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lntroduction

There is a lot of activity in utilizing machine learning in the analysis of particle
pohysics data... duh.

"Il primarily focus on classitication and regression tasks

e Supervised learning: function f(x) to predict target y based on data x

e Classification: particle identification, signal vs. background discrimination

* Regression: estimate a particle’'s energy or momentum given detector readout

Classically physicists design some usetul features / “observables” / summary
statistics A(x) motivated by domain knowledge and then design relatively simple

functions f(h) = f(h(x))

e e.g. for classitication “cuts” (a decision tree designed by hand)



Motivation

We want to take advantage of the power of machine learning, but we need to
INncorporate systematic uncertainties.

Two notions of “incorporate”:

 Don’t be wrong: view analysis chain as tfixed and propagate systematic
uncertainty through it.

* e.g. control rate of type-| error in the presence of nuisance parameters

 Try to be “optimal”: adjust the training of ML components so that the analysis
s sensitive after accounting for systematics

* e.g. minimize rate of type-Il error / maximize power



Humans, heuristics, hubris, and humility

While ML can usually beat humans in classification tasks when neglecting systematic uncertainty,
ohysicists are very good at designing features and “cuts” that are robust to systematic uncertainty.

e Physicists leverage various heuristics along the way to design “observables” / features /
summary statistics that are robust or insensitive to the underlying sources of uncertainty

* e.qg. if you know some variable is poorly modeled, don't use it

* e.qg. if you know uncertainty leads to some (anti-)correlation, form the appropriate linear

combpination.

In the context of machine learning, we need to formalize what we mean by "“incorporate
systematic uncertainty” into an objective so that we can operationalize this

* e.g. a modified objective tor optimization

e This is not so easy.

e Also, physicists usually are thinking about multiple downstream use cases



Formalism & notation

In classic supervised learning, the training data is {x;, y;},—1 . w
e e.g. binary classification where y = 0 for background, and y = 1 tfor signal
e Forbackground:y=0:x ~ Poke(X) OF Ppi(x) = p(x|y = 0)
e Forsignal:y=1:x~ Psio(X) Or pgio(x) = pxly=1)
Training data drawn from a joint distribution: (x;, y,) ~ p(x,y) = p(x|y)p(y)
e |In many physics problems, physicists don’t know the (prior) distribution p(y) in data

e often p(y = 1) is the quantity of interest (is there a signal present or not)

* Physicists often try to generate balanced training data, even though in the real data the classes
are typically very imbalanced.

e it can be useful to call p(y) a “proposal” instead of a “prior” to avoid confusion with down-stream

Bayesian interence and to remember physicists typically don't take prediction literally as p(y | x)



Formalism & notation

The primary notion of systematic uncertainty that physicists worry about is the lack of

kr

owledge of the distribution p(x|y) and how that uncertainty influences downstream

1N

ference

e.g. training data often generated from a simulator p,; (x| y) and that simulator isn't
perfect. Or training data comes from a control region in the data p_,;0;(*) that is

assumed to be a good proxy for p(x|y), but may not match for the region of the data
being analyzed.

ypically we list what kinds of things might go wrong and parameterize their effect with

nuisance parameters v

This gives us a generative model p(x|y, )

Uncertainty on the nuisance parameters is factorized from the eftect they have, see

Lukas Heinrich's talk. Frequentist: p(a|v), Bayesian: p(v|a) « p(a|v)p(v)



Formalism & notation
Now we have a generative model p(x|y,v) that can generate data x for each
target y and systematic variation parameterized by v
e e.g.y = "signal events” and v = "jet reconstruction efficiency is off by 7%"
e e.g.y="20GeV electron” and v = "energy calibration off by 5%"
Typically we have some best estimate or nominal settings v,
e Typical ML training is based on (x;, y;) ~ p(x|y,v = vy)p(y)
e This leads to a trained model f(x)
e And then we think about the distribution of the output

e Forthe nominal p(f|y,v = 1,) and systematic variations p(f|y, )



An example from the archives
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Fig. 2. (a) The output 7 of the neural network b tag for radiative returns to the Z for 161 GeV qq Monte Carlo (histogram) compared to the
data at 161 GeV (points). The shaded region shows the contribution from generated b-jets. (b) The performance of the neural network b tag
(solid line) for Monte Carlo events, presented in terms of the efficiency for identifying b-jets versus the efficiency for rejecting light quark
jets. The performance of the single most powerful b tagging input variable to the neural network is shown for comparison (dashed curve).
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Fixed classifier is not optimal

Imagine a simple example of bump on flat background
e train on samples with v = 1, to obtain fixed classitier f(x)
e uncertainty in ¥ modifies location and width of peak

e the classitier not optimal for v # 1, but we can propagate uncertainty

o) | 0
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An example from the archives

Here is an example comparing the nominal
efficiency (calculated from p(f|y,v = 1)) to

a variational sample p(f|y, v) taken from
data.

C

Ep—iet(Cs V) = [ p(fly = Lv)df

0

€b_jet(C, I/) — €b_jet(C, L = I/())

€b—jet(ca U = Lg)

QEH 23 October 1997
A

e

ELSEVIER Physics Letters B 412 (1997) 173-188

PHYSICS LETTERS B

Search for the neutral Higgs bosons of the MSSM ine™e”
collisions at Vs from 130 to 172 GeV

ALEPH Collaboration
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Fig. 3. Comparison of the neural network b tag efficiency for a
single jet in Z peak data and Monte Carlo, after the smearing
correction, as a function of the cut on the jet neural network
output: (a) absolute tag efficiency; (b) difference between data and
Monte Carlo.



Propagating uncertainty to downstream inference

After characterizing how the efficiency depends on the “working point” ¢ and the

nuisance parameters v the experiments use this information in the downstream
statistical analysis.

C

For example: ¢, () = [ p(fly = Ly)df Epa() = [ p(fly = 0.,v)df
0 0

And later one might form a statistical model for the number of events n that have
f(x) > ¢, where s, b are some nominal number ot signal and background events
that would be produced, u is the parameter of interest, v is the nuisance

parameter, and p(a|v) is the likelihood associated to some auxiliary measurement

used to estimate v p(n,a|p,v) = Pois(n| peg,(v)s + ey, (V)b)p(alv)



A visual example

...and later one might form a statistical model for the number of events n that
have f(x) > ¢

) = J Py =100 eye®) = J p(fly = 0.)df
0 0

p(na d ‘/’ta V) — POiS(n ‘/’tesig(y)s + €bkg(y)b)p(a ‘ I/)

p(X\v)A

12
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Comments

The propagation of uncertainty approach is meant to ensure that downstream
inference on parameter of interest u is not wrong... (e.g. coverage)

p(na a |/’ta I/) — POiS(I’l ‘/’tesig(y)s + €bkg(y)b)p(a ‘ V)
Totally factorized from training ot the ML model f(x)

e Therefore no reason to think that f(x) is optimal from the point of view of
power or sensitivity on u even if f(x) was optimal for the supervised learning

task with data generated from the nominal scenario v,

Ok, this is all standard stuff and background. Where do we go from here?



Where do we go from here?



New PDG Chapter on ML

41. Machine Learning

Revised August 2019 by K. Cranmer (NYU), U. Seljak (UC Berkeley; LBNL) and K. Terao (SLAC).
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+hree Four approaches to Systematics

propagation of errors: one works with a model f(x) and simply characterizes how un-
certainty in the data distribution propagate through the tunction to the down-stream task
irrespective of how it was trained.

data augmentation: one trains a model f(x) in the usual way using training data from

multiple domains by sampling from some distribution over v.

domain adaptation: one incorporates knowledge of the distribution for domains (or the
parameterized family of distributions p(x |y, v)) into the training procedure so that the per-

formance of f(x) for the down-stream task is robust or insensitive to the uncertainty in v.

parameterized models: instead of learning a single function of the data f(x), one learns a

family of functions f(x; v) that is explicitly parameterized in terms of nuisance parameters
and then accounts for the dependence on the nuisance parameters in the down-stream
task.



Data augmentation

An intuitive approach to incorporate systematics into training is to train on
"smeared data”, or data generated from a marginal model

zi, yi ~ p(r,y) = | dvp(z,y|v)p(v)
e Note: this requires a prior / proposal distribution p(v)

pxy ] [ ()
P(x) — Jp(x ‘ I/)p(lj)dy fsmeared(x)




Fixed classifier is not optimal

Imagine a simple example of bump on flat background
* train on smeared samples with v ~ p(v) to obtain fixed classifier £, ..req(X)

e we can propagate the fixed learner, but classitier not optimal for any v

pxy ] [ ()
P(X) — Jp(x ‘ I/)p(lj)dy fsmeared(x)
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Reminder of standard statistical procedures in HEP



THUMBNAIL OF THE STATISTICAL PROCEDURE

L(, 0(1)) Follow LHC-HCG Combination Procedures
L(j1,6)
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https://cdsweb.cern.ch/record/1375842

THE PROFILE LIKELIHOOD RATIO

Consider statistical model with parameters of interest x and nuisance (here called )

Define profile likelihood ratio

A

A(p) = L(p, 0(w)) _ f(D,G|u,0(1;D,G))
L(j1, ) (D, G|, 0)

» where é(u; D, G)is best fit with u fixed (the constrained maximum likelihood
estimator, depends on data)

» and 6 and {1 are best fit with both left floating (unconstrained)

» D denotes observed data and ¢ denotes “global observables” (central values for
nuisance parameters)

Wilks' Theorem: under certain conditions the distribution of -2 In 4 (u=u0) given that
the true value of u Is up converges to a chi-square distribution

» distribution is known and it is independent of 6!
» = robust to uncertainty, a quantity like this is called a “pivot”

21



Propagating uncertainty with a pivotal classifier

't we have a pivotal classifier, then efticiencies are independent of v

) = [ Py =100 egu) = [ p(fly = 0.)df
0 0

Thus one won't “pay more” when accounting for systematics in the downstream

analysis ]
p(n,a|p,v) = Pois(n | peg,(1)s + ey (V)b)pla|v)
= POiS(n ‘ﬂGSigS + €bkgb)

... but that still doesn’t mean that f(x) is optimizing power / sensitivity.

How do we obtain a pivotal classifier?



Learning to pivot with adversarial networks

normal training adversarial training

Typically classitier f(x) trained to minimize loss L.

3.0 — 1.0 3.0
.« (o . o . . 25 10.9 > 5 0.84
e want classitier output to be insensitive to systematics
, 2.0 0.8 2.0 0.72
(nuisance parameter v)
1.5 1.5 0.60
e introduce an adversary r that tries to predict v based 1.0 1.0 .
0.5 0.5
Oﬂf. 0.36
0.0 0.0
* setup as a minimax game: ~0.5 ~0.5 24
~19%0-05 00 05 1.0 15 20 ° ~190-05 0.0 0.5 1.0 1.5 2.0 012

éf,ér = argnelinr%axE(é’f,HT), 9 ! ! ! 4.0
I r

Ex(0f,0r) = L§(0f) — ALy (0f,07)

3.5}

-0.572

G. Louppe, M. Kagan, K. Cranmer, arXiv:1611.01046



G. Louppe, M. Kagan, K. Cranmer, arXiv:1611.01046

The Adversarial model

Classifier f Adversary r

«— N\

Y1 (f(X;07);0;)
O
F(X;04) Y2(f(X505);0r)
X — | g P(vi,v2,---)
: -
T : T ! pwlf)
0 ¢ Ly(0f) 0. Lr(0f,0:)

the Y1, Y2, ... are the mean, standard deviation, and
amplitude for the Gaussian Mixture Model. pw|f)

e the neural network takes in f and predicts Y1, Y2,




G. Louppe, M. Kagan, K. Cranmer, arXiv:1611.01046

An example of learning to pivot

Technigue allows us to tune A, the tradeoff between classification power ana
robustness to systematic uncertainty

An example: . .
background: 1000 QCD jets 1= NI
signal: 100 boosted W's — A=l

Train W vs. QCD classifier

Pileup as source of
uncertainty

Simple cut-and-count

Expected significance of search

analysis with background ob e ORI SOSIUTPOROR S _
uncertainty. 1 | ; | |
0.0 0.2 0.4 0.6 0.8 1.0

threshold on f(X)



Domain a d d P tation https://arxiv.org/pdf/1505.07818.pdf

GANIN, USTINOVA, AJAKAN, GERMAIN, LAROCHELLE, LAVIOLETTE, MARCHAND AND LEMPITSKY
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In machine learning literature, the setting where training data doesn’t match real world data is referrea
to as “domain shift” and techniques to mitigate the loss in performance are called “domain
adaptation”

A similar adversarial technique was introduced in arxiv:1505.0/818 where adversary tries to get
distribution of hidden state features to be invariant. This works for discrete domains, but doesn't
generalize well to continuous nuisance parameters.

e adversary works on some low-level features (not just the class prediction )


https://arxiv.org/pdf/1505.07818.pdf

Phys.Rev.Lett. 125 (2020) 12, 122001

Learned adversary — explicit regularization

One way of interpreting the mini-max game 6,6, = arg min max E(6;,6,).
0 0,

is to minimize a regularized loss term Z(Hf) = arg max E;(6,, 0,) where the

r

optimization with respect to 6. is not exposed

This motivates another approach in which the regularization is not achieved
through a learned adverary, but some other measure of discrepancy

DisCo Fever: Robust Networks Through Distance Correlation

Gregor Kasieczkal’ and David Shih2’3’4’E

, dCov?(X,Y) = (| X — X'||Y = Y'|)
L = Lclassz’fier (ya ytrue) + A dcorryt,rue:() (m7 g) + (| X — X,|><|Y - Y,|>
—2(|X - X'|[Y = Y"|)



s there a better way?



THE PROFILE LIKELIHOOD RATIO

Consider statistical model with parameters of interest « and nuisance (here called &)

Define profile likelihood ratio

A

Ap) = L(p, () _ f(D,G|u,0(11;D,G))
L(j1, ) (D, G|, 0)

» where é(u; D, G)is best fit with u fixed (the constrained maximum likelihood
estimator, depends on data)

» and 6 and 1 are best fit with both left floating (unconstrained)

» D denotes observed data and ¢ denotes “global observables” (central values for
nuisance parameters)

The data & = {x,...,xy} are iid, so the likelihood is just a product over events.

A

» Profiling introduces a coupling across events: é(u; D, G)

» But we can postpone profiling to the final inference stage and frame optimal ML
model (eq. classifier) at the event-level by targeting the likelihood ratio

29



[Hastie et al., 2001; Sugiyama et al., 2012; Cranmer et. al., 2015]

Likelihood Ratio Trick

REE VM e binary classifier: find function s(x) that minimizes loss:

sid. | |
TR Lis| = Ep(a|a,)[—log 5(2)] + Ep(z|mo)[— log(1 — s(z))]
t ':t‘ 2
S A | | | .
R S e j.e. approximate the optimal classitier
: H
o) — il
g o [E S T p(x|Ho) + p(x|H;)
. e which is 1-to-1 with the likelihood ratio
" i x|H 1
o, L} r(x) = plz|f) _ 1
e S(X) = p(z|Ho) s(x)




[Hastie et al., 2001; Sugiyama et al., 2012; Cranmer et. al., 2015]

Likelihood Ratio Trick

— o e binary classifier: find function s(x) that minimizes loss:

.::.:‘... - <
g Lis| = Ep )|~ log s(x)] + Epmy) [~ log(1 — s(x))]
‘ o.::"::::’.:oo 1 N
*°¢ ~ ~ Z —y; log s(xz;) — (1 — y;) log(1 — s(x;))
i=1

t "‘t‘ 2l
Lef 00 Lo
" {.'.""‘:": e j.e. approximate the optimal classitier
s 7
s(x) = p(x|H)

R ru] L p(x|Ho) + p(x|Hy)
o:; * which is 1-to-1 with the likelihood ratio
O.GE— _;% x H 1
Z:: Lﬁg 7“(,513) _ p( 1) — 1
"0 5' p(z|Ho) s(x)

s(x) 1




Parametrizing the Likelihood Ratio Trick

Can do the same thing for any two points 8, & 8, in parameter space 0.

p(z | 6p) 1
p(z | 61) s(x;0p,601)

T($7 (907 (91) —

Or train to classity data from p(x|0) versus some tixed reference p .¢(x)

p(zlf) _ 1

pref(x) S(QZ; 9)

r(x;0) =

| call this a parametrized classifier.

K.C., G. Louppe, J. Pavez: Approximating Likelihood Ratios with Calibrated Discriminative Classitiers [arXiv:1506.02169]


http://arxiv.org/abs/1506.02169

Visualizing the parameterized classier

We want a learner parametrized by v

e augment training data (x,y) = (x,r,y) to obtain f(x;v)

p(X|v) T(x;v)

e problem: how do we evaluate on testing data when v is unknown?

32
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Amortized likelihood ratio

Once we've learned the likelihood ratio r(x; @), we can apply it to any data x.
* |tis amortized, we pay biggest computational costs up front
e Great for calibrated frequentist confidence intervals with guaranteed coverage

e Here we repeat inference thousands of times & check asymptotic statistical theory

70 2.0

| | Exact MLEs B | Exact

60 - W 'L_ Approx. MLEs | Approx.
— - 4=0.5 sk

50 -

40 | i

30 m

20 [
0.5F

) m |
0 ﬂ | | — 0.0 |

0.02 0.03 0.04 0.05 0.06 0.07 0.08 0 1 2 3 4 5 6 7 8 9

(a) Exact vs. approximated MLEs. (b) p(—2log A(y = 0.05) | v = 0.05)

K.C., G. Louppe, J. Pavez: http://arxiv.org/abs/1506.02169


http://arxiv.org/abs/1506.02169

Calibrating the likelihood-ratio trick

We can weaken the requirements for the likelihood ratio trick in case the classitier

If the scalar map s: X = R has the same level sets as the likelihood ratio

s(2; 005 01) = monotonic| p(x|6o)/p(x|61) |

We can show that an equivalent test can be made from 1-D projection

i'ISIidnla.illlllllllllllllIIIIII
Background

p(x|6o)  p(s(x;00,061)|00)

p(x|01)  p(s(x;00,01)01)

0o

n—n—n—l—'ﬁ'|||||||||||||||||||||||||||||||‘|

S

=stimating the density of s(x;80,61) with data from the simulator calibrates the ratio.

Cranmer, Louppe, Pavez: Approximating Likelihood Ratios with Calibrated Discriminative Classitiers [arXiv:1506.02169]
[Dalmasso, Izbicki, Lee, ICML2020 arXiv:2002.10399 |


http://arxiv.org/abs/1506.02169

Some parameterized classifier history

2015 NeurlPS ML & Physics workshop: ALEPH Workshop @ NIPS 2015

Applying (machine) Learning to Experimental Physics (ALEPH) and «Flavours of Physics»
challenge

e http://vandexdataschool.github.io/aleph2015/

When: 11th of December 2015, 8:30 - 18:30
Where: room 515 be, NIPS, Montreal, Canada

e https://indico.cern.ch/event/465572/

2016 ATLAS Statistics & ML workshop:
e https://indico.cern.ch/event/577209/

Thinking about systematics in ML is what inspired my work in simulation-based
inference

Messages and files

() SYSTEMATICS

e Slack channel | use for ML work is called
"systematics” and has 115 members .
an d >,‘ 7 5 , OOO Messa 9 - S! . Wi M e Mmoo aetomi s s i s oowd | omn

All time



http://yandexdataschool.github.io/aleph2015/
https://indico.cern.ch/event/465572/
https://indico.cern.ch/event/577209/

Some parameterized classifier history

Thinking about systematics in ML is what inspired my work in simulation-based
inference

LLLLLLLL information is shared in your workspace. Q SYSTE MATICS
Messages sent Files uploaded

e Slack channel | use tor ML work is called
"systematics” started in 2016,
has 115 members and >175,000 messages!

2015 NeurlPS ML & Physics workshop:

All time

e http://vandexdataschool.github.io/aleph2015/

e https://indico.cern.ch/event/465572/

ALEPH Workshop @ NIPS 2015

Applying (machine) Learning to Experimental Physics (ALEPH) and «Flavours of Physics»

2016 ATLAS Statistics & ML workshop: e

When: 11th of December 2015, 8:30 - 18:30
Where: room 515 be, NIPS, Montreal, Canada

e https://indico.cern.ch/event/577209/
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A review with other approaches

Dealing with Nuisance Parameters using Machine
Learning in High Energy Physics: a Review

T. Dorigo and P. de Castro Manzano

Istituto Nazionale di Fisica Nucleare - Sezione di Padova,
Via Marzolo 8, 35131 Padova - Italy,

tommaso.dorigo@cern.ch®™ pablo.de.castro@cern.ch

In this work we discuss the impact of nuisance parameters on the ef-
fectiveness of machine learning in high-energy physics problems, and
provide a review of techniques that allow to include their effect and re-
duce their impact in the search for optimal selection criteria and variable
transformations. The introduction of nuisance parameters complicates
the supervised learning task and its correspondence with the data anal-
ysis goal, due to their contribution degrading the model performances
in real data, and the necessary addition of uncertainties in the result-
ing statistical inference. The approaches discussed include nuisance-
parameterized models, modified or adversary losses, semi-supervised
learning approaches, and inference-aware techniques.




Tradition meets differentiable programming

Recent efforts in particle physics to maintain traditional
approaches to likelihood estimation with summaries, but
optimize summary statistics with automatic differentiation

e Connects to differentiable programming paradigm

e Optimization objective is power of full statistical analysis,
which involves backproping through statistical procedure

e Does not exploit i.i.d. property, optimization is “global”

compute via automatic differentiation
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Conclusion

Traditional (non-ML) approaches used by physicists design analyses to be robust to
systematic uncertainties through heuristics

e \While not formalized, physicists are quite good at this

First wave of ML in physics optimized for a nominal scenario and then propagate uncertainty
through the ML components in downstream inference

e “"Not optimal, but not wrong”

In order to optimize sensitivity in an ML context, we need to formalize what we want (or some
heuristic) so that we can operationalize it

* e.g. a pivotal classifier. Tradeoff between dependence on nuisance parameter and
classitication/regression performance

e a parameterized classitier: more moving parts, but closest to the ideal single-step

ikelihood ratio test in high dimensions
39



A comment on
Aleatoric and Epistemic Uncertainty



"roughly speaking, aleatoric (aka statistical) uncertainty refers to the notion of
randomness, that is, the variability in the outcome of an experiment which is o

Ue

to inherently random effects”, while “epistemic (aka systematic) uncertainty re:

1]

to uncertainty caused by a lack of knowledge (about the best model)

‘ers

47



In the ||

given the role of computer simulations, the terminology is more fine grained and less ambiguous.

terature on Uncertainty Quantification (UQ), which is more closely connected to physics

That community uses the terms:

parameter uncertainty (i.e. nuisance parameters),

structural uncertainty (i.e. mismodelling),

algorithmic uncertainty (i.e. numerical uncertainty),

experimental uncertainty (i.e. uncertainty from experimental resolution and statistical fluctuations),

and

Interpo
due to

ation uncertainty (i.e. uncertainty due to interpolating between ditferent parameter values
ack ot computational resources).
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Perhaps a more important distinction between the perspective of physicists and machine
earning researchers has to do with the use of the term “model” and what exactly is
uncertain. In physics, the systematic and epistemic uncertainty is typically associated to our
understanding of the underlying physics and “the model” usually refers to the physics
model, detector model encapsulated in a simulation. In contrast, for machine learning
research, “the model” usually refers to the trained model f € F used as described in

Section 41.2.1 (or the class of functions F itself). This makes sense it we recall that in the
bulk of machine learning research, one has little insight into the process that generated the
data (e.g. images of cats and dogs, natural language, etc.). In that sense, the epistemic
uncertainty in machine learning is usually associated to uncertainty in the model
parameters  after training, which would be reduced it one could collect more training
data (see Ref. [328] for this point of view).
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