gaussian) tails?
  - ▶ How large is the flat vs. tail region? What does  $\Delta \sigma$  cover?

2021-11-02 | Frank Tackmann 9/28.

#### And How Is It Distributed?

Theorist: "Do not use a Gaussian, it should be a flat distribution"

Translation: "The central value shouldn't be the most likely"

- A flat box of size  $\Delta \sigma$  makes no sense (obviously too aggressive)
- How about a central flat region with some (gaussian) tails?
  - ▶ How large is the flat vs. tail region? What does  $\Delta \sigma$  cover?

#### My opinion: Use whatever distribution suits you (Gaussian, log-normal)

- Until someone demonstrates that the choice actually matters
  - And if it does matter, you're so sensitive to theory uncertainties that you have much bigger problems ...
- And if a theorist complains, you can go ahead and easily measure their true mental distribution, by asking:
  - "Which percentage of [citations on paper, monthly salary, postdoc funding, ...] are you willing to loose if the next order is outside your uncertainty? 68%? 95%?" (I'm only half-joking ... just please never ask me this question)

2021-11-02 | Frank Tackmann 10/28.

### Even Bigger Challenge: Correlations.

# Correlations can be crucial as soon as several predictions $\sigma_i$ are used simultaneously

Prototype of extrapolation that happens in many data-driven methods

$$\sigma^{
m SR}(X) = \left[\sigma^{
m CR}(Y)
ight]_{
m measured} imes \left[rac{\sigma^{
m SR}(X)}{\sigma^{
m CR}(Y)}
ight]_{
m predicted}$$
needed measure precisely theory uncertainties cancel

- Cancellation of theory uncertainties is often taken for granted, but in fact crucially relies on precise correlations
- Whenever we deal with differential spectrum
  - Integrated cross section often more precisely predicted than spectrum (There are theoretical reasons for that.)
  - Any shape uncertainty which cancels in integral inherently requires (long-range) anticorrelation across spectrum

2021-11-02 | Frank Tackmann 11/28.

### Scale Variations.

(The ugly present)

#### Scale Variations in a Nutshell.

The prevalent method to estimate  $\Delta \sigma$  in perturbative QCD predictions

$$\sigma = c_0 + \alpha(\mu_0) c_1 + \alpha^2(\mu_0) c_2 + \cdots$$

$$= c_0 + \alpha(\mu) c_1 + \alpha^2(\mu)(c_1 b_0 \ln \mu/\mu_0 + c_2) + \cdots$$
neglected

- The scale  $\mu$  is our choice of how we perform the expansion
  - $\triangleright$  All-order result does not depend on this choice, i.e. it is  $\mu$ -independent
  - The truncated series does depend on this choice, and this residual μ dependence is cancelled by neglected higher-order terms

2021-11-02 | Frank Tackmann 12/28.

#### Scale Variations in a Nutshell.

The prevalent method to estimate  $\Delta \sigma$  in perturbative QCD predictions

$$\sigma = c_0 + \alpha(\mu_0) c_1 + \alpha^2(\mu_0) c_2 + \cdots$$

$$= c_0 + \alpha(\mu) c_1 + \alpha^2(\mu)(c_1 b_0 \ln \mu/\mu_0 + c_2) + \cdots$$
neglected

- The scale  $\mu$  is our choice of how we perform the expansion
  - $\triangleright$  All-order result does not depend on this choice, i.e. it is  $\mu$ -independent
  - The truncated series does depend on this choice, and this residual  $\mu$  dependence is cancelled by neglected higher-order terms
- Scale variations exploit this by taking the difference between two choices to estimate the typical size of neglected higher-order terms

$$egin{align} \sigma_{
m NLO} &\equiv \sigma|_{\mu_0} &= c_0 + lpha(\mu_0)\,c_1 \ egin{align} \Delta\sigma_{
m NLO} &= \sigma|_\mu - \sigma|_{\mu_0} &= lpha^2(\mu)\,c_1\,b_0\ln\mu/\mu_0 + \cdots \end{array}$$

Basically just a convenient way to estimate size of missing  $c_2$  from known  $c_1$ 

2021-11-02 | Frank Tackmann 13/28.

### Scale Variations Are Not Very Reliable.

- Basic problem: Nothing really guarantees that  $c_2 \approx c_1 b_0$  is a good approximation
  - Many known examples where resulting  $\Delta \sigma$  is underestimated
  - $ightharpoonup \sigma_1$  can be accidentally small due to internal cancellations
  - ▶ There can be new structures in  $c_2$  that are not yet present in  $c_1$
- Most people would probably agree that it would be good to have something better
  - But we have gotten used to the ugliness and very good at ignoring it
  - And despite everything, scale variations are extremely convenient and we don't really have anything better either
  - And anyway, there is no way to really know  $\Delta \sigma$ , so instead of loosing sleep over it, it is much more satisfying to just go on and calculate  $c_2$
- There have been a few efforts to develop alternative methods
  - Have their own limitations, none has gotten much traction

2021-11-02 | Frank Tackmann 14/28.

### Typical Pitfalls in Practice.



- Prone to various pitfalls
  - Underestimation, fake asymmetry, extreme case: one-sidedness
  - Bound to happen somewhere in a spectrum
- Minimal fix: Take maximal absolute deviation as symmetric uncertainty
  - Unfortunately often not done, instead scale variations get silently interpreted as "uncertainties"
  - There are thousands of theory papers quoting asymmetric (or even one-sided) "scale uncertainties"

2021-11-02 | Frank Tackmann 15/28.

### Conceptual Limitations.

Even if with sufficient care scale variations give a reasonable size for  $\Delta \sigma$ , they have a much bigger conceptual problem/limitation

- Scales are *not* physical parameters with a true but uncertain value
  - ightharpoonup The choice of  $\mu$  is not the actual source of uncertainty
  - ightharpoonup Varying  $\mu$  is not a propagation of its uncertainty
  - ightharpoonup At higher orders,  $\mu$  does not become better known, rather truncated series becomes less dependent on it
  - At any given order, there might be no (sensible) value of  $\mu$  at all that captures the true result
- ullet They cannot be used to capture or derive correlations between  $\sigma_i$ 
  - ightharpoonup Scales used for different  $\sigma_i$  a priori have nothing to do with each other

 $\Rightarrow$  Best we can do is come up with theoretically motivated (but still more-or-less ad hoc) model for correlations between  $\sigma_i$ 

2021-11-02 | Frank Tackmann 16/28.

### Implementation Options.

- XX Worst: Treat  $\mu$  itself as nuisance parameter
  - Usually out of desire to capture correlations or shape uncertainty
  - All of the above pitfalls apply
  - X Less bad:  $\sigma_i \pm \theta_i \Delta \sigma_i$ 
    - with  $\Delta \sigma_i$  from max-abs envelope (at least avoids pitfalls)
    - ightharpoonup Treat  $\theta_i$  as nuisance parameters
    - Main issue: Missing proper correlations
- $(\checkmark)$  Least bad:  $\sigma_i \pm \theta_a \Delta_{ia} \pm \theta_b \Delta_{ib} \pm \cdots$ 
  - As above, but including some theoretically motivated correlation model
  - ightharpoonup Try to identify and separate independent uncertainty "sources" a, b, ...
  - $ightharpoonup \Delta_{ia}$  estimated from (max-abs envelope of) suitably chosen scale variations

 $ightharpoonup heta_{a,b,...}$  are mutually independent nuisance parameters

2021-11-02 | Frank Tackmann 17/28.

### Example: Correlation Model in Jet Binning.

[Stewart, FT, arXiv:1107.2117]

$$egin{aligned} \sigma_{ ext{tot}} &= \underbrace{\int_{0}^{oldsymbol{p_T^{ ext{cut}}}} \mathrm{d}p_T}_{} \mathrm{d}rac{\mathrm{d}\sigma}{\mathrm{d}p_T} + \underbrace{\int_{oldsymbol{p_T^{ ext{cut}}}}^{\infty} \mathrm{d}p_T}_{} rac{\mathrm{d}\sigma}{\mathrm{d}p_T} \end{aligned} }_{\sigma_0(oldsymbol{p_T^{ ext{cut}}})} &+ \sigma_{\geq 1}(oldsymbol{p_T^{ ext{cut}}}) \end{aligned}$$

- Naive scale variation fails
- Instead, parametrize in terms of
  - yield: overall normalization
  - migration: induced by binning cut



 Δ<sub>iy</sub> and Δ<sub>cut</sub> can be estimated at FO or via resummation





2021-11-02 | Frank Tackmann

### Example: Correlation Model in Jet Binning.

$$egin{aligned} \sigma_{ ext{tot}} &= \underbrace{\int_{0}^{p_{T}^{ ext{cut}}} \mathrm{d}p_{T} \, rac{\mathrm{d}\sigma}{\mathrm{d}p_{T}}}_{} + \underbrace{\int_{p_{T}^{ ext{cut}}}^{\infty} \mathrm{d}p_{T} \, rac{\mathrm{d}\sigma}{\mathrm{d}p_{T}}}_{} \end{aligned}$$

- Naive scale variation fails
- Instead, parametrize in terms of
  - vield: overall normalization
  - migration: induced by binning cut



 $ightharpoonup \Delta_{iv}$  and  $\Delta_{cut}$  can be estimated at FO or via resummation





2021-11-02 | Frank Tackmann

### Example: STXS Uncertainty Scheme for gg o H.



- Parametrize in terms of migration unc. across various bin boundaries
- Becomes more and more arbitrary with more bins
  - ▶ How to separate ∆<sub>cut</sub> for given boundary among subbins
  - Which bin boundaries to consider independent vs. correlated
  - Danger of overestimation/double-counting with too many small bins

2021-11-02 | Frank Tackmann 19/28.

### Example: Scale Variations for Z $p_T$ Spectrum.



#### Define independent, and thus uncorrelated, sources of pert. uncertainties

- Estimate each from max-abs envelope of suitably chosen scale variations
  - ▶ In this context (resummation), we have up to six different scales to play with
- Added in quadrature to get total uncertainty band
  - √ Achieves desired decorrelation across spectrum
  - √ Lower-order bands cover best central value
    - Anticorrelations (shape) within each source still not captured

20/21-11-02 | Frank Tackmann 20/28-

### Example: Scale Variations for Z $p_T$ Spectrum.



#### Define independent, and thus uncorrelated, sources of pert. uncertainties

- Estimate each from max-abs envelope of suitably chosen scale variations
  - In this context (resummation), we have up to six different scales to play with
- Added in quadrature to get total uncertainty band
  - √ Achieves desired decorrelation across spectrum
  - √ Lower-order bands cover best central value
  - Anticorrelations (shape) within each source still not captured

20/28.

### Another Implementation: Envelope Propagation.

Repeat fit with varied theory inputs from various scale choices





- Propagates the envelope, which can be useful in particular for spectra
  - Maintains behaviour of individual scale variations
     (i.e. some form of anticorrelated shape uncertainty)
  - √ Avoids overestimate from only taking edges of uncertainty band
  - Theory uncertainties cannot affect central fit result
  - Correlations could still be rather arbitrary

→ How to actually take and interpret envelope in fit results?

21/28.

### Theory Nuisance Parameters.

(The promise of a less ugly future)

### What We Should be Doing.

$$\sigma = c_0 + \alpha(\mu_0) c_1 + \alpha^2(\mu_0) c_2 + \cdots$$

- 1) Identify the actual source of uncertainty
  - The unknown, neglected higher-order terms:  $c_2, c_3, \ldots$

### What We Should be Doing.

$$\sigma = c_0 + \alpha(\mu_0) c_1 + \alpha^2(\mu_0) c_2 + \cdots$$

- 1) Identify the actual source of uncertainty
  - The unknown, neglected higher-order terms:  $c_2, c_3, \ldots$
- 2) Identify the knowns and parametrize the unknowns
  - We typically know a lot about the general structure of c<sub>2</sub> even without explicitly calculating it
    - $ightharpoonup \mu$  dependence, color structure, partonic channels, kinematic structure, ...
    - All we want is an uncertainty estimate, so it is sufficient to consider dominant contributions or limits
  - Suitably parametrize the remaining unknown pieces/contributions
    - Best case: Unknowns are a few numbers
    - More generally, one or more unknown functions

2021-11-02 | Frank Tackmann 23/28.

### What We Should be Doing.

$$\sigma = c_0 + \alpha(\mu_0) c_1 + \alpha^2(\mu_0) c_2 + \cdots$$

- 1) Identify the actual source of uncertainty
  - The unknown, neglected higher-order terms:  $c_2, c_3, \ldots$
- 2) Identify the knowns and parametrize the unknowns
  - We typically know a lot about the general structure of c2 even without explicitly calculating it
    - $ightharpoonup \mu$  dependence, color structure, partonic channels, kinematic structure, ...
    - All we want is an uncertainty estimate, so it is sufficient to consider dominant contributions or limits
  - Suitably parametrize the remaining unknown pieces/contributions
    - Best case: Unknowns are a few numbers
    - More generally, one or more unknown functions
- 3) Treat the remaining unknowns as nuisance parameters
  - Figure out allowed range based on theory arguments

2021-11-02 | Frank Tackmann 24/28.

### Advantages of Theory Nuisance Parameters.

## Theory nuisance parameters (TNPs) are genuine parameters with a true but uncertain value

- Renders the whole problem much more well-defined
- We get all benefits of truly parametric uncertainties
  - Encode correct correlations, straightforward to propagate everywhere
  - √ Can be constrained by measurements (auxiliary and/or primary)
- There will typically be several parameters
  - ► Much safer against accidental underestimate of any one parameter
  - ► Total theory uncertainty becomes Gaussian due to central-limit theorem
- Can even lead to reduced theory uncertainties
  - Can fully exploit partially known higher-order information
  - Can also reduce theory uncertainties at a later time

#### Price to pay

- Predictions become quite a bit more complex
  - Need to implement complete next order in terms of unknown parameters

2021-11-02 | Frank Tackmann 25/28.

### Example: $Z p_T$ Spectrum.

[FT, work in progress ...]  $\Gamma_2 \quad pp \to Z \ (13 \, {\rm TeV}) \quad - \gamma_1^{\nu} \quad Q = m_Z, Y = 0 \quad - \gamma_1^{\mu} \quad {\rm NNLL'}(0 \pm 2) \quad - \gamma_1^{\nu} \quad {\rm NNL'}(0 \pm 2) \quad - \gamma_1^{\nu} \quad {\rm NNLL'}(0 \pm 2) \quad - \gamma$ 

 $p_T [GeV]$ 



ullet Dependence on  $p_T$  is determined by resummation (RG structure)

Relative impact [%]

- $\checkmark$  Correlations in  $p_T$  spectrum are fully captured/predicted
- $\checkmark$  Similarly, correlations in predictions for different  $Q, E_{
  m cm},$  processes
- Underlying TNPs are anomalous dimensions and boundary conditions required at each resummation order
  - ▶ Illustration: Show  $\theta_i = (0 \pm 2)\theta_i^{\text{true}}$  with known  $\theta_i^{\text{true}}$  at this order

2021-11-02 | Frank Tackmann 26/28.

### Estimating Allowed Size of TNPs.



#### In practice, one still to estimate the possible generic size of the TNPs

- Just the usual exercise for estimating possible size of a systematic
- Possible based on what we know about structure of perturbation theory
  - lacktriangle Illustration: Estimate based on leading color and  $n_f$  dependence
  - Works very well for many known perturbative series
  - → See backup for example of functional TNP

2021-11-02 | Frank Tackmann 27/28

### Summary.

2021-11-02 | Frank Tackmann

#### Theory uncertainties are indeed ugly business

- Be aware of limitations of current methods like scale variations
  - Not particularly reliable, cannot predict correlations
  - → See backup for "Herwig vs.Pythia"
- Best way is to avoid theory uncertainties
  - Yes, but "avoiding" often secretly means "canceling" them, which relies on correlations, and we're back to the previous point

#### Theory nuisance parameters can overcome these limitations

- A paradigm change, but the obvious way forward (at least to me)
- Just at the start, many things still to investigate, gathering experience, ...
  - ➤ Your feedback is most welcome ...

28/28

### Summary.

#### Theory uncertainties are indeed ugly business

- Be aware of limitations of current methods like scale variations
  - Not particularly reliable, cannot predict correlations
  - → See backup for "Herwig vs.Pythia"
- Best way is to avoid theory uncertainties
  - Yes, but "avoiding" often secretly means "canceling" them, which relies on correlations, and we're back to the previous point

#### Theory nuisance parameters can overcome these limitations

- A paradigm change, but the obvious way forward (at least to me)
- Just at the start, many things still to investigate, gathering experience, ...
  - Your feedback is most welcome ...

# Thanks for your attention (and apologies for running over time)

2021-11-02 | Frank Tackmann 28/28.

### **Additional Slides**

### 2-Point Systematics: "Herwig vs. Pythia".

#### Take difference of two predictions as the uncertainty

- Usually done out of desperation for lack of anything better
- If the two are close: does not mean actual uncertainty is small
  - ▶ They might just be doing the same (possibly wrong) thing.
  - Completely underestimates
- If the two are very different: does not mean actual uncertainty is large
  - One might just be wrong or not as good as the other
  - Might just be comparing apples with bananas (not even oranges)
  - Completely overestimates
- If both can be considered equally good approximations: Treat just like a scale variation
  - Difference between two approximations may (or may not) give an estimate of size of neglected terms

All caveats/pitfalls of scale variations apply

2021-11-02 | Frank Tackmann 29/28.

#### Functional TNPs.

- Strategy: Parametrize by exploiting known functional dependence and/or expanding in known limits
- Example: Beam function matching coefficients depend on parton momentum fraction x (similar to splitting functions)
  - Can construct a parametrization based on expanding around  $x \to 1$  [Billis, Ebert, Michel, FT, arXiv:1909.00811]



2021-11-02 | Frank Tackmann 30/28

#### Functional TNPs.

- Strategy: Parametrize by exploiting known functional dependence and/or expanding in known limits
- Example: Beam function matching coefficients depend on parton momentum fraction x (similar to splitting functions)
  - Can construct a parametrization based on expanding around  $x \to 1$  [Billis, Ebert, Michel, FT, arXiv:1909.00811]



2021-11-02 | Frank Tackmann 30/28

### Acknowledgments.

This project has received funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (Grant agreement No. 101002090 COLORFREE)



**European Research Council** 

Established by the European Commission

2021-11-02 | Frank Tackmann 31/28.