
@KyleCranmer
New York University
Department of Physics
Center for Data Science
CILVR Lab

NYU Center for
Data Science

Center for
Cosmology and
particle physics

T H R E E F O U R A P P R O A C H E S T O S Y S T E M AT I C S
W I T H M A C H I N E L E A R N I N G

I n t r o d u c t i o n

•There is a lot of activity in utilizing machine learning in the analysis of particle
physics data… duh.

•I’ll primarily focus on classification and regression tasks

• Supervised learning: function to predict target based on data

• Classification: particle identification, signal vs. background discrimination

• Regression: estimate a particle’s energy or momentum given detector readout

•Classically physicists design some useful features / “observables” / summary
statistics motivated by domain knowledge and then design relatively simple
functions

• e.g. for classification “cuts” (a decision tree designed by hand)

f(x) y x

h(x)
f(h) = f(h(x))

2

M o t i v a t i o n

•We want to take advantage of the power of machine learning, but we need to
incorporate systematic uncertainties.

•Two notions of “incorporate”:

• Don’t be wrong: view analysis chain as fixed and propagate systematic
uncertainty through it.

• e.g. control rate of type-I error in the presence of nuisance parameters

• Try to be “optimal”: adjust the training of ML components so that the analysis
is sensitive after accounting for systematics

• e.g. minimize rate of type-II error / maximize power

3

H u m a n s , h e u r i s t i c s , h u b r i s , a n d h u m i l i t y

•While ML can usually beat humans in classification tasks when neglecting systematic uncertainty,
physicists are very good at designing features and “cuts” that are robust to systematic uncertainty.

• Physicists leverage various heuristics along the way to design “observables” / features /
summary statistics that are robust or insensitive to the underlying sources of uncertainty

• e.g. if you know some variable is poorly modeled, don’t use it

• e.g. if you know uncertainty leads to some (anti-)correlation, form the appropriate linear
combination.

•In the context of machine learning, we need to formalize what we mean by “incorporate
systematic uncertainty” into an objective so that we can operationalize this

• e.g. a modified objective for optimization

• This is not so easy.

• Also, physicists usually are thinking about multiple downstream use cases

4

F o r m a l i s m & n o t a t i o n

•In classic supervised learning, the training data is

• e.g. binary classification where for background, and for signal

• For background: or

• For signal: or

•Training data drawn from a joint distribution:

• In many physics problems, physicists don’t know the (prior) distribution in data

• often is the quantity of interest (is there a signal present or not)

• Physicists often try to generate balanced training data, even though in the real data the classes
are typically very imbalanced.

• it can be useful to call a “proposal" instead of a “prior” to avoid confusion with down-stream
Bayesian inference and to remember physicists typically don’t take prediction literally as

{xi, yi}i=1,…,N

y = 0 y = 1

y = 0 : x ∼ pbkg(x) pbkg(x) = p(x |y = 0)

y = 1 : x ∼ psig(x) psig(x) = p(x |y = 1)

(xi, yi) ∼ p(x, y) = p(x |y)p(y)

p(y)

p(y = 1)

p(y)
p(y |x)

5

F o r m a l i s m & n o t a t i o n

•The primary notion of systematic uncertainty that physicists worry about is the lack of
knowledge of the distribution and how that uncertainty influences downstream
inference

• e.g. training data often generated from a simulator and that simulator isn’t
perfect. Or training data comes from a control region in the data that is
assumed to be a good proxy for , but may not match for the region of the data
being analyzed.

•Typically we list what kinds of things might go wrong and parameterize their effect with
nuisance parameters

• This gives us a generative model

• Uncertainty on the nuisance parameters is factorized from the effect they have, see
Lukas Heinrich’s talk. Frequentist: , Bayesian:

p(x |y)

psim(x |y)
pcontrol(x)

p(x |y)

ν

p(x |y, ν)

p(a |ν) p(ν |a) ∝ p(a |ν)p(ν)
6

F o r m a l i s m & n o t a t i o n

•Now we have a generative model that can generate data for each
target and systematic variation parameterized by

• e.g. = “signal events” and ”jet reconstruction efficiency is off by 7%”

• e.g. = “20 GeV electron” and ”energy calibration off by 5%”

•Typically we have some best estimate or nominal settings

• Typical ML training is based on

• This leads to a trained model

• And then we think about the distribution of the output

• For the nominal and systematic variations

p(x |y, ν) x
y ν

y ν =

y ν =

ν0

(xi, yi) ∼ p(x |y, ν = ν0)p(y)

f(x)

p(f |y, ν = ν0) p(f |y, ν)
7

A n e x a m p l e f r o m t h e a r c h i v e s

8

R. Barate et al./Physics Letters B 412 (1997) 173-188 119

2. Ax;,,: the x2 difference between fitting tracks in
the je t both to secondary and primary vertices
compared to assuming all tracks come from the
interaction point. This is based upon a secondary
vertex pattern recognition a lgorithm which
searches for displaced vertices via a three-dimen-
sional grid point search [lo];

3. pT: the transverse momentum of identified lep-
tons with respect to the je t axis [8];

4. 9’: the boos ted sphericity of the je t, defined to
be the sphericity of energy flow particles in the
res t frame of the je t;

5. Multiplicity/lnEj,,: the energy flow particle mul-
tiplicity of the je t divided by the logarithm of the
je t energy. Normalizing by In E removes the ex-
pected energy dependence of the multiplicity;

6. zp;: the sum of the transverse momentum
squared of each energy flow particle with respect
to the je t axis .
For the hA analysis , a neural network based upon

the firs t three variables (Pje t, Ax&, and pT) is used
for identifying b-jets while all s ix variables a re used
in another neural network for the Higgs-s trahlung
process [4]. In this la tte r analysis , the extra variables
which a re efficient a t discriminating between b-jets

and light quark je ts give higher b tagging efficiency
a t a given background; in the hA case , however, the
s ix-variable neural network increases the background
of bbgg events due to the similarity between gluon
and b je ts in the event shape variables [I 11.

The network architecture is multilayer feed-for-
ward, consisting of four layers and is based upon the
JETNET 3.4 package [12]. Deta iled descriptions of
theore tica l aspects of neural ne tworks a re available
e lsewhere [131. The neural network was tra ined, with
the backward propagation method, using b and non-b
je ts in radia tive re turns to the 2 from a sample of
400000 Monte Carlo qq events genera ted a t a cen-
tre-of-mass energy of 161 GeV. Radiative re turns to
the Z were used because the je ts in such events a re
produced in a kinematic configuration similar to tha t
of the signal; this was pre fe rred to training the
network using s imulated signal events in order to
reduce the associa ted systematic e rror in the signal
efficiency.

An independent sample of 100000 Monte Carlo
events was used for tes ting. The resulting neural
network output is shown in Fig. 2a for je ts in the 161
GeV da ta and Monte Carlo, se lected using the
Durham je t finding a lgorithm with y,,, = 0.008. For

1

0.5: . ..+... .; ./ i. ..: i... i. i ;.

:

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 I

(’ %scg)jer

Fig. 2. (a) The output 1) of the neural network b tag for radiative returns to the Z for 161 GeV q?j Monte Carlo (his togram) compared to the
data at 161 GeV (points). The shaded region shows the contribution from generated b-je ts . (b) The performance of the neural network b tag
(solid line) for Monte Carlo events , presented in terms of the efficiency for identifying b-je ts versus the efficiency for rejecting light quark
je ts . Tbe performance of the s ingle most powerful b tagging input variable to the neural network is shown for comparison (dashed curve).

23 October 1997

PHYSICS LETTERS B

Physics Letters I3 412 (1997) 173-188

Search for the neutra l Higgs bosons of the MSSM in e+e-
collis ions a t 6 from 130 to 172 GeV

ALEPH Collabora tion

R. Bara te a , D. Buskulic a , D. Decamp a , P . Ghez a , C. Goy a , J .-P . Lees a ,
A. Lucotte a , M.-N. Minard a , J .-Y. Nief a , B. Pie trzyk a , M.P. Casado b,

M. Chmeissani b, P . Comas b, J .M. Crespo b, M. Delfino, b, E. Fernandez b,
M. Fernandez-Bosman b, Ll. Garrido b,l, A. Jus te b, M. Martinez b, G. Merino b,

R. Miquel b, L1.M. Mir b, C. Padilla b, I.C. Park b, A. Pascual b, J .A. Perlas b,
I. Riu b, F. Sanchez b, F. Teubert b, A. Cola leo ‘, D. Creanza ‘, M. de Palma ‘,

G. Gelao ‘, G. Iase lli ‘, G. Maggi ‘, M. Maggi ‘, N. Marinelli ‘, S . Nuzzo ‘,
A. Ranier-i ‘, G. Raso ‘, F. Ruggieri ‘, G. Selvaggi ‘, L. Silves tris ‘, P . Tempesta ‘,
A. Tricomi ‘v2, G. Zito ‘, X. Huang d, J . Lin d, Q. Ouyang d, T. Wang d, Y. Xie d,

R. Xu d, S . Xue d, J . Zhang d, L. Zhang d, W. Zhao d, D. Abbaneo e , R. Alemany e ,
A.O. Bazarko e ,3, U. Becker e , P . Bright-Thomas e , M. Cattaneo e , F. Cerutti e ,

G. Dissertori e , H. Drevermann e , R.W. Forty e , M. Frank e , R. Hagelberg e ,
J .B. Hansen e , J . Harvey e , P . Janot e , B. Jos t e , E. Kneringer e , J . Knobloch e ,
I. Lehraus e , G. Lutte rs e , P . Mato e , A. Minten e , L. Moneta e , A. Pacheco e ,

J .-F. Pusztaszeri e ,4, F. Ranjard e , G. Rizzo e , L. Rolandi e , D. Rousseau e ,
D. Schla tte r e , M. Schmitt e , 0. Schneider e , W. Tejessy e , I.R. Tomalin e ,

H. Wachsmuth e , A. Wagner e ,5, Z. Aja ltouni f, A. Bar& f, C. Boyer f, A. Falvard f,
C. Ferdi f, P . Gay f, C. Guicheney f, P . Henrard f, J . Jousse t f, B. Michel f,

S . Monte il f, J -C. Montre t f, D. Pa llin f, P . Per-re t f, F. Podlyski f, J . Proriol f,

’ Permanent address: Univers ita t de Barcelona, 08208 Barcelona, Spain,
’ Also at Dipartimento di Fis ica, INFN Sezione di Catania, Catania, Ita ly.
3 Now at Princeton University, Princeton, NJ 08544, USA.
4 Now at School of Operations Research and Industria l Engireering, Cornell University, Ithaca, NY 14853-3801. USA.
5 Now at Schweizerischer Bankverein, Basel, Switzerland.
6 Supported by the Commission of the European Communities , contract ERBCHBICT941234.

0370-2693/97/$17.00 0 1997 Elsevier Science B.V. All rights reserved.
PII SO370-2693(97)01112-X

ϵb−jet(c) = ∫
c

0
p(f |y = 1)df

f(x)

F i x e d c l a s s i f i e r i s n o t o p t i m a l

•Imagine a simple example of bump on flat background

• train on samples with to obtain fixed classifier

• uncertainty in modifies location and width of peak

• the classifier not optimal for , but we can propagate uncertainty

ν = ν0 f(x)

ν

ν ≠ ν0

9

x

f(x)p(x|)ν

F i x e d c l a s s i f i e r i s n o t o p t i m a l

•Imagine a simple example of bump on flat background

• train on samples with to obtain fixed classifier

• uncertainty in modifies location and width of peak

• the classifier not optimal for , but we can propagate uncertainty

ν = ν0 f(x)

ν

ν ≠ ν0

9

x

f(x)p(x|)ν

F i x e d c l a s s i f i e r i s n o t o p t i m a l

•Imagine a simple example of bump on flat background

• train on samples with to obtain fixed classifier

• uncertainty in modifies location and width of peak

• the classifier not optimal for , but we can propagate uncertainty

ν = ν0 f(x)

ν

ν ≠ ν0

9

x

f(x)p(x|)ν

A n e x a m p l e f r o m t h e a r c h i v e s

10

•Here is an example comparing the nominal
efficiency (calculated from) to
a variational sample taken from
data.

p(f |y, ν = ν0)
p(f |y, ν)

180 R. Barate et al. /Physics Letters B 412 (1997) 173-188

events in the testing sample , it is possible to de ter-
mine the efficiency for identifying b je ts , E$, as a
function of the rejection for non-b je ts , (1 - $&),
where e&r is the efficiency for wrongly identifying
a light quark or gluon je t as a b je t. The resulting
performance curve is shown in Fig. 2b; the curve for
the single most powerful variable yj,, is a lso given,
showing a t a non-b rejection factor of 85% a gain in
b efficiency from 78% to 87% by combining the
extra information in the neural ne twork.

3.3. Systematic studies of b tagging

The systematic uncertainty in the efficiency of the
b tagging is evaluated from the Monte Carlo simula-
tion and a consistency check is performed on effi-
ciency and background using the calibration da ta
taken a t the Z peak during the 1996 da ta taking
period.

The contribution to the b tagging systematics
from the physics of b hadron decays has been esti-
mated by varying the values of the ir life times and
decay multiplicities within the range a llowed by
existing experimental measurements [141. The sys-
tematics due to track reconstruction have been s tud-
ied by comparing track impact parameter distribu-

Fig. :

10s r 1 1 i t
(b)

5’

0'
! !
I

-57

10 I 9

0.25 o.tio O?l5 1 .oo
neural network output

3. Comparison of the neural network b tag efficiency for a
s ingle je t in Z peak data and Monte Carlo, after the smearing
correction, as a function of the cut on the je t neural network
output: (a) absolute tag efficiency; (b) difference between data and
Monte Carlo.

tions in da ta and Monte Carlo. The genera ted Monte
Carlo distributions show impact parameter resolu-
tions 10% better than in the da ta . A correction has
been applied for this e ffect by smearing the track
parameters in the Monte Carlo to calcula te the analy-
s is efficiency and half this correction is taken as a
systematic e rror in the b tag efficiency.

After this correction is applied, the b tag effi-
ciency is compared in Monte Carlo and da ta a t the Z
peak, by measuring the number of events with two
and one hemispheres tagged by the a lgorithm. This
method is a s implified version of tha t used to mea-
sure R, in Ref. [9]. In tha t paper the equations for
the number of double and single tags a re solved to
eliminate the b tag efficiency and extract R,; here
the value of R, is input and the b tag efficiency is
extracted. Fig. 3 shows the resulting comparison of
the b tag efficiency as a function of the neural
network output for one je t. Da ta and Monte Carlo
agree within the s ta tis tica l e rrors .

4. Event selection

The da ta samples used in these analyses comprise
5.7pb-’ a t energies of fi = 130.2 and 136.2GeV
recorded in November 1995, 10.9pb-’ a t 161.3 GeV
in the summer of 1996, 1.1 pb-’ a t 170.3 GeV and
9.5pb-’ a t 172.3GeV in autumn 1996. The new
VDET was completely installed for the 1996 da ta
while for the November 1995 da ta the inner layer of
the de tector was complete but 5 out of 15 faces were
missing in the outer layer. The appropria te de tector
geometries were used in the Monte Carlo for the two
years .

For cut optimization and background es timates
Monte Carlo samples were genera ted using the
HZHA [15] program for the Higgs signal production
and PYTHIA 5.7 [161 for the s tandard process pro-
duction. The backgrounds considered a re described
in Ref. [4].

--
4.1. The bbbbfinal state

--
The bbbb final s ta te is characte rized by two clear

s ignatures , the four-je t topology and a high b-quark
content. These properties a re the main handles for
suppressing the background. The main source of

ϵb−jet(c, ν) = ∫
c

0
p(f |y = 1,ν)df

ϵb−jet(c, ν) − ϵb−jet(c, ν = ν0)
ϵb−jet(c, ν = ν9)

23 October 1997

PHYSICS LETTERS B

Physics Letters I3 412 (1997) 173-188

Search for the neutra l Higgs bosons of the MSSM in e+e-
collis ions a t 6 from 130 to 172 GeV

ALEPH Collabora tion

R. Bara te a , D. Buskulic a , D. Decamp a , P . Ghez a , C. Goy a , J .-P . Lees a ,
A. Lucotte a , M.-N. Minard a , J .-Y. Nief a , B. Pie trzyk a , M.P. Casado b,

M. Chmeissani b, P . Comas b, J .M. Crespo b, M. Delfino, b, E. Fernandez b,
M. Fernandez-Bosman b, Ll. Garrido b,l, A. Jus te b, M. Martinez b, G. Merino b,

R. Miquel b, L1.M. Mir b, C. Padilla b, I.C. Park b, A. Pascual b, J .A. Perlas b,
I. Riu b, F. Sanchez b, F. Teubert b, A. Cola leo ‘, D. Creanza ‘, M. de Palma ‘,

G. Gelao ‘, G. Iase lli ‘, G. Maggi ‘, M. Maggi ‘, N. Marinelli ‘, S . Nuzzo ‘,
A. Ranier-i ‘, G. Raso ‘, F. Ruggieri ‘, G. Selvaggi ‘, L. Silves tris ‘, P . Tempesta ‘,
A. Tricomi ‘v2, G. Zito ‘, X. Huang d, J . Lin d, Q. Ouyang d, T. Wang d, Y. Xie d,

R. Xu d, S . Xue d, J . Zhang d, L. Zhang d, W. Zhao d, D. Abbaneo e , R. Alemany e ,
A.O. Bazarko e ,3, U. Becker e , P . Bright-Thomas e , M. Cattaneo e , F. Cerutti e ,

G. Dissertori e , H. Drevermann e , R.W. Forty e , M. Frank e , R. Hagelberg e ,
J .B. Hansen e , J . Harvey e , P . Janot e , B. Jos t e , E. Kneringer e , J . Knobloch e ,
I. Lehraus e , G. Lutte rs e , P . Mato e , A. Minten e , L. Moneta e , A. Pacheco e ,

J .-F. Pusztaszeri e ,4, F. Ranjard e , G. Rizzo e , L. Rolandi e , D. Rousseau e ,
D. Schla tte r e , M. Schmitt e , 0. Schneider e , W. Tejessy e , I.R. Tomalin e ,

H. Wachsmuth e , A. Wagner e ,5, Z. Aja ltouni f, A. Bar& f, C. Boyer f, A. Falvard f,
C. Ferdi f, P . Gay f, C. Guicheney f, P . Henrard f, J . Jousse t f, B. Michel f,

S . Monte il f, J -C. Montre t f, D. Pa llin f, P . Per-re t f, F. Podlyski f, J . Proriol f,

’ Permanent address: Univers ita t de Barcelona, 08208 Barcelona, Spain,
’ Also at Dipartimento di Fis ica, INFN Sezione di Catania, Catania, Ita ly.
3 Now at Princeton University, Princeton, NJ 08544, USA.
4 Now at School of Operations Research and Industria l Engireering, Cornell University, Ithaca, NY 14853-3801. USA.
5 Now at Schweizerischer Bankverein, Basel, Switzerland.
6 Supported by the Commission of the European Communities , contract ERBCHBICT941234.

0370-2693/97/$17.00 0 1997 Elsevier Science B.V. All rights reserved.
PII SO370-2693(97)01112-X

P r o p a g a t i n g u n c e r t a i n t y t o d o w n s t r e a m i n f e r e n c e

•After characterizing how the efficiency depends on the “working point” and the
nuisance parameters the experiments use this information in the downstream
statistical analysis.

•For example:

•And later one might form a statistical model for the number of events that have
, where are some nominal number of signal and background events

that would be produced, is the parameter of interest, is the nuisance
parameter, and is the likelihood associated to some auxiliary measurement
used to estimate

c
ν

n
f(x) > c s, b

μ ν
p(a |ν)

ν

11

ϵsig(ν) = ∫
c

0
p(f |y = 1,ν)df ϵbkg(ν) = ∫

c

0
p(f |y = 0,ν)df

p(n, a |μ, ν) = Pois(n |μϵsig(ν)s + ϵbkg(ν)b)p(a |ν)

A v i s u a l e x a m p l e

•…and later one might form a statistical model for the number of events that
have

n
f(x) > c

12

x

f(x)p(x|)ν

c

p(n, a |μ, ν) = Pois(n |μϵsig(ν)s + ϵbkg(ν)b)p(a |ν)

n

ϵsig(ν) = ∫
c

0
p(f |y = 1,ν)df ϵbkg(ν) = ∫

c

0
p(f |y = 0,ν)df

A v i s u a l e x a m p l e

•…and later one might form a statistical model for the number of events that
have

n
f(x) > c

12

x

f(x)p(x|)ν

c

p(n, a |μ, ν) = Pois(n |μϵsig(ν)s + ϵbkg(ν)b)p(a |ν)

n

ϵsig(ν) = ∫
c

0
p(f |y = 1,ν)df ϵbkg(ν) = ∫

c

0
p(f |y = 0,ν)df

A v i s u a l e x a m p l e

•…and later one might form a statistical model for the number of events that
have

n
f(x) > c

12

x

f(x)p(x|)ν

c

p(n, a |μ, ν) = Pois(n |μϵsig(ν)s + ϵbkg(ν)b)p(a |ν)

n

ϵsig(ν) = ∫
c

0
p(f |y = 1,ν)df ϵbkg(ν) = ∫

c

0
p(f |y = 0,ν)df

C o m m e n t s

•The propagation of uncertainty approach is meant to ensure that downstream
inference on parameter of interest is not wrong… (e.g. coverage)

•Totally factorized from training of the ML model

• Therefore no reason to think that is optimal from the point of view of
power or sensitivity on even if was optimal for the supervised learning
task with data generated from the nominal scenario

•Ok, this is all standard stuff and background. Where do we go from here?

μ

f(x)

f(x)
μ f(x)

ν0

13

p(n, a |μ, ν) = Pois(n |μϵsig(ν)s + ϵbkg(ν)b)p(a |ν)

Where do we go from here?

N e w P D G C h a p t e r o n M L

15

2 41. Machine Learning

41.5.3.1 Feed-forward multi-layer perceptron 2946

41.5.3.2 Activation functions . 2947

41.5.3.3 Softmax . 2948

41.5.3.4 The rise of deep learning . 3049

41.5.3.5 Convolutional neural networks . 3050

41.5.3.6 Pooling . 3251

41.5.3.7 CNN architectures for image analysis 3352

Region Convolutional Neural Network 3353

U-Net . 3454

41.5.3.8 Residual networks and skip connections 3455

41.5.3.9 Recurrent Neural Networks . 3556

41.5.3.10 LSTM and GRU . 3657

41.5.3.11 Attention . 3858

41.5.3.12 Scaled dot-product attention . 3959

41.5.3.13 Transformer and multi-head attention 4060

41.5.3.14 Graph networks and geometric deep learning 4161

41.5.4 Deep Generative Models . 4262

41.5.4.1 Variational auto-encoders . 4463

41.5.4.2 Generative Adversarial Networks . 4664

41.5.4.3 Normalizing flows, autoregressive models, and score based models . 4765

41.6 Learning algorithms . 4866

41.6.1 Gradient-based optimization . 4867

41.6.2 Stochastic Gradient Descent . 4968

41.6.3 Optimization Algorithms . 4969

41.6.4 Automatic Di�erentiation and Back propagation 5070

41.6.5 The vanishing and exploding gradient problems 5171

41.6.6 Early stopping . 5272

41.6.7 Initialization of model parameters . 5273

41.6.8 Input normalization . 5274

41.6.9 Batch normalization . 5375

41.6.10 Transfer learning: pre-training and fine-tuning 5376

41.6.11 Zero, one, and a few shot learning . 5477

41.7 Incorporating uncertainty . 5478

41.7.1 Propagation of errors . 5579

41.7.2 Domain Adaptation . 5580

41.7.3 Parameterized models . 5781

41.7.4 Data augmentation . 5782

41.7.5 Aleatoric and Epistemic Uncertainty . 5883

41.7.6 Model averaging and Bayesian machine learning 5884

41.7.7 Connection to probabilistic machine learning 6085

41.8 Infrastructure for deployment in experiments . 6186

87

41.1 Introduction88

This chapter gives an overview of the core concepts of machine learning that are relevant to89

particle physics with some examples of applications to the energy, intensity, cosmic, and accelerator90

frontiers. Machine learning (ML) is an enormous field that has grown substantially in the last91

decade, propelled largely by the emergence of so-called deep learning (DL) [1, 2]. ML has a long92

DRAFT 2nd November, 2021 8:36pm- Not for public distribution

1 41. Machine Learning

41. Machine Learning1

ml

Revised August 2019 by K. Cranmer (NYU), U. Seljak (UC Berkeley; LBNL) and K. Terao (SLAC).2

3

41.1 Introduction . 24

41.1.1 A gentle introduction with a representative example 35

41.2 Fundamental concepts . 46

41.2.1 Loss, risk, empirical risk . 47

41.2.2 Generalization . 58

41.3 Common tasks and their associated loss functions 69

41.3.1 Supervised learning . 610

41.3.1.1 Regression . 611

41.3.1.2 A note on regularization . 712

41.3.1.3 Classification . 813

41.3.2 Unsupervised learning . 1114

41.3.2.1 Density estimation . 1115

41.3.2.2 Representation learning, compression, and auto-encoders 1216

41.3.2.3 Clustering . 1317

41.3.3 Optimal control, reinforcement learning, and active learning 1318

Reinforcement learning . 1419

Multi-arm bandits . 1520

Bayesian optimization . 1521

Connection to experimental design 1622

Active learning . 1623

41.3.4 Anomaly detection and out-of-distribution detection 1724

41.3.5 Simulation-based inference . 1725

41.3.5.1 Di�erentiable simulations . 1926

41.3.5.2 Unfolding as an inverse problem . 1927

41.4 Data representations, inductive bias, and example applications 2028

41.5 Flavors of ML models . 2229

41.5.1 Support Vector Machines and Kernel Machines 2230

Maximum-margin classifiers 2231

Soft margins and slack variables 2332

The dual problem . 2333

The kernel trick . 2434

Support vector regression 2435

Kernel ridge regression . 2536

Gaussian Process Regression (krigging) 2537

41.5.2 Decision Trees . 2638

Tree-based Models . 2639

Ensemble methods . 2740

Bagging . 2741

Random Forests . 2742

AdaBoost . 2743

Gradient Boosting . 2844

41.5.3 Neural networks . 2845

DRAFT 2nd November, 2021 8:36pm- Not for public distribution

T h r e e F o u r a p p r o a c h e s t o S y s t e m a t i c s

•propagation of errors: one works with a model and simply characterizes how un-
certainty in the data distribution propagate through the function to the down-stream task
irrespective of how it was trained.

•data augmentation: one trains a model in the usual way using training data from
multiple domains by sampling from some distribution over .

•domain adaptation: one incorporates knowledge of the distribution for domains (or the
parameterized family of distributions) into the training procedure so that the per-
formance of for the down-stream task is robust or insensitive to the uncertainty in .

•parameterized models: instead of learning a single function of the data , one learns a
family of functions that is explicitly parameterized in terms of nuisance parameters
and then accounts for the dependence on the nuisance parameters in the down-stream
task.

f(x)

f(x)
ν

p(x |y, ν)
f(x) ν

f(x)
f(x; ν)

16

D a t a a u g m e n t a t i o n

•An intuitive approach to incorporate systematics into training is to train on
“smeared data”, or data generated from a marginal model

• Note: this requires a prior / proposal distribution

•

p(ν)

17

57 41. Machine Learning

the uncertainty in the data distribution through the learned model as described in the preceding2218

section.2219

Note, this adversarial technique has also been employed in other settings where one would like2220

to decorrelate the output of the classifier with an observed quantity so that it can be used for back-2221

ground estimation [307]. Widely used alternative approaches to decorrelation include uboost [308]2222

and DDT [309]. Other examples of the domain adaptation and decorrelation use cases from the2223

Living Review include [302,307–322].2224

41.7.3 Parameterized models2225
ML:sec:parameterized_models

An alternative to learning a model f(x) that is pivotal — i.e. whose distribution is independent2226

of the nuisance parameter ‹ — is to learn a family of models f(x; ‹) that is parameterized in terms2227

of the nuisance parameters. In general, there is a tradeo� between the two terms of Eq. 41.74 for2228

a single model f(x). In a parameterized model, f(x; ‹) optimizes the performance of the model2229

for every value of ‹. Parameterized classifiers were first advocated in Ref. [58] in the context of2230

simulation-based inference (see Sec. 41.7.7) and in Ref. [323] for new physics searches. It has also2231

been applied to simulation-based inference for e�ective field theory parameters in Ref. [19] and2232

Ref. [324] provides additional pedagogical examples.2233

The training of a parameterized model is similar to the standard procedure. For example, if one2234

originally wanted to minimize the squared loss function L(y, f(x)) = (y ≠f(x))2 with training data2235

{xi, yi}i=1,...,n, then the corresponding training procedure for the parameterized model would be as2236

follows. One would need to construct a training set {xi, yi, ‹i}i=1,...,n as described in the preceeding2237

section, construct a parameterized model f(x; ‹) that takes as input the original feature vector x as2238

well as the nuisance parameters ‹, and then train using the same loss L(y, f(x; ‹)) = (y ≠f(x; ‹))2.2239

One complication of the parameterized approach is that it is no longer possible to evaluate2240

the model on a dataset {xi} and pass on only {fi} for downstream analysis tasks since f(xi; ‹)2241

still depends on ‹. Instead, one delay evaluating the model to some down-stream stage when the2242

dependence on ‹ would accounted for. For example, in the context of a likelihood based analysis2243

where one is testing a hypothesis where the nuisance parameters take on a particular value ‹test,2244

then one will consider the data distribution p(x|‹test), and at that point one would evaluate the2245

model at the corresponding nuisance parameter value, i.e. f(x; ‹test). Explicit examples are given2246

in Refs. [19,58,324]. While this may seem complicated, it actually corresponds to what is done in a2247

typical likelihood-based fit when the statistical model has nuisance parameters; i.e. the likelihood2248

ratio corresponds to the model f(x; ‹) as in Eq. 41.12.2249

41.7.4 Data augmentation2250

An intuitive approach to building in robustness to systematic e�ects that can lead to do-2251

main shift, is simply to augment the training data so that it includes examples correspond-2252

ing to several values of the nuisance parameter or systematic variations. As before one can2253

construct a dataset {xi, yi, ‹i}i=1,...,n, but instead of leveraging the information about ‹i, one2254

simply discards this information. This corresponds to sampling from the marginal distribution2255

xi, yi ≥ p(x, y) =
s

d‹p(x, y|‹)p(‹), and is often referred to as smearing. One can then use this2256

smeared dataset for supervised learning in the traditional way. While it is possible that this ap-2257

proach will lead to improved robustness to systematic variations (i.e. generalization for ‹ other than2258

the nominal value) than if systematic uncertainty weren’t considered at all), this intuitive approach2259

has several shortcomings. The approach does not yield a pivotal quantity as in the adversarial ap-2260

proach, so propagation of uncertainty through the network is still required. Moreover, there is2261

no direct way to control the trade-o� between independence from the nuisance parameter and the2262

original target loss as in the adversarial approach. Finally, it can lead to significant performance2263

loss compared to what is possible with the parameterized approach. These trade-o�s were studied2264

DRAFT 2nd November, 2021 8:36pm- Not for public distribution

x

f(x)p(x|)ν
fsmeared(x)

p(x) = ∫ p(x |ν)p(ν)dν

F i x e d c l a s s i f i e r i s n o t o p t i m a l

•Imagine a simple example of bump on flat background

• train on smeared samples with to obtain fixed classifier

• we can propagate the fixed learner, but classifier not optimal for any

ν ∼ p(ν) fsmeared(x)

ν

18

x

f(x)p(x|)ν
fsmeared(x)

p(x) = ∫ p(x |ν)p(ν)dν

F i x e d c l a s s i f i e r i s n o t o p t i m a l

•Imagine a simple example of bump on flat background

• train on smeared samples with to obtain fixed classifier

• we can propagate the fixed learner, but classifier not optimal for any

ν ∼ p(ν) fsmeared(x)

ν

18

x

f(x)p(x|)ν
fsmeared(x)

p(x) = ∫ p(x |ν)p(ν)dν

F i x e d c l a s s i f i e r i s n o t o p t i m a l

•Imagine a simple example of bump on flat background

• train on smeared samples with to obtain fixed classifier

• we can propagate the fixed learner, but classifier not optimal for any

ν ∼ p(ν) fsmeared(x)

ν

18

x

f(x)p(x|)ν
fsmeared(x)

p(x) = ∫ p(x |ν)p(ν)dν

Reminder of standard statistical procedures in HEP

 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

10

0

1

2

3

4

5

6

7

8

9

μ

-2
 ln

 λ
(μ

)

μ̂ μtest

qμ
q0

likelihood ratio without profiling

THUMBNAIL OF THE STATISTICAL PROCEDURE

20

Follow LHC-HCG Combina0on Procedures

p0 to test
background
hypothesis

CLs to test
signal hypothesis

�(µ) =
L(µ, ˆ̂✓(µ))

L(µ̂, ✓̂) SM
m/

m
95

%
 C

L
Li

m
it

on

-110

1

10

m 1±
m 2±

Observed
Expected

ATLAS Private =7 TeVs -1 L dt ~ 1.0-4.9 fb0

 LimitssCL(a)

 (l
oc

al
)

0p

-710

-610

-510

-410

-310

-210

-110

1

Exp. Comb.
Obs. Comb.

(b)

m2

m3

m4

m5

 [GeV]Hm
200 300 400 500

)
µ

St
re

ng
th

 P
ar

am
et

er
 (

-1.5

-1

-0.5

0

0.5

1

1.5

2

Observed
m 1±(c)

μ̂ to es0mate
signal strength

Preliminary

https://cdsweb.cern.ch/record/1375842

THE PROFILE LIKELIHOOD RATIO

Consider statistical model with parameters of interest µ and nuisance (here called

Define profile likelihood ratio

‣ where is best fit with µ fixed (the constrained maximum likelihood
estimator, depends on data)

‣ and θ̂ and µ̂ are best fit with both left floating (unconstrained)
‣ D denotes observed data and G denotes “global observables” (central values for

nuisance parameters)

Wilks' Theorem: under certain conditions the distribution of -2 ln λ (μ=μ0) given that
the true value of μ is μ0 converges to a chi-square distribution
‣ distribution is known and it is independent of θ !
‣ ⇒ robust to uncertainty, a quantity like this is called a “pivot”

θ)

21

�(µ) =
L(µ, ˆ̂✓(µ))

L(µ̂, ✓̂)
=

f(D,G|µ, ˆ̂✓(µ;D,G))
f(D,G|µ̂, ✓̂)

ˆ̂✓(µ;D,G)

P r o p a g a t i n g u n c e r t a i n t y w i t h a p i v o t a l c l a s s i f i e r

•If we have a pivotal classifier, then efficiencies are independent of

•Thus one won’t “pay more” when accounting for systematics in the downstream
analysis

•… but that still doesn’t mean that is optimizing power / sensitivity.

•How do we obtain a pivotal classifier?

ν

f(x)

22

ϵsig(ν) = ∫
c

0
p(f |y = 1,ν)df ϵbkg(ν) = ∫

c

0
p(f |y = 0,ν)df

p(n, a |μ, ν) = Pois(n |μϵsig(ν)s + ϵbkg(ν)b)p(a |ν)

⇒ Pois(n |μϵsigs + ϵbkgb)

L e a r n i n g t o p i v o t w i t h a d v e r s a r i a l n e t w o r k s

• Typically classifier trained to minimize loss Lf.

• want classifier output to be insensitive to systematics
(nuisance parameter ν)

• introduce an adversary r that tries to predict ν based
on .

• setup as a minimax game:

f(x)

f

23

2

Classifier f

X

✓f

f(X; ✓f)

Lf (✓f)

...

Adversary r

�1(f(X; ✓f); ✓r)

�2(f(X; ✓f); ✓r)

. . .

✓r

...

Z

p✓r (Z|f(X; ✓f))

P(�1, �2, . . .)

Lr(✓f , ✓r)

FIG. 1. Architecture for the adversarial training of a binary classifier f against a nuisance parameters Z. The adversary r
models the distribution p(z|f(X; ✓f) = s) of the nuisance parameters as observed only through the output f(X; ✓f) of the
classifier. By maximizing the antagonistic objective Lr(✓f , ✓r) (as part of minimizing Lf (✓f) � �Lr(✓f , ✓r)), the classifier f
forces p(z|f(X; ✓f) = s) towards the prior p(z), which happens when f(X; ✓f) is independent of the nuisance parameter Z and
therefore pivotal.

parameters. This implies that f(X; ✓f) and Z are inde-
pendent random variables.

As stated in Eqn. 1, the pivotal quantity criterion is
imposed with respect to p(X|Z) where Y is marginalized
out. In some situations however (see e.g., Sec. VB), class
conditional independence of f(X; ✓f) on the nuisance Z

is preferred, which can then be stated as requiring

p(f(X; ✓f) = s|z, y) = p(f(X; ✓f) = s|z0, y) (2)

for one or several specified values y 2 Y.

III. METHOD

Joint training of adversarial networks was first pro-
posed by [21] as a way to build a generative model capable
of producing samples from random noise z. More specif-
ically, the authors pit a generative model g : Rn 7! Rp

against an adversary classifier d : Rp 7! [0, 1] whose an-
tagonistic objective is to recognize real data X from gen-
erated data g(Z). Both models g and d are trained simul-
taneously, in such a way that g learns to produce samples
that are di�cult to identify by d, while d incrementally
adapts to changes in g. At the equilibrium, g models a
distribution whose samples can be identified by d only
by chance. That is, assuming enough capacity in d and
g, the distribution of g(Z) eventually converges towards
the real distribution of X.

In this work, we repurpose adversarial networks as a
means to constrain the predictive model f in order to
satisfy Eqn. 1. As illustrated in Fig. 1, we pit f against
an adversary model r := p✓r (z|f(X; ✓f) = s) of pa-
rameters ✓r and associated loss Lr(✓f , ✓r). This model
takes as input realizations f(X; ✓f) and produces as out-
put a function modeling the posterior probability den-

sity p✓r (z|f(X; ✓f) = s). Intuitively, if p(f(X; ✓f) = s|z)
varies with z, then the corresponding correlation can be
captured by r. By contrast, if p(f(X; ✓f) = s|z) is invari-
ant with z, as we require, then r should perform poorly
and be close to random guessing. Training f such that
it additionally minimizes the performance of r therefore
acts as a regularization towards Eqn. 1.
If Z takes discrete values, then p✓r can be represented

e.g. as a probabilistic classifier R 7! R|Z| whose j
th out-

put (for j = 1, . . . , |Z|) is the estimated probability mass
p✓r (zj |f(X; ✓f) = s). Similarly, if Z takes continuous
values, then we can model the posterior probability den-
sity p(z|f(X; ✓f) = s) with a su�ciently flexible para-
metric family of distributions P(�1, �2, . . .), where the
parameters �j depend on f(X, ✓f) and ✓r. The adver-
sary r may take any form, i.e. it does not need to be
a neural network, as long as it exposes a di↵erentiable
function p✓r (z|f(X; ✓f) = s) of su�cient capacity to rep-
resent the true distribution. Fig. 1 illustrates a concrete
example where p✓r (z|f(X; ✓f) = s) is a mixture of gaus-
sians, as modeled with a mixture density network [10]).
The j

th output corresponds to the estimated value of
the corresponding parameter �j of that distribution (e.g.,
the mean, variance and mixing coe�cients of its compo-
nents). As in [10, 26], the estimated probability density
p✓r (z|f(X; ✓f) = s) can then be evaluated for any z 2 Z
and any score s 2 S.
As with generative adversarial networks, we propose

to train f and r simultaneously, which we carry out by
considering the value function

E(✓f , ✓r) = Lf (✓f)� Lr(✓f , ✓r) (3)

that we optimize by finding the minimax solution

✓̂f , ✓̂r = argmin
✓f

max
✓r

E(✓f , ✓r). (4)

4

• ✓̂f maximizes the conditional entropy
H(Z|f(X; ✓f)), since H(Z|f(X; ✓))  H(Z)
from the properties of entropy. Note that this
latter inequality holds for both the discrete and
the di↵erential definitions of entropy.

By assumption, the lower bound is active, thus we have
H(Z|f(X; ✓f)) = H(Z) because of the second condition,
which happens exactly when Z and f(X; ✓f) are inde-
pendent variables. In other words, the optimal classifier
f(·; ✓̂f) is also a pivotal quantity.

Proposition 1 suggests that if at each step of Algo-
rithm 1 the adversary r is allowed to reach its optimum
given f (e.g., by setting K su�ciently high) and if f is
updated to improve Lf (✓f) � H(Z|f(X; ✓f)) with su�-
ciently small steps, then f should converge to a classifier
that is both optimal and pivotal, provided such a clas-
sifier exists. Therefore, the adversarial term Lr can be
regarded as a way to select among the class of all opti-
mal classifiers a function f that is also pivotal. Despite
the former theoretical characterization of the minimax
solution of Eqn. 4, let us note that formal guarantees
of convergence towards that solution by Algorithm 1 in
the case where a finite number K of steps is taken for r
remains to be proven.

On many practical problems, the assumption of exis-
tence of an optimal and pivotal classifier may not hold
because the nuisance parameter directly shapes the deci-
sion boundary. In this case, the lower bound

H(Y |X)�H(Z) < Lf (✓f)�H(Z|f(X; ✓f)) (10)

is strict: f can either be an optimal classifier or a pivotal
quantity, but not both simultaneously. In this situation,
it is natural to rewrite the value function E as

E�(✓f , ✓r) = Lf (✓f)� �Lr(✓f , ✓r), (11)

where � � 0 is a hyper-parameter controlling the trade-
o↵ between the performance of f and its independence
with respect to the nuisance parameter. Setting � to a
large value will preferably enforces f to be pivotal while
setting � close to 0 will rather constraint f to be optimal.
When the lower bound is strict, let us note however that
there may exist distinct but equally good solutions ✓f , ✓r
minimizing Eqn. 11. In this zero-sum game, an increase
in accuracy would exactly be compensated by a decrease
in pivotality and vice-versa. How to best navigate this
Pareto frontier to maximize a higher-level objective re-
mains a question open for future works.

Interestingly, let us finally emphasize that these results
hold using only the (1D) output s of f(·; ✓f) (in the case
of binary classification) as input to the adversary. We
could similarly enforce an intermediate representation of
the data to be pivotal, e.g. as in [19], but this is in fact
not necessary.

V. EXPERIMENTS

A. Toy example

As a guiding toy example, let us consider the binary
classification of 2D data drawn from multivariate gaus-
sians with equal priors, such that

x ⇠ N
✓
(0, 0),


1 �0.5

�0.5 1

�◆
when Y = 0, (12)

x ⇠ N
✓
(1, 1 + Z),


1 0
0 1

�◆
when Y = 1. (13)

The continuous nuisance parameter Z represents in this
case our uncertainty about the exact location of the mean
of the second gaussian. Our goal is to build a classifier
f(·; ✓f) for predicting Y given X, but such that the prob-
ability distribution of f(X; ✓f) is invariant with respect
to the nuisance parameter Z.
Assuming a gaussian prior z ⇠ N (0, 1), we start by

generating training data {xi, yi, zi}Ni=1, from which we
train a neural network classifier f minimizing Lf (✓f)
without considering its adversary r. The network ar-
chitecture comprises 2 dense hidden layers of 20 nodes
respectively with tanh and ReLU activations, followed by
a dense output layer with a single node with a sigmoid
activation. As shown in Fig. 2, the resulting classifier
is not pivotal, as the conditional probability densities of
its decision scores f(X; ✓f) show large discrepancies be-
tween values z of the nuisance parameters. While not
shown here, a classifier trained only from data generated
at the nominal value Z = 0 would also not be pivotal.
Let us now consider the joint training of f against an

adversary r implemented as a mixture density network
modeling Z|f(X; ✓f) as a mixture of five gaussians. The
network architecture of r comprises 2 dense hidden lay-
ers of 20 nodes with ReLU activations, followed by an
output layer of 15 nodes corresponding to the means,
standard deviations and mixture coe�cients of the five
gaussians. Output nodes for the mean values come with
linear activations, output nodes for the standard devi-
ations with exponential activations to ensure positivity,
while output nodes for the mixture coe�cients implement
the softmax function to ensure positivity and normaliza-
tion. When running Algorithm 1 as initialized with the
classifier f obtained previously, adversarial training e↵ec-
tively reshapes the decision function so it that becomes
almost independent on the nuisance parameter, as shown
in Fig. 2. In particular, the conditional probability den-
sities of the decision scores f(X; ✓f) are now very similar
to each other, indicating only a small residual depen-
dency on the nuisance, as theoretically expected. The
dynamics of adversarial training is illustrated in Fig. 3,
where the losses Lf , Lr and Lf ��Lr are evaluated after
each iteration of Algorithm 1. In the first iterations, we
observe that the global objective Lf � �Lr is minimized
by making the classifier less accurate, hence the corre-
sponding increase of Lf , but which results in a classifier

Objective

• Consider the value function

V (D,G) = Ex⇠pdata [log(D(x))] + Ez⇠pnoise [log(1� D(G (z)))];

• We want to
For fixed G , find D which maximizes V (D,G),
For fixed D, find G which minimizes V (D,G);

• In other words, we are looking for the saddle point

(D⇤,G ⇤) = max
D

min
G

V (D,G).

6 / 13

4

• ✓̂f maximizes the conditional entropy
H(Z|f(X; ✓f)), since H(Z|f(X; ✓))  H(Z)
from the properties of entropy. Note that this
latter inequality holds for both the discrete and
the di↵erential definitions of entropy.

By assumption, the lower bound is active, thus we have
H(Z|f(X; ✓f)) = H(Z) because of the second condition,
which happens exactly when Z and f(X; ✓f) are inde-
pendent variables. In other words, the optimal classifier
f(·; ✓̂f) is also a pivotal quantity.

Proposition 1 suggests that if at each step of Algo-
rithm 1 the adversary r is allowed to reach its optimum
given f (e.g., by setting K su�ciently high) and if f is
updated to improve Lf (✓f) � H(Z|f(X; ✓f)) with su�-
ciently small steps, then f should converge to a classifier
that is both optimal and pivotal, provided such a clas-
sifier exists. Therefore, the adversarial term Lr can be
regarded as a way to select among the class of all opti-
mal classifiers a function f that is also pivotal. Despite
the former theoretical characterization of the minimax
solution of Eqn. 4, let us note that formal guarantees
of convergence towards that solution by Algorithm 1 in
the case where a finite number K of steps is taken for r
remains to be proven.

On many practical problems, the assumption of exis-
tence of an optimal and pivotal classifier may not hold
because the nuisance parameter directly shapes the deci-
sion boundary. In this case, the lower bound

H(Y |X)�H(Z) < Lf (✓f)�H(Z|f(X; ✓f)) (10)

is strict: f can either be an optimal classifier or a pivotal
quantity, but not both simultaneously. In this situation,
it is natural to rewrite the value function E as

E�(✓f , ✓r) = Lf (✓f)� �Lr(✓f , ✓r), (11)

where � � 0 is a hyper-parameter controlling the trade-
o↵ between the performance of f and its independence
with respect to the nuisance parameter. Setting � to a
large value will preferably enforces f to be pivotal while
setting � close to 0 will rather constraint f to be optimal.
When the lower bound is strict, let us note however that
there may exist distinct but equally good solutions ✓f , ✓r
minimizing Eqn. 11. In this zero-sum game, an increase
in accuracy would exactly be compensated by a decrease
in pivotality and vice-versa. How to best navigate this
Pareto frontier to maximize a higher-level objective re-
mains a question open for future works.

Interestingly, let us finally emphasize that these results
hold using only the (1D) output s of f(·; ✓f) (in the case
of binary classification) as input to the adversary. We
could similarly enforce an intermediate representation of
the data to be pivotal, e.g. as in [19], but this is in fact
not necessary.

V. EXPERIMENTS

A. Toy example

As a guiding toy example, let us consider the binary
classification of 2D data drawn from multivariate gaus-
sians with equal priors, such that

x ⇠ N
✓
(0, 0),


1 �0.5

�0.5 1

�◆
when Y = 0, (12)

x ⇠ N
✓
(1, 1 + Z),


1 0
0 1

�◆
when Y = 1. (13)

The continuous nuisance parameter Z represents in this
case our uncertainty about the exact location of the mean
of the second gaussian. Our goal is to build a classifier
f(·; ✓f) for predicting Y given X, but such that the prob-
ability distribution of f(X; ✓f) is invariant with respect
to the nuisance parameter Z.
Assuming a gaussian prior z ⇠ N (0, 1), we start by

generating training data {xi, yi, zi}Ni=1, from which we
train a neural network classifier f minimizing Lf (✓f)
without considering its adversary r. The network ar-
chitecture comprises 2 dense hidden layers of 20 nodes
respectively with tanh and ReLU activations, followed by
a dense output layer with a single node with a sigmoid
activation. As shown in Fig. 2, the resulting classifier
is not pivotal, as the conditional probability densities of
its decision scores f(X; ✓f) show large discrepancies be-
tween values z of the nuisance parameters. While not
shown here, a classifier trained only from data generated
at the nominal value Z = 0 would also not be pivotal.
Let us now consider the joint training of f against an

adversary r implemented as a mixture density network
modeling Z|f(X; ✓f) as a mixture of five gaussians. The
network architecture of r comprises 2 dense hidden lay-
ers of 20 nodes with ReLU activations, followed by an
output layer of 15 nodes corresponding to the means,
standard deviations and mixture coe�cients of the five
gaussians. Output nodes for the mean values come with
linear activations, output nodes for the standard devi-
ations with exponential activations to ensure positivity,
while output nodes for the mixture coe�cients implement
the softmax function to ensure positivity and normaliza-
tion. When running Algorithm 1 as initialized with the
classifier f obtained previously, adversarial training e↵ec-
tively reshapes the decision function so it that becomes
almost independent on the nuisance parameter, as shown
in Fig. 2. In particular, the conditional probability den-
sities of the decision scores f(X; ✓f) are now very similar
to each other, indicating only a small residual depen-
dency on the nuisance, as theoretically expected. The
dynamics of adversarial training is illustrated in Fig. 3,
where the losses Lf , Lr and Lf ��Lr are evaluated after
each iteration of Algorithm 1. In the first iterations, we
observe that the global objective Lf � �Lr is minimized
by making the classifier less accurate, hence the corre-
sponding increase of Lf , but which results in a classifier

4

• ✓̂f maximizes the conditional entropy
H(Z|f(X; ✓f)), since H(Z|f(X; ✓))  H(Z)
from the properties of entropy. Note that this
latter inequality holds for both the discrete and
the di↵erential definitions of entropy.

By assumption, the lower bound is active, thus we have
H(Z|f(X; ✓f)) = H(Z) because of the second condition,
which happens exactly when Z and f(X; ✓f) are inde-
pendent variables. In other words, the optimal classifier
f(·; ✓̂f) is also a pivotal quantity.

Proposition 1 suggests that if at each step of Algo-
rithm 1 the adversary r is allowed to reach its optimum
given f (e.g., by setting K su�ciently high) and if f is
updated to improve Lf (✓f) � H(Z|f(X; ✓f)) with su�-
ciently small steps, then f should converge to a classifier
that is both optimal and pivotal, provided such a clas-
sifier exists. Therefore, the adversarial term Lr can be
regarded as a way to select among the class of all opti-
mal classifiers a function f that is also pivotal. Despite
the former theoretical characterization of the minimax
solution of Eqn. 4, let us note that formal guarantees
of convergence towards that solution by Algorithm 1 in
the case where a finite number K of steps is taken for r
remains to be proven.

On many practical problems, the assumption of exis-
tence of an optimal and pivotal classifier may not hold
because the nuisance parameter directly shapes the deci-
sion boundary. In this case, the lower bound

H(Y |X)�H(Z) < Lf (✓f)�H(Z|f(X; ✓f)) (10)

is strict: f can either be an optimal classifier or a pivotal
quantity, but not both simultaneously. In this situation,
it is natural to rewrite the value function E as

E�(✓f , ✓r) = Lf (✓f)� �Lr(✓f , ✓r), (11)

where � � 0 is a hyper-parameter controlling the trade-
o↵ between the performance of f and its independence
with respect to the nuisance parameter. Setting � to a
large value will preferably enforces f to be pivotal while
setting � close to 0 will rather constraint f to be optimal.
When the lower bound is strict, let us note however that
there may exist distinct but equally good solutions ✓f , ✓r
minimizing Eqn. 11. In this zero-sum game, an increase
in accuracy would exactly be compensated by a decrease
in pivotality and vice-versa. How to best navigate this
Pareto frontier to maximize a higher-level objective re-
mains a question open for future works.

Interestingly, let us finally emphasize that these results
hold using only the (1D) output s of f(·; ✓f) (in the case
of binary classification) as input to the adversary. We
could similarly enforce an intermediate representation of
the data to be pivotal, e.g. as in [19], but this is in fact
not necessary.

V. EXPERIMENTS

A. Toy example

As a guiding toy example, let us consider the binary
classification of 2D data drawn from multivariate gaus-
sians with equal priors, such that

x ⇠ N
✓
(0, 0),


1 �0.5

�0.5 1

�◆
when Y = 0, (12)

x ⇠ N
✓
(1, 1 + Z),


1 0
0 1

�◆
when Y = 1. (13)

The continuous nuisance parameter Z represents in this
case our uncertainty about the exact location of the mean
of the second gaussian. Our goal is to build a classifier
f(·; ✓f) for predicting Y given X, but such that the prob-
ability distribution of f(X; ✓f) is invariant with respect
to the nuisance parameter Z.
Assuming a gaussian prior z ⇠ N (0, 1), we start by

generating training data {xi, yi, zi}Ni=1, from which we
train a neural network classifier f minimizing Lf (✓f)
without considering its adversary r. The network ar-
chitecture comprises 2 dense hidden layers of 20 nodes
respectively with tanh and ReLU activations, followed by
a dense output layer with a single node with a sigmoid
activation. As shown in Fig. 2, the resulting classifier
is not pivotal, as the conditional probability densities of
its decision scores f(X; ✓f) show large discrepancies be-
tween values z of the nuisance parameters. While not
shown here, a classifier trained only from data generated
at the nominal value Z = 0 would also not be pivotal.
Let us now consider the joint training of f against an

adversary r implemented as a mixture density network
modeling Z|f(X; ✓f) as a mixture of five gaussians. The
network architecture of r comprises 2 dense hidden lay-
ers of 20 nodes with ReLU activations, followed by an
output layer of 15 nodes corresponding to the means,
standard deviations and mixture coe�cients of the five
gaussians. Output nodes for the mean values come with
linear activations, output nodes for the standard devi-
ations with exponential activations to ensure positivity,
while output nodes for the mixture coe�cients implement
the softmax function to ensure positivity and normaliza-
tion. When running Algorithm 1 as initialized with the
classifier f obtained previously, adversarial training e↵ec-
tively reshapes the decision function so it that becomes
almost independent on the nuisance parameter, as shown
in Fig. 2. In particular, the conditional probability den-
sities of the decision scores f(X; ✓f) are now very similar
to each other, indicating only a small residual depen-
dency on the nuisance, as theoretically expected. The
dynamics of adversarial training is illustrated in Fig. 3,
where the losses Lf , Lr and Lf ��Lr are evaluated after
each iteration of Algorithm 1. In the first iterations, we
observe that the global objective Lf � �Lr is minimized
by making the classifier less accurate, hence the corre-
sponding increase of Lf , but which results in a classifier

4

•
✓̂
f

m
ax

im
iz
es

th
e

co
n
d
it
io
n
al

en
tr
op

y
H
(Z

|f
(X

;✓
f
))
,

si
n
ce

H
(Z

|f
(X

;✓
))


H
(Z

)
fr
om

th
e

p
ro
p
er
ti
es

of
en
tr
op

y.
N
ot
e

th
at

th
is

la
tt
er

in
eq
u
al
it
y

h
ol
d
s
fo
r
b
ot
h

th
e
d
is
cr
et
e
an

d
th
e
d
i↵
er
en
ti
al

d
efi

n
it
io
n
s
of

en
tr
op

y.

B
y
as
su
m
p
ti
on

,
th
e
lo
w
er

b
ou

n
d
is

ac
ti
ve
,
th
u
s
w
e
h
av
e

H
(Z

|f
(X

;✓
f
))

=
H
(Z

)
b
ec
au

se
of

th
e
se
co
n
d
co
n
d
it
io
n
,

w
h
ic
h
h
ap

p
en

s
ex
ac
tl
y
w
h
en

Z
an

d
f
(X

;✓
f
)
ar
e
in
d
e-

p
en

d
en
t
va
ri
ab

le
s.

In
ot
h
er

w
or
d
s,

th
e
op

ti
m
al

cl
as
si
fi
er

f
(·;

✓̂
f
)
is

al
so

a
p
iv
ot
al

qu
an

ti
ty
.

P
ro
p
os
it
io
n

1
su
gg

es
ts

th
at

if
at

ea
ch

st
ep

of
A
lg
o-

ri
th
m

1
th
e
ad

ve
rs
ar
y
r
is

al
lo
w
ed

to
re
ac
h
it
s
op

ti
m
u
m

gi
ve
n
f
(e
.g
.,
by

se
tt
in
g
K

su
�
ci
en
tl
y
h
ig
h
)
an

d
if
f
is

u
p
d
at
ed

to
im

p
ro
ve

L
f
(✓

f
)
�

H
(Z

|f
(X

;✓
f
))

w
it
h
su
�
-

ci
en
tl
y
sm

al
l
st
ep

s,
th
en

f
sh
ou

ld
co
nv

er
ge

to
a
cl
as
si
fi
er

th
at

is
b
ot
h
op

ti
m
al

an
d
p
iv
ot
al
,
p
ro
vi
d
ed

su
ch

a
cl
as
-

si
fi
er

ex
is
ts
.
T
h
er
ef
or
e,

th
e
ad

ve
rs
ar
ia
l
te
rm

L
r
ca
n
b
e

re
ga

rd
ed

as
a
w
ay

to
se
le
ct

am
on

g
th
e
cl
as
s
of

al
l
op

ti
-

m
al

cl
as
si
fi
er
s
a
fu
n
ct
io
n
f
th
at

is
al
so

p
iv
ot
al
.
D
es
p
it
e

th
e
fo
rm

er
th
eo
re
ti
ca
l
ch
ar
ac
te
ri
za
ti
on

of
th
e
m
in
im

ax
so
lu
ti
on

of
E
qn

.
4,

le
t
u
s
n
ot
e
th
at

fo
rm

al
gu

ar
an

te
es

of
co
nv

er
ge
n
ce

to
w
ar
d
s
th
at

so
lu
ti
on

by
A
lg
or
it
h
m

1
in

th
e
ca
se

w
h
er
e
a
fi
n
it
e
nu

m
b
er

K
of

st
ep

s
is

ta
ke
n
fo
r
r

re
m
ai
n
s
to

b
e
p
ro
ve
n
.

O
n
m
an

y
p
ra
ct
ic
al

p
ro
b
le
m
s,

th
e
as
su
m
p
ti
on

of
ex
is
-

te
n
ce

of
an

op
ti
m
al

an
d
p
iv
ot
al

cl
as
si
fi
er

m
ay

n
ot

h
ol
d

b
ec
au

se
th
e
nu

is
an

ce
p
ar
am

et
er

d
ir
ec
tl
y
sh
ap

es
th
e
d
ec
i-

si
on

b
ou

n
d
ar
y.

In
th
is

ca
se
,
th
e
lo
w
er

b
ou

n
d

H
(Y

|X
)
�
H
(Z

)
<

L
f
(✓

f
)
�

H
(Z

|f
(X

;✓
f
))

(1
0)

is
st
ri
ct
:
f
ca
n
ei
th
er

b
e
an

op
ti
m
al

cl
as
si
fi
er

or
a
p
iv
ot
al

qu
an

ti
ty
,
b
u
t
n
ot

b
ot
h
si
m
u
lt
an

eo
u
sl
y.

In
th
is

si
tu
at
io
n
,

it
is

n
at
u
ra
l
to

re
w
ri
te

th
e
va
lu
e
fu
n
ct
io
n
E

as

E
�
(✓

f
,
✓
r
)
=

L
f
(✓

f
)
�

�
L
r
(✓

f
,
✓
r
),

(1
1)

w
h
er
e
�
�

0
is

a
hy

p
er
-p
ar
am

et
er

co
nt
ro
ll
in
g
th
e
tr
ad

e-
o↵

b
et
w
ee
n
th
e
p
er
fo
rm

an
ce

of
f

an
d
it
s
in
d
ep

en
d
en

ce
w
it
h
re
sp
ec
t
to

th
e
nu

is
an

ce
p
ar
am

et
er
.
S
et
ti
n
g
�
to

a
la
rg
e
va
lu
e
w
il
l
p
re
fe
ra
b
ly

en
fo
rc
es

f
to

b
e
p
iv
ot
al

w
h
il
e

se
tt
in
g
�
cl
os
e
to

0
w
il
l
ra
th
er

co
n
st
ra
in
t
f
to

b
e
op

ti
m
al
.

W
h
en

th
e
lo
w
er

b
ou

n
d
is
st
ri
ct
,
le
t
u
s
n
ot
e
h
ow

ev
er

th
at

th
er
e
m
ay

ex
is
t
d
is
ti
n
ct

b
u
t
eq
u
al
ly

go
od

so
lu
ti
on

s
✓
f
,
✓
r

m
in
im

iz
in
g
E
qn

.
11

.
In

th
is

ze
ro
-s
u
m

ga
m
e,

an
in
cr
ea
se

in
ac
cu

ra
cy

w
ou

ld
ex
ac
tl
y
b
e
co
m
p
en

sa
te
d
by

a
d
ec
re
as
e

in
p
iv
ot
al
it
y
an

d
vi
ce
-v
er
sa
.
H
ow

to
b
es
t
n
av

ig
at
e
th
is

P
ar
et
o
fr
on

ti
er

to
m
ax

im
iz
e
a
h
ig
h
er
-l
ev
el

ob
je
ct
iv
e
re
-

m
ai
n
s
a
qu

es
ti
on

op
en

fo
r
fu
tu
re

w
or
ks
.

In
te
re
st
in
gl
y,
le
t
u
s
fi
n
al
ly

em
p
h
as
iz
e
th
at

th
es
e
re
su
lt
s

h
ol
d
u
si
n
g
on

ly
th
e
(1
D
)
ou

tp
u
t
s
of

f
(·;

✓
f
)
(i
n
th
e
ca
se

of
b
in
ar
y
cl
as
si
fi
ca
ti
on

)
as

in
p
u
t
to

th
e
ad

ve
rs
ar
y.

W
e

co
u
ld

si
m
il
ar
ly

en
fo
rc
e
an

in
te
rm

ed
ia
te

re
p
re
se
nt
at
io
n
of

th
e
d
at
a
to

b
e
p
iv
ot
al
,
e.
g.

as
in

[1
9]
,
b
u
t
th
is

is
in

fa
ct

n
ot

n
ec
es
sa
ry
.

V
.

E
X
P
E
R
IM

E
N
T
S

A
.

T
o
y

e
x
a
m
p
le

A
s
a
gu

id
in
g
to
y
ex
am

p
le
,
le
t
u
s
co
n
si
d
er

th
e
b
in
ar
y

cl
as
si
fi
ca
ti
on

of
2D

d
at
a
d
ra
w
n
fr
om

m
u
lt
iv
ar
ia
te

ga
u
s-

si
an

s
w
it
h
eq
u
al

p
ri
or
s,

su
ch

th
at

x
⇠

N
✓
(0
,
0)
,


1

�
0.
5

�
0.
5

1

�◆
w
h
en

Y
=

0,
(1
2)

x
⇠

N
✓
(1
,
1
+

Z
),

 1
0

0
1�◆

w
h
en

Y
=

1.
(1
3)

T
h
e
co
nt
in
u
ou

s
nu

is
an

ce
p
ar
am

et
er

Z
re
p
re
se
nt
s
in

th
is

ca
se

ou
r
u
n
ce
rt
ai
nt
y
ab

ou
t
th
e
ex
ac
t
lo
ca
ti
on

of
th
e
m
ea
n

of
th
e
se
co
n
d
ga

u
ss
ia
n
.
O
u
r
go

al
is

to
b
u
il
d
a
cl
as
si
fi
er

f
(·;

✓
f
)
fo
r
p
re
d
ic
ti
n
g
Y

gi
ve
n
X
,
b
u
t
su
ch

th
at

th
e
p
ro
b
-

ab
il
it
y
d
is
tr
ib
u
ti
on

of
f
(X

;✓
f
)
is

in
va
ri
an

t
w
it
h
re
sp
ec
t

to
th
e
nu

is
an

ce
p
ar
am

et
er

Z
.

A
ss
u
m
in
g
a
ga

u
ss
ia
n
p
ri
or

z
⇠

N
(0
,
1)
,
w
e
st
ar
t
by

ge
n
er
at
in
g
tr
ai
n
in
g
d
at
a
{x

i,
y
i,
z
i}

N i=
1
,
fr
om

w
h
ic
h

w
e

tr
ai
n

a
n
eu

ra
l
n
et
w
or
k

cl
as
si
fi
er

f
m
in
im

iz
in
g

L
f
(✓

f
)

w
it
h
ou

t
co
n
si
d
er
in
g
it
s
ad

ve
rs
ar
y

r
.

T
h
e
n
et
w
or
k

ar
-

ch
it
ec
tu
re

co
m
p
ri
se
s
2
d
en

se
h
id
d
en

la
ye
rs

of
20

n
od

es
re
sp
ec
ti
ve
ly

w
it
h
ta
n
h
an

d
R
eL

U
ac
ti
va
ti
on

s,
fo
ll
ow

ed
by

a
d
en

se
ou

tp
u
t
la
ye
r
w
it
h
a
si
n
gl
e
n
od

e
w
it
h
a
si
gm

oi
d

ac
ti
va
ti
on

.
A
s
sh
ow

n
in

F
ig
.
2,

th
e
re
su
lt
in
g
cl
as
si
fi
er

is
n
ot

p
iv
ot
al
,
as

th
e
co
n
d
it
io
n
al

p
ro
b
ab

il
it
y
d
en

si
ti
es

of
it
s
d
ec
is
io
n
sc
or
es

f
(X

;✓
f
)
sh
ow

la
rg
e
d
is
cr
ep

an
ci
es

b
e-

tw
ee
n

va
lu
es

z
of

th
e
nu

is
an

ce
p
ar
am

et
er
s.

W
h
il
e
n
ot

sh
ow

n
h
er
e,

a
cl
as
si
fi
er

tr
ai
n
ed

on
ly

fr
om

d
at
a
ge
n
er
at
ed

at
th
e
n
om

in
al

va
lu
e
Z

=
0
w
ou

ld
al
so

n
ot

b
e
p
iv
ot
al
.

L
et

u
s
n
ow

co
n
si
d
er

th
e
jo
in
t
tr
ai
n
in
g
of

f
ag

ai
n
st

an
ad

ve
rs
ar
y
r
im

p
le
m
en
te
d
as

a
m
ix
tu
re

d
en

si
ty

n
et
w
or
k

m
od

el
in
g
Z
|f
(X

;✓
f
)
as

a
m
ix
tu
re

of
fi
ve

ga
u
ss
ia
n
s.

T
h
e

n
et
w
or
k
ar
ch
it
ec
tu
re

of
r
co
m
p
ri
se
s
2
d
en

se
h
id
d
en

la
y-

er
s
of

20
n
od

es
w
it
h
R
eL

U
ac
ti
va
ti
on

s,
fo
ll
ow

ed
by

an
ou

tp
u
t
la
ye
r
of

15
n
od

es
co
rr
es
p
on

d
in
g
to

th
e
m
ea
n
s,

st
an

d
ar
d
d
ev
ia
ti
on

s
an

d
m
ix
tu
re

co
e�

ci
en
ts

of
th
e
fi
ve

ga
u
ss
ia
n
s.

O
u
tp
u
t
n
od

es
fo
r
th
e
m
ea
n
va
lu
es

co
m
e
w
it
h

li
n
ea
r
ac
ti
va
ti
on

s,
ou

tp
u
t
n
od

es
fo
r
th
e
st
an

d
ar
d

d
ev
i-

at
io
n
s
w
it
h
ex
p
on

en
ti
al

ac
ti
va
ti
on

s
to

en
su
re

p
os
it
iv
it
y,

w
h
il
e
ou

tp
u
t
n
od

es
fo
r
th
e
m
ix
tu
re

co
e�

ci
en
ts

im
p
le
m
en
t

th
e
so
ft
m
ax

fu
n
ct
io
n
to

en
su
re

p
os
it
iv
it
y
an

d
n
or
m
al
iz
a-

ti
on

.
W

h
en

ru
n
n
in
g
A
lg
or
it
h
m

1
as

in
it
ia
li
ze
d
w
it
h
th
e

cl
as
si
fi
er

f
ob

ta
in
ed

p
re
vi
ou

sl
y,
ad

ve
rs
ar
ia
lt
ra
in
in
g
e↵

ec
-

ti
ve
ly

re
sh
ap

es
th
e
d
ec
is
io
n
fu
n
ct
io
n
so

it
th
at

b
ec
om

es
al
m
os
t
in
d
ep

en
d
en
t
on

th
e
nu

is
an

ce
p
ar
am

et
er
,
as

sh
ow

n
in

F
ig
.
2.

In
p
ar
ti
cu

la
r,

th
e
co
n
d
it
io
n
al

p
ro
b
ab

il
it
y
d
en

-
si
ti
es

of
th
e
d
ec
is
io
n
sc
or
es

f
(X

;✓
f
)
ar
e
n
ow

ve
ry

si
m
il
ar

to
ea
ch

ot
h
er
,
in
d
ic
at
in
g
on

ly
a
sm

al
l
re
si
d
u
al

d
ep

en
-

d
en

cy
on

th
e
nu

is
an

ce
,
as

th
eo
re
ti
ca
ll
y
ex
p
ec
te
d
.

T
h
e

d
yn

am
ic
s
of

ad
ve
rs
ar
ia
l
tr
ai
n
in
g
is

il
lu
st
ra
te
d
in

F
ig
.
3,

w
h
er
e
th
e
lo
ss
es

L
f
,
L
r
an

d
L
f
�
�
L
r
ar
e
ev
al
u
at
ed

af
te
r

ea
ch

it
er
at
io
n
of

A
lg
or
it
h
m

1.
In

th
e
fi
rs
t
it
er
at
io
n
s,

w
e

ob
se
rv
e
th
at

th
e
gl
ob

al
ob

je
ct
iv
e
L
f
�
�
L
r
is

m
in
im

iz
ed

by
m
ak

in
g
th
e
cl
as
si
fi
er

le
ss

ac
cu

ra
te
,
h
en

ce
th
e
co
rr
e-

sp
on

d
in
g
in
cr
ea
se

of
L
f
,
b
u
t
w
h
ic
h
re
su
lt
s
in

a
cl
as
si
fi
er

G. Louppe, M. Kagan, K. Cranmer, arXiv:1611.01046

normal training adversarial training

insensitive!

ν=+1

ν=-1

ν=-1

ν=+1

ν=0

ν=+1

ν=0

ν=-1

ν=0
ν=-1

ν=+1
ν=0

ν ν

T h e A d v e r s a r i a l m o d e l

•the γ₁, γ₂, … are the mean, standard deviation, and
amplitude for the Gaussian Mixture Model.

• the neural network takes in and predicts γ₁, γ₂,
…

f

24

2

Classifier f

X

✓f

f(X; ✓f)

Lf (✓f)

...

Adversary r

�1(f(X; ✓f); ✓r)

�2(f(X; ✓f); ✓r)

. . .

✓r

...

Z

p✓r (Z|f(X; ✓f))

P(�1, �2, . . .)

Lr(✓f , ✓r)

FIG. 1. Architecture for the adversarial training of a binary classifier f against a nuisance parameters Z. The adversary r
models the distribution p(z|f(X; ✓f) = s) of the nuisance parameters as observed only through the output f(X; ✓f) of the
classifier. By maximizing the antagonistic objective Lr(✓f , ✓r) (as part of minimizing Lf (✓f) � �Lr(✓f , ✓r)), the classifier f
forces p(z|f(X; ✓f) = s) towards the prior p(z), which happens when f(X; ✓f) is independent of the nuisance parameter Z and
therefore pivotal.

parameters. This implies that f(X; ✓f) and Z are inde-
pendent random variables.

As stated in Eqn. 1, the pivotal quantity criterion is
imposed with respect to p(X|Z) where Y is marginalized
out. In some situations however (see e.g., Sec. VB), class
conditional independence of f(X; ✓f) on the nuisance Z

is preferred, which can then be stated as requiring

p(f(X; ✓f) = s|z, y) = p(f(X; ✓f) = s|z0, y) (2)

for one or several specified values y 2 Y.

III. METHOD

Joint training of adversarial networks was first pro-
posed by [21] as a way to build a generative model capable
of producing samples from random noise z. More specif-
ically, the authors pit a generative model g : Rn 7! Rp

against an adversary classifier d : Rp 7! [0, 1] whose an-
tagonistic objective is to recognize real data X from gen-
erated data g(Z). Both models g and d are trained simul-
taneously, in such a way that g learns to produce samples
that are di�cult to identify by d, while d incrementally
adapts to changes in g. At the equilibrium, g models a
distribution whose samples can be identified by d only
by chance. That is, assuming enough capacity in d and
g, the distribution of g(Z) eventually converges towards
the real distribution of X.

In this work, we repurpose adversarial networks as a
means to constrain the predictive model f in order to
satisfy Eqn. 1. As illustrated in Fig. 1, we pit f against
an adversary model r := p✓r (z|f(X; ✓f) = s) of pa-
rameters ✓r and associated loss Lr(✓f , ✓r). This model
takes as input realizations f(X; ✓f) and produces as out-
put a function modeling the posterior probability den-

sity p✓r (z|f(X; ✓f) = s). Intuitively, if p(f(X; ✓f) = s|z)
varies with z, then the corresponding correlation can be
captured by r. By contrast, if p(f(X; ✓f) = s|z) is invari-
ant with z, as we require, then r should perform poorly
and be close to random guessing. Training f such that
it additionally minimizes the performance of r therefore
acts as a regularization towards Eqn. 1.
If Z takes discrete values, then p✓r can be represented

e.g. as a probabilistic classifier R 7! R|Z| whose j
th out-

put (for j = 1, . . . , |Z|) is the estimated probability mass
p✓r (zj |f(X; ✓f) = s). Similarly, if Z takes continuous
values, then we can model the posterior probability den-
sity p(z|f(X; ✓f) = s) with a su�ciently flexible para-
metric family of distributions P(�1, �2, . . .), where the
parameters �j depend on f(X, ✓f) and ✓r. The adver-
sary r may take any form, i.e. it does not need to be
a neural network, as long as it exposes a di↵erentiable
function p✓r (z|f(X; ✓f) = s) of su�cient capacity to rep-
resent the true distribution. Fig. 1 illustrates a concrete
example where p✓r (z|f(X; ✓f) = s) is a mixture of gaus-
sians, as modeled with a mixture density network [10]).
The j

th output corresponds to the estimated value of
the corresponding parameter �j of that distribution (e.g.,
the mean, variance and mixing coe�cients of its compo-
nents). As in [10, 26], the estimated probability density
p✓r (z|f(X; ✓f) = s) can then be evaluated for any z 2 Z
and any score s 2 S.
As with generative adversarial networks, we propose

to train f and r simultaneously, which we carry out by
considering the value function

E(✓f , ✓r) = Lf (✓f)� Lr(✓f , ✓r) (3)

that we optimize by finding the minimax solution

✓̂f , ✓̂r = argmin
✓f

max
✓r

E(✓f , ✓r). (4)

f(x)

G. Louppe, M. Kagan, K. Cranmer, arXiv:1611.01046

p(ν | f)

p(ν | f)

A n e x a m p l e o f l e a r n i n g t o p i v o t

•Technique allows us to tune λ, the tradeoff between classification power and
robustness to systematic uncertainty

25

Ex
p

ec
te

d
 s

ig
ni

fic
an

ce
 o

f s
ea

rc
h

An example:
background: 1000 QCD jets
signal: 100 boosted W’s

Train W vs. QCD classifier

Pileup as source of
uncertainty

Simple cut-and-count
analysis with background
uncertainty.

standard
training

optimal tradeoff of classification vs. & robustness

G. Louppe, M. Kagan, K. Cranmer, arXiv:1611.01046

D o m a i n a d a p t a t i o n

•In machine learning literature, the setting where training data doesn’t match real world data is referred
to as “domain shift” and techniques to mitigate the loss in performance are called “domain
adaptation”

•A similar adversarial technique was introduced in arxiv:1505.07818 where adversary tries to get
distribution of hidden state features to be invariant. This works for discrete domains, but doesn’t
generalize well to continuous nuisance parameters.

• adversary works on some low-level features (not just the class prediction)
26

https://arxiv.org/pdf/1505.07818.pdf

Ganin, Ustinova, Ajakan, Germain, Larochelle, Laviolette, Marchand and Lempitsky

Figure 1: The proposed architecture includes a deep feature extractor (green) and a deep
label predictor (blue), which together form a standard feed-forward architecture.
Unsupervised domain adaptation is achieved by adding a domain classifier (red)
connected to the feature extractor via a gradient reversal layer that multiplies
the gradient by a certain negative constant during the backpropagation-based
training. Otherwise, the training proceeds standardly and minimizes the label
prediction loss (for source examples) and the domain classification loss (for all
samples). Gradient reversal ensures that the feature distributions over the two
domains are made similar (as indistinguishable as possible for the domain classi-
fier), thus resulting in the domain-invariant features.

predictor and into the domain classifier (with loss weighted by �). The only di↵erence is
that in (13), the gradients from the class and domain predictors are subtracted, instead of
being summed (the di↵erence is important, as otherwise SGD would try to make features
dissimilar across domains in order to minimize the domain classification loss). Since SGD—
and its many variants, such as ADAGRAD (Duchi et al., 2010) or ADADELTA (Zeiler,
2012)—is the main learning algorithm implemented in most libraries for deep learning, it
would be convenient to frame an implementation of our stochastic saddle point procedure
as SGD.

Fortunately, such a reduction can be accomplished by introducing a special gradient
reversal layer (GRL), defined as follows. The gradient reversal layer has no parameters
associated with it. During the forward propagation, the GRL acts as an identity trans-
formation. During the backpropagation however, the GRL takes the gradient from the
subsequent level and changes its sign, i.e., multiplies it by �1, before passing it to the
preceding layer. Implementing such a layer using existing object-oriented packages for deep
learning is simple, requiring only to define procedures for the forward propagation (identity
transformation), and backpropagation (multiplying by �1). The layer requires no parame-
ter update.

The GRL as defined above is inserted between the feature extractor Gf and the domain
classifier Gd, resulting in the architecture depicted in Figure 1. As the backpropagation
process passes through the GRL, the partial derivatives of the loss that is downstream

12

https://arxiv.org/pdf/1505.07818.pdf

L e a r n e d a d v e r s a r y e x p l i c i t r e g u l a r i z a t i o n→

•One way of interpreting the mini-max game
is to minimize a regularized loss term where the

optimization with respect to is not exposed

•This motivates another approach in which the regularization is not achieved
through a learned adverary, but some other measure of discrepancy

L̃(θf) = arg max
θr

Eλ(θf, θr)

θr

27

2

Classifier f

X

✓f

f(X; ✓f)

Lf (✓f)

...

Adversary r

�1(f(X; ✓f); ✓r)

�2(f(X; ✓f); ✓r)

. . .

✓r

...

Z

p✓r (Z|f(X; ✓f))

P(�1, �2, . . .)

Lr(✓f , ✓r)

FIG. 1. Architecture for the adversarial training of a binary classifier f against a nuisance parameters Z. The adversary r
models the distribution p(z|f(X; ✓f) = s) of the nuisance parameters as observed only through the output f(X; ✓f) of the
classifier. By maximizing the antagonistic objective Lr(✓f , ✓r) (as part of minimizing Lf (✓f) � �Lr(✓f , ✓r)), the classifier f
forces p(z|f(X; ✓f) = s) towards the prior p(z), which happens when f(X; ✓f) is independent of the nuisance parameter Z and
therefore pivotal.

parameters. This implies that f(X; ✓f) and Z are inde-
pendent random variables.

As stated in Eqn. 1, the pivotal quantity criterion is
imposed with respect to p(X|Z) where Y is marginalized
out. In some situations however (see e.g., Sec. VB), class
conditional independence of f(X; ✓f) on the nuisance Z

is preferred, which can then be stated as requiring

p(f(X; ✓f) = s|z, y) = p(f(X; ✓f) = s|z0, y) (2)

for one or several specified values y 2 Y.

III. METHOD

Joint training of adversarial networks was first pro-
posed by [21] as a way to build a generative model capable
of producing samples from random noise z. More specif-
ically, the authors pit a generative model g : Rn 7! Rp

against an adversary classifier d : Rp 7! [0, 1] whose an-
tagonistic objective is to recognize real data X from gen-
erated data g(Z). Both models g and d are trained simul-
taneously, in such a way that g learns to produce samples
that are di�cult to identify by d, while d incrementally
adapts to changes in g. At the equilibrium, g models a
distribution whose samples can be identified by d only
by chance. That is, assuming enough capacity in d and
g, the distribution of g(Z) eventually converges towards
the real distribution of X.

In this work, we repurpose adversarial networks as a
means to constrain the predictive model f in order to
satisfy Eqn. 1. As illustrated in Fig. 1, we pit f against
an adversary model r := p✓r (z|f(X; ✓f) = s) of pa-
rameters ✓r and associated loss Lr(✓f , ✓r). This model
takes as input realizations f(X; ✓f) and produces as out-
put a function modeling the posterior probability den-

sity p✓r (z|f(X; ✓f) = s). Intuitively, if p(f(X; ✓f) = s|z)
varies with z, then the corresponding correlation can be
captured by r. By contrast, if p(f(X; ✓f) = s|z) is invari-
ant with z, as we require, then r should perform poorly
and be close to random guessing. Training f such that
it additionally minimizes the performance of r therefore
acts as a regularization towards Eqn. 1.
If Z takes discrete values, then p✓r can be represented

e.g. as a probabilistic classifier R 7! R|Z| whose j
th out-

put (for j = 1, . . . , |Z|) is the estimated probability mass
p✓r (zj |f(X; ✓f) = s). Similarly, if Z takes continuous
values, then we can model the posterior probability den-
sity p(z|f(X; ✓f) = s) with a su�ciently flexible para-
metric family of distributions P(�1, �2, . . .), where the
parameters �j depend on f(X, ✓f) and ✓r. The adver-
sary r may take any form, i.e. it does not need to be
a neural network, as long as it exposes a di↵erentiable
function p✓r (z|f(X; ✓f) = s) of su�cient capacity to rep-
resent the true distribution. Fig. 1 illustrates a concrete
example where p✓r (z|f(X; ✓f) = s) is a mixture of gaus-
sians, as modeled with a mixture density network [10]).
The j

th output corresponds to the estimated value of
the corresponding parameter �j of that distribution (e.g.,
the mean, variance and mixing coe�cients of its compo-
nents). As in [10, 26], the estimated probability density
p✓r (z|f(X; ✓f) = s) can then be evaluated for any z 2 Z
and any score s 2 S.
As with generative adversarial networks, we propose

to train f and r simultaneously, which we carry out by
considering the value function

E(✓f , ✓r) = Lf (✓f)� Lr(✓f , ✓r) (3)

that we optimize by finding the minimax solution

✓̂f , ✓̂r = argmin
✓f

max
✓r

E(✓f , ✓r). (4)

Phys.Rev.Lett. 125 (2020) 12, 122001

Is there a better way?

THE PROFILE LIKELIHOOD RATIO

Consider statistical model with parameters of interest µ and nuisance (here called

Define profile likelihood ratio

‣ where is best fit with µ fixed (the constrained maximum likelihood
estimator, depends on data)

‣ and θ̂ and µ̂ are best fit with both left floating (unconstrained)
‣ D denotes observed data and G denotes “global observables” (central values for

nuisance parameters)

The data are iid, so the likelihood is just a product over events.
‣ Profiling introduces a coupling across events:
‣ But we can postpone profiling to the final inference stage and frame optimal ML

model (eg. classifier) at the event-level by targeting the likelihood ratio

θ)

29

�(µ) =
L(µ, ˆ̂✓(µ))

L(µ̂, ✓̂)
=

f(D,G|µ, ˆ̂✓(µ;D,G))
f(D,G|µ̂, ✓̂)

ˆ̂✓(µ;D,G)

𝒟 = {x1, …, xN}
ˆ̂✓(µ;D,G)

L i k e l i h o o d R a t i o Tr i c k

30

s(x) =
p(x|H1)

p(x|H0) + p(x|H1)

• binary classifier: find function that minimizes loss:

• i.e. approximate the optimal classifier

• which is 1-to-1 with the likelihood ratio

s(x)
2.8 Getting help 11

Likelihood
0 0.2 0.4 0.6 0.8 1

No
rm

al
iz

ed

0

2

4

6

8

10

Signal
Background

Likelihood
0 0.2 0.4 0.6 0.8 1

No
rm

al
iz

ed

0

2

4

6

8

10

U/
O

-fl
ow

 (S
,B

):
(0

.0
, 0

.0
)%

 /
(0

.0
, 0

.0
)%

TMVA output for classifier: Likelihood

PDERS
0 0.2 0.4 0.6 0.8 1

No
rm

al
iz

ed

0

0.5

1

1.5

2

2.5

Signal
Background

PDERS
0 0.2 0.4 0.6 0.8 1

No
rm

al
iz

ed

0

0.5

1

1.5

2

2.5

U/
O

-fl
ow

 (S
,B

):
(0

.0
, 0

.0
)%

 /
(0

.0
, 0

.0
)%

TMVA output for classifier: PDERS

MLP
0.2 0.4 0.6 0.8 1

No
rm

al
iz

ed

0

1

2

3

4

5

6

7
Signal
Background

MLP
0.2 0.4 0.6 0.8 1

No
rm

al
iz

ed

0

1

2

3

4

5

6

7

U/
O

-fl
ow

 (S
,B

):
(0

.0
, 0

.0
)%

 /
(0

.0
, 0

.0
)%

TMVA output for classifier: MLP

BDT
-0.8 -0.6 -0.4 -0.2 -0 0.2 0.4 0.6 0.8

No
rm

al
iz

ed

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8
Signal
Background

BDT
-0.8 -0.6 -0.4 -0.2 -0 0.2 0.4 0.6 0.8

No
rm

al
iz

ed

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

U/
O

-fl
ow

 (S
,B

):
(0

.0
, 0

.0
)%

 /
(0

.0
, 0

.0
)%

TMVA output for classifier: BDT

Figure 4: Example plots for classifier output distributions for signal and background events from the academic
test sample. Shown are likelihood (upper left), PDE range search (upper right), Multilayer perceptron (MLP
– lower left) and boosted decision trees.

• TMVA tutorial: https://twiki.cern.ch/twiki/bin/view/TMVA.

• An up-to-date reference of all configuration options for the TMVA Factory, the fitters, and all
the MVA methods: http://tmva.sourceforge.net/optionRef.html.

• On request, the TMVA methods provide a help message with a brief description of the method,
and hints for improving the performance by tuning the available configuration options. The
message is printed when the option ”H” is added to the configuration string while booking
the method (switch o↵ by setting ”!H”). The very same help messages are also obtained by
clicking the “info” button on the top of the reference tables on the options reference web page:
http://tmva.sourceforge.net/optionRef.html.

• The web address of this Users Guide: http://tmva.sourceforge.net/docu/TMVAUsersGuide.pdf.

• The TMVA talk collection: http://tmva.sourceforge.net/talks.shtml.

12 3 Using TMVA

Signal efficiency
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

B
ac

kg
ro

un
d

re
je

ct
io

n

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Signal efficiency
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

B
ac

kg
ro

un
d

re
je

ct
io

n

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

MVA Method:
Fisher
MLP
BDT
PDERS
Likelihood

Background rejection versus Signal efficiency

Figure 5: Example for the background rejection versus signal e�ciency (“ROC curve”) obtained by cutting
on the classifier outputs for the events of the test sample.

• TMVA versions in ROOT releases: http://tmva.sourceforge.net/versionRef.html.

• Direct code views via ViewVC: http://tmva.svn.sourceforge.net/viewvc/tmva/trunk/TMVA.

• Class index of TMVA in ROOT: http://root.cern.ch/root/htmldoc/TMVA Index.html.

• Please send questions and/or report problems to the tmva-users mailing list:
http://sourceforge.net/mailarchive/forum.php?forum name=tmva-users (posting messages requires
prior subscription: https://lists.sourceforge.net/lists/listinfo/tmva-users).

3 Using TMVA

A typical TMVA classification or regression analysis consists of two independent phases: the training
phase, where the multivariate methods are trained, tested and evaluated, and an application phase,
where the chosen methods are applied to the concrete classification or regression problem they have
been trained for. An overview of the code flow for these two phases as implemented in the examples
TMVAClassification.C and TMVAClassificationApplication.C (for classification – see Sec. 2.5),
and TMVARegression.C and TMVARegressionApplication.C (for regression) are sketched in Fig. 7.
Multiclass classification does not di↵er much from two class classification from a technical point of
view and di↵erences will only be highlighted where neccessary.

In the training phase, the communication of the user with the data sets and the MVA methods
is performed via a Factory object, created at the beginning of the program. The TMVA Factory
provides member functions to specify the training and test data sets, to register the discriminating

Figure 1: Left: an example of the distributions f0(s|✓) and f1(s|✓) when the classifier s is
a boosted-decision tree (BDT). Right: the corresponding ROC curve (right) for this and
other classifiers. Figures taken from TMVA manual.

These steps lead to a subsequent statistical analysis where one observes in data {xe},
where e is an event index running from 1 to n. For each event, the classifier is evaluated and
one performs inference on a parameter µ related to the presence of the signal contribution.
In particular, one forms the statistical model

p({xe} |µ, ✓) =
nY

e=1

[µf1(s(xe) | ✓) + (1 � µ) f0(s(xe) | ✓)] , (1)

where µ = 0 is the null (background-only) hypothesis and µ > 0 is the alternate (signal-
plus-background) hypothesis.1 Typically, we are interested in inference on µ and ✓ are
nuisance parameters; though, sometimes ✓ may include some components that we are also
wish to infer (like the mass of a new particle that a↵ects the distribution x for the signal
events).

1.2 Comments on typical usage of machine learning in HEP

Nuisance parameters are an after thought in the typical usage of machine learning in HEP.
In fact, most machine learning discussions would only consider f0(x) and f1(x). However,
as experimentalists we know that we must account for various forms of systematic uncer-
tainty, parametrized by ✓. In practice, we take the classifier as fixed and then propagate
uncertainty through the classifier as in Eq. 1. Building the distribution f(s(x)|✓) for values
of ✓ other than the nominal ✓0 used to train the classifier can be thought of as a calibration

1Sometimes there is an additional Poisson term when expected number of signal and background events
is known.

2

s(x) 0 1

[Hastie et al., 2001; Sugiyama et al., 2012; Cranmer et. al., 2015]

L[s] = Ep(x|H1)[� log s(x)] + Ep(x|H0)[� log(1� s(x))]

<latexit sha1_base64="xGB1+Wm+qQgf5ITKaTZgJN+KLfk=">AAACOnicbVDLSgMxFM34rPVVdekmWIQWaZmRgroQiiJ04aIF+4DpMGTSTBuaeZBkpGWc73LjV7hz4caFIm79ANOHoG0PBA7nnEvuPU7IqJC6/qItLa+srq2nNtKbW9s7u5m9/YYIIo5JHQcs4C0HCcKoT+qSSkZaISfIcxhpOv3rkd+8J1zQwL+Tw5BYHur61KUYSSXZmdqtKSx4Cdsekj3HiW8SOw5zg4eKbeQTs9BmQReK3CBvwZMFGf03kzMK45jK2ZmsXtTHgPPEmJIsmKJqZ57bnQBHHvElZkgI09BDacWIS4oZSdLtSJAQ4T7qElNRH3lEWPH49AQeK6UD3YCr50s4Vv9OxMgTYug5KjnaXsx6I3GRZ0bSPbdi6oeRJD6efORGDMoAjnqEHcoJlmyoCMKcql0h7iGOsFRtp1UJxuzJ86RxWjRKxYtaKVu+mtaRAofgCOSAAc5AGVRAFdQBBo/gFbyDD+1Je9M+ta9JdEmbzhyAf9C+fwA4caqi</latexit>

r(x) =
p(x|H1)

p(x|H0)
= 1� 1

s(x)

<latexit sha1_base64="MneiXOSy/ayESlC/jf6gSVUzQy8=">AAACHnicbVDLSgMxFM34rPU16tJNsAjtwjKRiroQim66rGAf0A5DJs20oZkHSUZaxvkSN/6KGxeKCK70b0zbWWjrgcDhnHO5uceNOJPKsr6NpeWV1bX13EZ+c2t7Z9fc22/KMBaENkjIQ9F2saScBbShmOK0HQmKfZfTlju8mfiteyokC4M7NY6o7eN+wDxGsNKSY56J4qgEr2DXE5gkUXH0UHNQKc2YVUq1h+BJ5qM0kTqfOmbBKltTwEWCMlIAGeqO+dnthST2aaAIx1J2kBUpO8FCMcJpmu/GkkaYDHGfdjQNsE+lnUzPS+GxVnrQC4V+gYJT9fdEgn0px76rkz5WAznvTcT/vE6svAs7YUEUKxqQ2SIv5lCFcNIV7DFBieJjTTARTP8VkgHWRSjdaF6XgOZPXiTN0zKqlC9vK4XqdVZHDhyCI1AECJyDKqiBOmgAAh7BM3gFb8aT8WK8Gx+z6JKRzRyAPzC+fgD2lp/y</latexit>

L i k e l i h o o d R a t i o Tr i c k

30

s(x) =
p(x|H1)

p(x|H0) + p(x|H1)

• binary classifier: find function that minimizes loss:

• i.e. approximate the optimal classifier

• which is 1-to-1 with the likelihood ratio

s(x)
2.8 Getting help 11

Likelihood
0 0.2 0.4 0.6 0.8 1

No
rm

al
iz

ed

0

2

4

6

8

10

Signal
Background

Likelihood
0 0.2 0.4 0.6 0.8 1

No
rm

al
iz

ed

0

2

4

6

8

10

U/
O

-fl
ow

 (S
,B

):
(0

.0
, 0

.0
)%

 /
(0

.0
, 0

.0
)%

TMVA output for classifier: Likelihood

PDERS
0 0.2 0.4 0.6 0.8 1

No
rm

al
iz

ed

0

0.5

1

1.5

2

2.5

Signal
Background

PDERS
0 0.2 0.4 0.6 0.8 1

No
rm

al
iz

ed

0

0.5

1

1.5

2

2.5

U/
O

-fl
ow

 (S
,B

):
(0

.0
, 0

.0
)%

 /
(0

.0
, 0

.0
)%

TMVA output for classifier: PDERS

MLP
0.2 0.4 0.6 0.8 1

No
rm

al
iz

ed

0

1

2

3

4

5

6

7
Signal
Background

MLP
0.2 0.4 0.6 0.8 1

No
rm

al
iz

ed

0

1

2

3

4

5

6

7

U/
O

-fl
ow

 (S
,B

):
(0

.0
, 0

.0
)%

 /
(0

.0
, 0

.0
)%

TMVA output for classifier: MLP

BDT
-0.8 -0.6 -0.4 -0.2 -0 0.2 0.4 0.6 0.8

No
rm

al
iz

ed

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8
Signal
Background

BDT
-0.8 -0.6 -0.4 -0.2 -0 0.2 0.4 0.6 0.8

No
rm

al
iz

ed

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

U/
O

-fl
ow

 (S
,B

):
(0

.0
, 0

.0
)%

 /
(0

.0
, 0

.0
)%

TMVA output for classifier: BDT

Figure 4: Example plots for classifier output distributions for signal and background events from the academic
test sample. Shown are likelihood (upper left), PDE range search (upper right), Multilayer perceptron (MLP
– lower left) and boosted decision trees.

• TMVA tutorial: https://twiki.cern.ch/twiki/bin/view/TMVA.

• An up-to-date reference of all configuration options for the TMVA Factory, the fitters, and all
the MVA methods: http://tmva.sourceforge.net/optionRef.html.

• On request, the TMVA methods provide a help message with a brief description of the method,
and hints for improving the performance by tuning the available configuration options. The
message is printed when the option ”H” is added to the configuration string while booking
the method (switch o↵ by setting ”!H”). The very same help messages are also obtained by
clicking the “info” button on the top of the reference tables on the options reference web page:
http://tmva.sourceforge.net/optionRef.html.

• The web address of this Users Guide: http://tmva.sourceforge.net/docu/TMVAUsersGuide.pdf.

• The TMVA talk collection: http://tmva.sourceforge.net/talks.shtml.

12 3 Using TMVA

Signal efficiency
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

B
ac

kg
ro

un
d

re
je

ct
io

n

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Signal efficiency
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

B
ac

kg
ro

un
d

re
je

ct
io

n

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

MVA Method:
Fisher
MLP
BDT
PDERS
Likelihood

Background rejection versus Signal efficiency

Figure 5: Example for the background rejection versus signal e�ciency (“ROC curve”) obtained by cutting
on the classifier outputs for the events of the test sample.

• TMVA versions in ROOT releases: http://tmva.sourceforge.net/versionRef.html.

• Direct code views via ViewVC: http://tmva.svn.sourceforge.net/viewvc/tmva/trunk/TMVA.

• Class index of TMVA in ROOT: http://root.cern.ch/root/htmldoc/TMVA Index.html.

• Please send questions and/or report problems to the tmva-users mailing list:
http://sourceforge.net/mailarchive/forum.php?forum name=tmva-users (posting messages requires
prior subscription: https://lists.sourceforge.net/lists/listinfo/tmva-users).

3 Using TMVA

A typical TMVA classification or regression analysis consists of two independent phases: the training
phase, where the multivariate methods are trained, tested and evaluated, and an application phase,
where the chosen methods are applied to the concrete classification or regression problem they have
been trained for. An overview of the code flow for these two phases as implemented in the examples
TMVAClassification.C and TMVAClassificationApplication.C (for classification – see Sec. 2.5),
and TMVARegression.C and TMVARegressionApplication.C (for regression) are sketched in Fig. 7.
Multiclass classification does not di↵er much from two class classification from a technical point of
view and di↵erences will only be highlighted where neccessary.

In the training phase, the communication of the user with the data sets and the MVA methods
is performed via a Factory object, created at the beginning of the program. The TMVA Factory
provides member functions to specify the training and test data sets, to register the discriminating

Figure 1: Left: an example of the distributions f0(s|✓) and f1(s|✓) when the classifier s is
a boosted-decision tree (BDT). Right: the corresponding ROC curve (right) for this and
other classifiers. Figures taken from TMVA manual.

These steps lead to a subsequent statistical analysis where one observes in data {xe},
where e is an event index running from 1 to n. For each event, the classifier is evaluated and
one performs inference on a parameter µ related to the presence of the signal contribution.
In particular, one forms the statistical model

p({xe} |µ, ✓) =
nY

e=1

[µf1(s(xe) | ✓) + (1 � µ) f0(s(xe) | ✓)] , (1)

where µ = 0 is the null (background-only) hypothesis and µ > 0 is the alternate (signal-
plus-background) hypothesis.1 Typically, we are interested in inference on µ and ✓ are
nuisance parameters; though, sometimes ✓ may include some components that we are also
wish to infer (like the mass of a new particle that a↵ects the distribution x for the signal
events).

1.2 Comments on typical usage of machine learning in HEP

Nuisance parameters are an after thought in the typical usage of machine learning in HEP.
In fact, most machine learning discussions would only consider f0(x) and f1(x). However,
as experimentalists we know that we must account for various forms of systematic uncer-
tainty, parametrized by ✓. In practice, we take the classifier as fixed and then propagate
uncertainty through the classifier as in Eq. 1. Building the distribution f(s(x)|✓) for values
of ✓ other than the nominal ✓0 used to train the classifier can be thought of as a calibration

1Sometimes there is an additional Poisson term when expected number of signal and background events
is known.

2

s(x) 0 1

[Hastie et al., 2001; Sugiyama et al., 2012; Cranmer et. al., 2015]

⇡ 1

N

NX

i=1

�yi log s(xi)� (1� yi) log(1� s(xi))

<latexit sha1_base64="P9nZsoPSaY7yA/MNHzoQUhJZiNw=">AAACM3icbZDNSsNAFIUn9b/+RV26GSxCu2hJRFAXguhGXIiCtUITw2Q6aYdOMmFmIoaQd3Lji7gQxIUibn0HJzULbT0wcPjuvdy5x48ZlcqyXozK1PTM7Nz8QnVxaXll1Vxbv5Y8EZi0MWdc3PhIEkYj0lZUMXITC4JCn5GOPzwp6p07IiTl0ZVKY+KGqB/RgGKkNPLMMwfFseD30AkEwpmdZ+c5dGQSehk9tPPbc9hMPQodxvtQ1u892oBNWLcL2CigtiVveGbNalkjwUljl6YGSl145pPT4zgJSaQwQ1J2bStWboaEopiRvOokksQID1GfdLWNUEikm41uzuG2Jj0YcKFfpOCI/p7IUChlGvq6M0RqIMdrBfyv1k1UsO9mNIoTRSL8syhIGFQcFgHCHhUEK5Zqg7Cg+q8QD5AOT+mYqzoEe/zkSXO907J3WweXu7Wj4zKOebAJtkAd2GAPHIFTcAHaAIMH8AzewLvxaLwaH8bnT2vFKGc2wB8ZX98IWKgB</latexit>

L[s] = Ep(x|H1)[� log s(x)] + Ep(x|H0)[� log(1� s(x))]

<latexit sha1_base64="xGB1+Wm+qQgf5ITKaTZgJN+KLfk=">AAACOnicbVDLSgMxFM34rPVVdekmWIQWaZmRgroQiiJ04aIF+4DpMGTSTBuaeZBkpGWc73LjV7hz4caFIm79ANOHoG0PBA7nnEvuPU7IqJC6/qItLa+srq2nNtKbW9s7u5m9/YYIIo5JHQcs4C0HCcKoT+qSSkZaISfIcxhpOv3rkd+8J1zQwL+Tw5BYHur61KUYSSXZmdqtKSx4Cdsekj3HiW8SOw5zg4eKbeQTs9BmQReK3CBvwZMFGf03kzMK45jK2ZmsXtTHgPPEmJIsmKJqZ57bnQBHHvElZkgI09BDacWIS4oZSdLtSJAQ4T7qElNRH3lEWPH49AQeK6UD3YCr50s4Vv9OxMgTYug5KjnaXsx6I3GRZ0bSPbdi6oeRJD6efORGDMoAjnqEHcoJlmyoCMKcql0h7iGOsFRtp1UJxuzJ86RxWjRKxYtaKVu+mtaRAofgCOSAAc5AGVRAFdQBBo/gFbyDD+1Je9M+ta9JdEmbzhyAf9C+fwA4caqi</latexit>

r(x) =
p(x|H1)

p(x|H0)
= 1� 1

s(x)

<latexit sha1_base64="MneiXOSy/ayESlC/jf6gSVUzQy8=">AAACHnicbVDLSgMxFM34rPU16tJNsAjtwjKRiroQim66rGAf0A5DJs20oZkHSUZaxvkSN/6KGxeKCK70b0zbWWjrgcDhnHO5uceNOJPKsr6NpeWV1bX13EZ+c2t7Z9fc22/KMBaENkjIQ9F2saScBbShmOK0HQmKfZfTlju8mfiteyokC4M7NY6o7eN+wDxGsNKSY56J4qgEr2DXE5gkUXH0UHNQKc2YVUq1h+BJ5qM0kTqfOmbBKltTwEWCMlIAGeqO+dnthST2aaAIx1J2kBUpO8FCMcJpmu/GkkaYDHGfdjQNsE+lnUzPS+GxVnrQC4V+gYJT9fdEgn0px76rkz5WAznvTcT/vE6svAs7YUEUKxqQ2SIv5lCFcNIV7DFBieJjTTARTP8VkgHWRSjdaF6XgOZPXiTN0zKqlC9vK4XqdVZHDhyCI1AECJyDKqiBOmgAAh7BM3gFb8aT8WK8Gx+z6JKRzRyAPzC+fgD2lp/y</latexit>

P a r a m e t r i z i n g t h e L i k e l i h o o d R a t i o Tr i c k

•Can do the same thing for any two points & in parameter space .

Or train to classify data from versus some fixed reference

I call this a parametrized classifier.

θ0 θ1 Θ

p(x |θ) pref (x)

31K.C., G. Louppe, J. Pavez: Approximating Likelihood Ratios with Calibrated Discriminative Classifiers [arXiv:1506.02169]

r(x; ✓) =
p(x|✓)
pref(x)

= 1� 1

s(x; ✓)

<latexit sha1_base64="WiIuGtZuPBNlHnlN5clTx9M1pR8=">AAACN3icbVDLSgMxFM34tr6qLt0Ei1AXlhkpqIhQdONKFKwWOqVk0jttaOZBckdaxvkrN/6GO924UMStf2BaZ+HrQOBwzrlJ7vFiKTTa9qM1MTk1PTM7N19YWFxaXimurl3pKFEc6jySkWp4TIMUIdRRoIRGrIAFnoRrr38y8q9vQGkRhZc4jKEVsG4ofMEZGqldPFPlwSF1sQfItukRdX3FeBqXB7e5lqVxO3VVQBX4WXmwnZmQQ3fyoJOl+tsFWbtYsiv2GPQvcXJSIjnO28UHtxPxJIAQuWRaNx07xlbKFAouISu4iYaY8T7rQtPQkAWgW+l474xuGaVD/UiZEyIdq98nUhZoPQw8kwwY9vRvbyT+5zUT9PdbqQjjBCHkXw/5iaQY0VGJtCMUcJRDQxhXwvyV8h4zhaCpumBKcH6v/Jdc7VacauXgolqqHed1zJENsknKxCF7pEZOyTmpE07uyBN5Ia/WvfVsvVnvX9EJK59ZJz9gfXwC11aqvA==</latexit>

r(x; ✓0, ✓1) =
p(x | ✓0)
p(x | ✓1)

= 1� 1

s(x; ✓0, ✓1)

<latexit sha1_base64="O+cLonH4XNsfaIN+k8rNqirrnz8=">AAACWnicdVFbS8MwGE2rbnPe5uXNl+AQNtDRyEBFBNEXHxXcFNYx0ix1YenF5KtslP5JX0Twrwhms4o6/SBwOJdcTrxYCg2O82LZc/MLhWJpsby0vLK6VlnfaOsoUYy3WCQjdedRzaUIeQsESH4XK04DT/Jbb3gx0W8fudIiCm9gHPNuQO9D4QtGwVC9yoOqjU6wCwMOtOfsfSJSx6fY9RVlaVwbYTcQ/S9TPZvhSD0zfoL38wzJUv3PvlmvUnUaznTwLCA5qKJ8rnqVJ7cfsSTgITBJte4QJ4ZuShUIJnlWdhPNY8qG9J53DAxpwHU3nVaT4V3D9LEfKbNCwFP2eyKlgdbjwDPOgMJA/9Ym5F9aJwH/qJuKME6Ah+zjID+RGCI86Rn3heIM5NgAypQwd8VsQE05YH6jbEogv588C9oHDdJsHF83q2fneR0ltI12UA0RdIjO0CW6Qi3E0DN6swpW0Xq1bXvRXvqw2lae2UQ/xt56B2OisKw=</latexit>

http://arxiv.org/abs/1506.02169

V i s u a l i z i n g t h e p a r a m e t e r i z e d c l a s s i e r

•We want a learner parametrized by

• augment training data (x,y) → (x, ,y) to obtain f(x;)

ν

ν ν

32

f(x;)ν

• problem: how do we evaluate on testing data when is unknown?ν

x

p(x|)ν

V i s u a l i z i n g t h e p a r a m e t e r i z e d c l a s s i e r

•We want a learner parametrized by

• augment training data (x,y) → (x, ,y) to obtain f(x;)

ν

ν ν

32

f(x;)ν

• problem: how do we evaluate on testing data when is unknown?ν

x

p(x|)ν

V i s u a l i z i n g t h e p a r a m e t e r i z e d c l a s s i e r

•We want a learner parametrized by

• augment training data (x,y) → (x, ,y) to obtain f(x;)

ν

ν ν

32

f(x;)ν

• problem: how do we evaluate on testing data when is unknown?ν

x

p(x|)ν

A m o r t i z e d l i k e l i h o o d r a t i o

•Once we’ve learned the likelihood ratio , we can apply it to any data .

• It is amortized, we pay biggest computational costs up front

• Great for calibrated frequentist confidence intervals with guaranteed coverage

• Here we repeat inference thousands of times & check asymptotic statistical theory

r(x; θ) x

33

(a) Exact vs. approximated MLEs. (b) p(�2 log⇤(� = 0.05) | � = 0.05)

Figure 2: Using approximated likelihood ratios for parameter inference yields an unbi-

ased maximum likelihood estimator �̂, as empirically estimated from an ensemble of 1000

artificial datasets.

An advantage of this approach compared to Approximate Bayesian Computation (Beau-

mont et al., 2002) is that the classifier and calibration – computationally intensive parts of

the approximation – are independent of the dataset D. Thus once trained and calibrated,

the approximation can be applied to any dataset D. This makes it computationally e�cient

to perform ensemble tests of the method.

Figure 2a shows the empirical distribution of the maximum likelihood estimators (MLEs)

from the approximate likelihood compared to the distribution of the MLEs from the exact

likelihood. It clearly demonstrates that in this case the approximate likelihood yields an

unbiased estimator with essentially the same variance as the exact MLE. In addition to

the MLE, we can study the coverage of a confidence interval based on the likelihood ra-

tio test statistic. This is done by evaluating �2 log⇤(� = 0.05) for samples drawn from

p(x|� = 0.05). Wilks’s theorem states that the distribution of �2 log⇤(� = 0.05) should

follow a �2
1 distribution. Figure 2b also confirms this behavior, supporting the applicability

18

K.C., G. Louppe, J. Pavez: http://arxiv.org/abs/1506.02169

http://arxiv.org/abs/1506.02169

C a l i b r a t i n g t h e l i k e l i h o o d - r a t i o t r i c k

s

p
(s

)

2.8 Getting help 11

Likelihood
0 0.2 0.4 0.6 0.8 1

No
rm

al
iz

ed

0

2

4

6

8

10

Signal
Background

Likelihood
0 0.2 0.4 0.6 0.8 1

No
rm

al
iz

ed

0

2

4

6

8

10

U/
O

-fl
ow

 (S
,B

):
(0

.0
, 0

.0
)%

 /
(0

.0
, 0

.0
)%

TMVA output for classifier: Likelihood

PDERS
0 0.2 0.4 0.6 0.8 1

No
rm

al
iz

ed

0

0.5

1

1.5

2

2.5

Signal
Background

PDERS
0 0.2 0.4 0.6 0.8 1

No
rm

al
iz

ed

0

0.5

1

1.5

2

2.5

U/
O

-fl
ow

 (S
,B

):
(0

.0
, 0

.0
)%

 /
(0

.0
, 0

.0
)%

TMVA output for classifier: PDERS

MLP
0.2 0.4 0.6 0.8 1

No
rm

al
iz

ed

0

1

2

3

4

5

6

7
Signal
Background

MLP
0.2 0.4 0.6 0.8 1

No
rm

al
iz

ed

0

1

2

3

4

5

6

7

U/
O

-fl
ow

 (S
,B

):
(0

.0
, 0

.0
)%

 /
(0

.0
, 0

.0
)%

TMVA output for classifier: MLP

BDT
-0.8 -0.6 -0.4 -0.2 -0 0.2 0.4 0.6 0.8

No
rm

al
iz

ed

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8
Signal
Background

BDT
-0.8 -0.6 -0.4 -0.2 -0 0.2 0.4 0.6 0.8

No
rm

al
iz

ed

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

U/
O

-fl
ow

 (S
,B

):
(0

.0
, 0

.0
)%

 /
(0

.0
, 0

.0
)%

TMVA output for classifier: BDT

Figure 4: Example plots for classifier output distributions for signal and background events from the academic
test sample. Shown are likelihood (upper left), PDE range search (upper right), Multilayer perceptron (MLP
– lower left) and boosted decision trees.

• TMVA tutorial: https://twiki.cern.ch/twiki/bin/view/TMVA.

• An up-to-date reference of all configuration options for the TMVA Factory, the fitters, and all
the MVA methods: http://tmva.sourceforge.net/optionRef.html.

• On request, the TMVA methods provide a help message with a brief description of the method,
and hints for improving the performance by tuning the available configuration options. The
message is printed when the option ”H” is added to the configuration string while booking
the method (switch o↵ by setting ”!H”). The very same help messages are also obtained by
clicking the “info” button on the top of the reference tables on the options reference web page:
http://tmva.sourceforge.net/optionRef.html.

• The web address of this Users Guide: http://tmva.sourceforge.net/docu/TMVAUsersGuide.pdf.

• The TMVA talk collection: http://tmva.sourceforge.net/talks.shtml.

12 3 Using TMVA

Signal efficiency
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

B
ac

kg
ro

un
d

re
je

ct
io

n

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Signal efficiency
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

B
ac

kg
ro

un
d

re
je

ct
io

n

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

MVA Method:
Fisher
MLP
BDT
PDERS
Likelihood

Background rejection versus Signal efficiency

Figure 5: Example for the background rejection versus signal e�ciency (“ROC curve”) obtained by cutting
on the classifier outputs for the events of the test sample.

• TMVA versions in ROOT releases: http://tmva.sourceforge.net/versionRef.html.

• Direct code views via ViewVC: http://tmva.svn.sourceforge.net/viewvc/tmva/trunk/TMVA.

• Class index of TMVA in ROOT: http://root.cern.ch/root/htmldoc/TMVA Index.html.

• Please send questions and/or report problems to the tmva-users mailing list:
http://sourceforge.net/mailarchive/forum.php?forum name=tmva-users (posting messages requires
prior subscription: https://lists.sourceforge.net/lists/listinfo/tmva-users).

3 Using TMVA

A typical TMVA classification or regression analysis consists of two independent phases: the training
phase, where the multivariate methods are trained, tested and evaluated, and an application phase,
where the chosen methods are applied to the concrete classification or regression problem they have
been trained for. An overview of the code flow for these two phases as implemented in the examples
TMVAClassification.C and TMVAClassificationApplication.C (for classification – see Sec. 2.5),
and TMVARegression.C and TMVARegressionApplication.C (for regression) are sketched in Fig. 7.
Multiclass classification does not di↵er much from two class classification from a technical point of
view and di↵erences will only be highlighted where neccessary.

In the training phase, the communication of the user with the data sets and the MVA methods
is performed via a Factory object, created at the beginning of the program. The TMVA Factory
provides member functions to specify the training and test data sets, to register the discriminating

Figure 1: Left: an example of the distributions f0(s|✓) and f1(s|✓) when the classifier s is
a boosted-decision tree (BDT). Right: the corresponding ROC curve (right) for this and
other classifiers. Figures taken from TMVA manual.

These steps lead to a subsequent statistical analysis where one observes in data {xe},
where e is an event index running from 1 to n. For each event, the classifier is evaluated and
one performs inference on a parameter µ related to the presence of the signal contribution.
In particular, one forms the statistical model

p({xe} |µ, ✓) =
nY

e=1

[µf1(s(xe) | ✓) + (1 � µ) f0(s(xe) | ✓)] , (1)

where µ = 0 is the null (background-only) hypothesis and µ > 0 is the alternate (signal-
plus-background) hypothesis.1 Typically, we are interested in inference on µ and ✓ are
nuisance parameters; though, sometimes ✓ may include some components that we are also
wish to infer (like the mass of a new particle that a↵ects the distribution x for the signal
events).

1.2 Comments on typical usage of machine learning in HEP

Nuisance parameters are an after thought in the typical usage of machine learning in HEP.
In fact, most machine learning discussions would only consider f0(x) and f1(x). However,
as experimentalists we know that we must account for various forms of systematic uncer-
tainty, parametrized by ✓. In practice, we take the classifier as fixed and then propagate
uncertainty through the classifier as in Eq. 1. Building the distribution f(s(x)|✓) for values
of ✓ other than the nominal ✓0 used to train the classifier can be thought of as a calibration

1Sometimes there is an additional Poisson term when expected number of signal and background events
is known.

2

✓0✓1

34

•We can weaken the requirements for the likelihood ratio trick in case the classifier

•If the scalar map s: X → ℝ has the same level sets as the likelihood ratio

•We can show that an equivalent test can be made from 1-D projection

•

Estimating the density of with data from the simulator calibrates the ratio.

s(x; ✓0; ✓1) = monotonic[p(x|✓0)/p(x|✓1)]

p(x|✓0)
p(x|✓1)

=
p(s(x; ✓0, ✓1)|✓0)
p(s(x; ✓0, ✓1)|✓1)

s(x; ✓0, ✓1)

Cranmer, Louppe, Pavez: Approximating Likelihood Ratios with Calibrated Discriminative Classifiers [arXiv:1506.02169]
[Dalmasso, Izbicki, Lee, ICML2020 arXiv:2002.10399]

http://arxiv.org/abs/1506.02169

S o m e p a r a m e t e r i z e d c l a s s i f i e r h i s t o r y

•2015 NeurIPS ML & Physics workshop:

• http://yandexdataschool.github.io/aleph2015/

• https://indico.cern.ch/event/465572/

•2016 ATLAS Statistics & ML workshop:

• https://indico.cern.ch/event/577209/

•Thinking about systematics in ML is what inspired my work in simulation-based
inference

• Slack channel I use for ML work is called
“systematics” and has 115 members
and >175,000 messages!

35

http://yandexdataschool.github.io/aleph2015/
https://indico.cern.ch/event/465572/
https://indico.cern.ch/event/577209/

S o m e p a r a m e t e r i z e d c l a s s i f i e r h i s t o r y

•Thinking about systematics in ML is what inspired my work in simulation-based
inference

• Slack channel I use for ML work is called
“systematics” started in 2016,
has 115 members and >175,000 messages!

•2015 NeurIPS ML & Physics workshop:

• http://yandexdataschool.github.io/aleph2015/

• https://indico.cern.ch/event/465572/

•2016 ATLAS Statistics & ML workshop:

• https://indico.cern.ch/event/577209/
36

http://yandexdataschool.github.io/aleph2015/
https://indico.cern.ch/event/465572/
https://indico.cern.ch/event/577209/

A r e v i e w w i t h o t h e r a p p r o a c h e s

37

To appear in "Artificial Intelligence for Particle Physics", World Scientific Publishing Co
https://inspirehep.net/literature/1807719

Dealing with Nuisance Parameters using Machine
Learning in High Energy Physics: a Review

T. Dorigo and P. de Castro Manzano

Istituto Nazionale di Fisica Nucleare - Sezione di Padova,
Via Marzolo 8, 35131 Padova - Italy,

tommaso.dorigo@cern.ch⇤ pablo.de.castro@cern.ch

In this work we discuss the impact of nuisance parameters on the ef-
fectiveness of machine learning in high-energy physics problems, and
provide a review of techniques that allow to include their e↵ect and re-
duce their impact in the search for optimal selection criteria and variable
transformations. The introduction of nuisance parameters complicates
the supervised learning task and its correspondence with the data anal-
ysis goal, due to their contribution degrading the model performances
in real data, and the necessary addition of uncertainties in the result-
ing statistical inference. The approaches discussed include nuisance-
parameterized models, modified or adversary losses, semi-supervised
learning approaches, and inference-aware techniques.

1. Introduction

Particle physics o↵ers a variety of use cases for machine learning techniques.
Of these, probably the most common is the use of supervised classifica-
tion to construct low-dimensional event summaries, which allow to perform
statistical inference on the parameters of interest. The learned summary
statistics –functions of the data that are informative about the relevant
properties of the data– can e�ciently combine high-dimensional informa-
tion from each event into one or a few variables which may be used as the
basis of statistical inference. The informational source for this compres-
sion are simulated observations produced by a complex generative model;
the latter reproduces the chain of physical processes occurring in subnu-
clear collisions and the subsequent interaction of the produced final state

⇤Corresponding author.

1

ar
X

iv
:2

00
7.

09
12

1v
2

 [s
ta

t.M
L]

 1
7

Ja
n

20
21

Tr a d i t i o n m e e t s d i f f e r e n t i a b l e p r o g r a m m i n g

•Recent efforts in particle physics to maintain traditional
approaches to likelihood estimation with summaries, but
optimize summary statistics with automatic differentiation

• Connects to differentiable programming paradigm

• Optimization objective is power of full statistical analysis,
which involves backproping through statistical procedure

• Does not exploit i.i.d. property, optimization is “global”

38
https://github.com/pyhf/neos

statistic s and a statistical procedure to obtain an unbiased interval estimate of the parameter of interest
which accounts for the effect of nuisance parameters. The resulting interval can be characterised by
its width �Ê0 = Ê̂

+
0 ≠ Ê̂

≠
0 , defined by some criterion so as to contain on average, upon repeated

samping, a given fraction of the probability density, e.g. a central 68.3% interval. The expected size
of the interval depends on the summary statistic s chosen: in general, summary statistics that are more
informative about the parameters of interest will provide narrower confidence or credible intervals on
their value. Under this figure of merit, the problem of choosing an optimal summary statistic can be
formally expressed as finding a summary statistic s

ú that minimises the interval width:
s

ú = argmins�Ê0. (2)
The above construction can be extended to several parameters of interest by considering the interval
volume or any other function of the resulting confidence or credible regions.

3 Method

In this section, a machine learning technique to learn non-linear sample summary statistics is described
in detail. The method seeks to minimise the expected variance of the parameters of interest obtained
via a non-parametric simulation-based synthetic likelihood. A graphical description of the technique
is depicted on Fig. 1. The parameters of a neural network are optimised by stochastic gradient descent
within an automatic differentiation framework, where the considered loss function accounts for the
details of the statistical model as well as the expected effect of nuisance parameters.

g ✓s

x0 x1 ... xg

y0 y1 ... yg

f �

softmax

P

ŝ0

ŝ1

ŝ2

...

ŝb log L̂A

� @2

@✓i@✓j

U

I�1

simulator or
approximation

neural
network

summary
statistic

inference-aware
loss

compute via automatic di↵erentiation

stochastic gradient update �t+1 = �t + ⌘(t)r�U

Figure 1: Learning inference-aware summary statistics (see text for details).

The family of summary statistics s(D) considered in this work is composed by a neural network
model applied to each dataset observation f(x; „) : X ™ Rd æ Y ™ Rb, whose parameters „

will be learned during training by means of stochastic gradient descent, as will be discussed later.
Therefore, using set-builder notation the family of summary statistics considered can be denoted as:

s(D, „) = s ({ f(xi; „) | ’ xi œ D }) (3)
where f(xi; „) will reduce the dimensionality from the input observations space X to a lower-
dimensional space Y . The next step is to map observation outputs to a dataset summary statistic,
which will in turn be calibrated and optimised via a non-parametric likelihood L(D; ◊, „) created
using a set of simulated observations Gs = {x0, ..., xg}, generated at a certain instantiation of the
simulator parameters ◊s.

In experimental high energy physics experiments, which are the scientific context that initially
motivated this work, histograms of observation counts are the most commonly used non-parametric
density estimator because the resulting likelihoods can be expressed as the product of Poisson factors,
one for each of the considered bins. A naive sample summary statistic can be built from the output of
the neural network by simply assigning each observation x to a bin corresponding to the cardinality
of the maximum element of f(x; „), so each element of the sample summary will correspond to the
following sum:

si(D; „) =
ÿ

xœD

I
1 i = argmaxj={0,...,b}(fj(x; „))
0 i ”= argmaxj={0,...,b}(fj(x; „)) (4)

3

INFERNO: de Castro & Dorigo, [arXiv:1806.04743]

https://github.com/pyhf/neos

Tr a d i t i o n m e e t s d i f f e r e n t i a b l e p r o g r a m m i n g

•Recent efforts in particle physics to maintain traditional
approaches to likelihood estimation with summaries, but
optimize summary statistics with automatic differentiation

• Connects to differentiable programming paradigm

• Optimization objective is power of full statistical analysis,
which involves backproping through statistical procedure

• Does not exploit i.i.d. property, optimization is “global”

38
https://github.com/pyhf/neos

statistic s and a statistical procedure to obtain an unbiased interval estimate of the parameter of interest
which accounts for the effect of nuisance parameters. The resulting interval can be characterised by
its width �Ê0 = Ê̂

+
0 ≠ Ê̂

≠
0 , defined by some criterion so as to contain on average, upon repeated

samping, a given fraction of the probability density, e.g. a central 68.3% interval. The expected size
of the interval depends on the summary statistic s chosen: in general, summary statistics that are more
informative about the parameters of interest will provide narrower confidence or credible intervals on
their value. Under this figure of merit, the problem of choosing an optimal summary statistic can be
formally expressed as finding a summary statistic s

ú that minimises the interval width:
s

ú = argmins�Ê0. (2)
The above construction can be extended to several parameters of interest by considering the interval
volume or any other function of the resulting confidence or credible regions.

3 Method

In this section, a machine learning technique to learn non-linear sample summary statistics is described
in detail. The method seeks to minimise the expected variance of the parameters of interest obtained
via a non-parametric simulation-based synthetic likelihood. A graphical description of the technique
is depicted on Fig. 1. The parameters of a neural network are optimised by stochastic gradient descent
within an automatic differentiation framework, where the considered loss function accounts for the
details of the statistical model as well as the expected effect of nuisance parameters.

g ✓s

x0 x1 ... xg

y0 y1 ... yg

f �

softmax

P

ŝ0

ŝ1

ŝ2

...

ŝb log L̂A

� @2

@✓i@✓j

U

I�1

simulator or
approximation

neural
network

summary
statistic

inference-aware
loss

compute via automatic di↵erentiation

stochastic gradient update �t+1 = �t + ⌘(t)r�U

Figure 1: Learning inference-aware summary statistics (see text for details).

The family of summary statistics s(D) considered in this work is composed by a neural network
model applied to each dataset observation f(x; „) : X ™ Rd æ Y ™ Rb, whose parameters „

will be learned during training by means of stochastic gradient descent, as will be discussed later.
Therefore, using set-builder notation the family of summary statistics considered can be denoted as:

s(D, „) = s ({ f(xi; „) | ’ xi œ D }) (3)
where f(xi; „) will reduce the dimensionality from the input observations space X to a lower-
dimensional space Y . The next step is to map observation outputs to a dataset summary statistic,
which will in turn be calibrated and optimised via a non-parametric likelihood L(D; ◊, „) created
using a set of simulated observations Gs = {x0, ..., xg}, generated at a certain instantiation of the
simulator parameters ◊s.

In experimental high energy physics experiments, which are the scientific context that initially
motivated this work, histograms of observation counts are the most commonly used non-parametric
density estimator because the resulting likelihoods can be expressed as the product of Poisson factors,
one for each of the considered bins. A naive sample summary statistic can be built from the output of
the neural network by simply assigning each observation x to a bin corresponding to the cardinality
of the maximum element of f(x; „), so each element of the sample summary will correspond to the
following sum:

si(D; „) =
ÿ

xœD

I
1 i = argmaxj={0,...,b}(fj(x; „))
0 i ”= argmaxj={0,...,b}(fj(x; „)) (4)

3

INFERNO: de Castro & Dorigo, [arXiv:1806.04743]

https://github.com/pyhf/neos

C o n c l u s i o n

•Traditional (non-ML) approaches used by physicists design analyses to be robust to
systematic uncertainties through heuristics

• While not formalized, physicists are quite good at this

•First wave of ML in physics optimized for a nominal scenario and then propagate uncertainty
through the ML components in downstream inference

• “Not optimal, but not wrong”

•In order to optimize sensitivity in an ML context, we need to formalize what we want (or some
heuristic) so that we can operationalize it

• e.g. a pivotal classifier. Tradeoff between dependence on nuisance parameter and
classification/regression performance

• a parameterized classifier: more moving parts, but closest to the ideal single-step
likelihood ratio test in high dimensions

39

A comment on
Aleatoric and Epistemic Uncertainty

•“roughly speaking, aleatoric (aka statistical) uncertainty refers to the notion of
randomness, that is, the variability in the outcome of an experiment which is due
to inherently random effects”, while “epistemic (aka systematic) uncertainty refers
to uncertainty caused by a lack of knowledge (about the best model)”.

•

41

•In the literature on Uncertainty Quantification (UQ), which is more closely connected to physics
given the role of computer simulations, the terminology is more fine grained and less ambiguous.

•That community uses the terms:

• parameter uncertainty (i.e. nuisance parameters),

• structural uncertainty (i.e. mismodelling),

• algorithmic uncertainty (i.e. numerical uncertainty),

• experimental uncertainty (i.e. uncertainty from experimental resolution and statistical fluctuations),
and

• interpolation uncertainty (i.e. uncertainty due to interpolating between different parameter values
due to lack of computational resources).

•
42

•Perhaps a more important distinction between the perspective of physicists and machine
learning researchers has to do with the use of the term “model” and what exactly is
uncertain. In physics, the systematic and epistemic uncertainty is typically associated to our
understanding of the underlying physics and “the model” usually refers to the physics
model, detector model encapsulated in a simulation. In contrast, for machine learning
research, “the model” usually refers to the trained model f ∈ F used as described in
Section 41.2.1 (or the class of functions F itself). This makes sense if we recall that in the
bulk of machine learning research, one has little insight into the process that generated the
data (e.g. images of cats and dogs, natural language, etc.). In that sense, the epistemic
uncertainty in machine learning is usually associated to uncertainty in the model
parameters φ after training, which would be reduced if one could collect more training
data (see Ref. [328] for this point of view).

•
43

