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I n t r o d u c t i o n

•There is a lot of activity in utilizing machine learning in the analysis of particle 
physics data… duh.  

•I’ll primarily focus on classification and regression tasks  

• Supervised learning: function  to predict target  based on data  

• Classification: particle identification, signal vs. background discrimination 

• Regression: estimate a particle’s energy or momentum given detector readout 

•Classically physicists design some useful features / “observables” / summary 
statistics  motivated by domain knowledge and then design relatively simple 
functions  

• e.g. for classification “cuts” (a decision tree designed by hand)

f(x) y x

h(x)
f(h) = f(h(x))
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M o t i v a t i o n

•We want to take advantage of the power of machine learning, but we need to 
incorporate systematic uncertainties.  

•Two notions of “incorporate”: 

• Don’t be wrong: view analysis chain as fixed and propagate systematic 
uncertainty through it.  

• e.g. control rate of type-I error in the presence of nuisance parameters 

• Try to be “optimal”: adjust the training of ML components so that the analysis 
is sensitive after accounting for systematics  

• e.g. minimize rate of type-II error / maximize power 
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H u m a n s ,  h e u r i s t i c s ,  h u b r i s ,  a n d  h u m i l i t y

•While ML can usually beat humans in classification tasks when neglecting systematic uncertainty, 
physicists are very good at designing features and “cuts” that are robust to systematic uncertainty. 

• Physicists leverage various heuristics along the way to design “observables” / features / 
summary statistics that are robust or insensitive to the underlying sources of uncertainty 

• e.g. if you know some variable is poorly modeled, don’t use it 

• e.g. if you know uncertainty leads to some (anti-)correlation, form the appropriate linear 
combination. 

•In the context of machine learning, we need to formalize what we mean by “incorporate 
systematic uncertainty” into an objective so that we can operationalize this  

• e.g.  a modified objective for optimization 

• This is not so easy.  

• Also, physicists usually are thinking about multiple downstream use cases
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F o r m a l i s m  &  n o t a t i o n

•In classic supervised learning, the training data is  

• e.g. binary classification where  for background, and  for signal 

• For background:   or  

• For signal:   or  

•Training data drawn from a joint distribution:  

• In many physics problems, physicists don’t know the (prior) distribution  in data 

• often  is the quantity of interest (is there a signal present or not) 

• Physicists often try to generate balanced training data, even though in the real data the classes 
are typically very imbalanced.  

• it can be useful to call  a “proposal" instead of a “prior” to avoid confusion with down-stream 
Bayesian inference and to remember physicists typically don’t take prediction literally as 

{xi, yi}i=1,…,N

y = 0 y = 1

y = 0 : x ∼ pbkg(x) pbkg(x) = p(x |y = 0)

y = 1 : x ∼ psig(x) psig(x) = p(x |y = 1)

(xi, yi) ∼ p(x, y) = p(x |y)p(y)

p(y)

p(y = 1)

p(y)
p(y |x)
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F o r m a l i s m  &  n o t a t i o n

•The primary notion of systematic uncertainty that physicists worry about is the lack of 
knowledge of the distribution  and how that uncertainty influences downstream 
inference 

• e.g. training data often generated from a simulator  and that simulator isn’t 
perfect. Or training data comes from a control region in the data  that is 
assumed to be a good proxy for , but may not match for the region of the data 
being analyzed.  

•Typically we list what kinds of things might go wrong and parameterize their effect with 
nuisance parameters  

• This gives us a generative model  

• Uncertainty on the nuisance parameters is factorized from the effect they have, see 
Lukas Heinrich’s talk. Frequentist: , Bayesian: 

p(x |y)

psim(x |y)
pcontrol(x)

p(x |y)

ν

p(x |y, ν)

p(a |ν) p(ν |a) ∝ p(a |ν)p(ν)
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F o r m a l i s m  &  n o t a t i o n

•Now we have a generative model  that can generate data  for each 
target  and systematic variation parameterized by  

• e.g.  = “signal events” and ”jet reconstruction efficiency is off by 7%” 

• e.g.  = “20 GeV electron” and ”energy calibration off by 5%” 

•Typically we have some best estimate or nominal settings  

• Typical ML training is based on  

• This leads to a trained model  

• And then we think about the distribution of the output  

• For the nominal  and systematic variations 

p(x |y, ν) x
y ν

y ν =

y ν =

ν0

(xi, yi) ∼ p(x |y, ν = ν0)p(y)

f(x)

p( f |y, ν = ν0) p( f |y, ν)
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A n  e x a m p l e  f r o m  t h e  a r c h i v e s
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2. Ax;,,: the  x2 difference between fitting tracks  in 
the  je t both to secondary and primary vertices  
compared to assuming all tracks  come from the  
interaction point. This  is  based upon a  secondary 
vertex pattern recognition a lgorithm which 
searches  for displaced vertices  via a  three-dimen- 
sional grid point search [lo]; 

3. pT: the transverse  momentum of identified lep- 
tons with respect to the  je t axis  [8]; 

4. 9’: the  boos ted sphericity of the  je t, defined to 
be the  sphericity of energy flow particles  in the  
res t frame of the  je t; 

5. Multiplicity/lnEj,,: the  energy flow particle  mul- 
tiplicity of the  je t divided by the  logarithm of the  
je t energy. Normalizing by In E removes  the  ex- 
pected energy dependence of the  multiplicity; 

6. zp;: the  sum of the  transverse  momentum 
squared of each energy flow particle  with respect 
to the  je t axis . 
For the  hA analysis , a  neural network based upon 

the  firs t three  variables  (Pje t, Ax&, and pT) is  used 
for identifying b-jets  while  all s ix variables  a re  used 
in another neural network for the  Higgs-s trahlung 
process  [4]. In this  la tte r analysis , the  extra  variables  
which a re  efficient a t discriminating between b-jets  

and light quark je ts  give higher b tagging efficiency 
a t a  given background; in the  hA case , however, the  
s ix-variable  neural network increases  the  background 
of bbgg events  due to the  similarity between gluon 
and b je ts  in the  event shape  variables  [I 11. 

The network architecture  is  multilayer feed-for- 
ward, consisting of four layers  and is  based upon the  
JETNET 3.4 package  [12]. Deta iled descriptions  of 
theore tica l aspects  of neural ne tworks  a re  available 
e lsewhere  [ 131. The neural network was  tra ined, with 
the  backward propagation method, using b and non-b 
je ts  in radia tive  re turns to the  2 from a  sample  of 
400000 Monte Carlo qq events  genera ted a t a  cen- 
tre-of-mass  energy of 161 GeV. Radiative  re turns to 
the  Z were  used because  the  je ts  in such events  a re  
produced in a  kinematic configuration similar to tha t 
of the  signal; this  was  pre fe rred to training the  
network using s imulated signal events  in order to 
reduce  the  associa ted systematic e rror in the  signal 
efficiency. 

An independent sample  of 100000 Monte Carlo 
events  was  used for tes ting. The resulting neural 
network output is  shown in Fig. 2a  for je ts  in the  161 
GeV da ta  and Monte Carlo, se lected using the  
Durham je t finding a lgorithm with y,,, = 0.008. For 

1  

0.5: . ..+... .; ./ i. ..: i... i. i ;. 

: 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 I 

( ’ %scg)jer 

Fig. 2. (a ) The  output 1) of the  neural network b tag for radiative returns to the  Z for 161 GeV q?j Monte  Carlo (his togram) compared to the  
data at 161 GeV (points). The  shaded region shows the  contribution from generated b-je ts . (b) The  performance of the  neural network b tag 
(solid line) for Monte  Carlo events , presented in terms of the  efficiency for identifying b-je ts  versus the  efficiency for rejecting light quark 
je ts . Tbe  performance of the  s ingle  most powerful b tagging input variable to the  neural network is  shown for comparison (dashed curve). 
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ϵb−jet(c) = ∫
c

0
p( f |y = 1)df

f(x)



F i x e d  c l a s s i f i e r  i s  n o t  o p t i m a l

•Imagine a simple example of bump on flat background 

• train on samples with  to obtain fixed classifier  

• uncertainty in  modifies location and width of peak 

• the classifier not optimal for , but we can propagate uncertainty

ν = ν0 f(x)

ν

ν ≠ ν0

9

x

f(x)p(x| )ν
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A n  e x a m p l e  f r o m  t h e  a r c h i v e s
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•Here is an example comparing the nominal 
efficiency (calculated from ) to 
a variational sample  taken from 
data.

p( f |y, ν = ν0)
p( f |y, ν)
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events  in the  testing sample , it is  possible  to de ter- 
mine the  efficiency for identifying b je ts , E$, as  a  
function of the  rejection for non-b je ts , (1 - $&), 
where  e&r is  the  efficiency for wrongly identifying 
a  light quark or gluon je t as  a  b je t. The resulting 
performance curve is  shown in Fig. 2b; the  curve for 
the  single most powerful variable  yj,, is  a lso given, 
showing a t a  non-b rejection factor of 85% a  gain in 
b efficiency from 78% to 87% by combining the  
extra  information in the  neural ne twork. 

3.3. Systematic studies of b tagging 

The systematic uncertainty in the  efficiency of the  
b tagging is  evaluated from the  Monte Carlo simula- 
tion and a  consistency check is  performed on effi- 
ciency and background using the  calibration da ta  
taken a t the  Z peak during the  1996 da ta  taking 
period. 

The contribution to the  b tagging systematics  
from the  physics  of b hadron decays  has  been esti- 
mated by varying the  values of the ir life times and 
decay multiplicities  within the  range a llowed by 
existing experimental measurements  [ 141. The sys- 
tematics  due to track reconstruction have been s tud- 
ied by comparing track impact parameter distribu- 

Fig. : 
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3. Comparison of the  neural network b tag efficiency for a 
s ingle  je t in Z peak data and Monte  Carlo, after the  smearing 
correction, as a function of the  cut on the  je t neural network 
output: (a ) absolute  tag efficiency; (b) difference between data and 
Monte  Carlo. 

tions in da ta  and Monte Carlo. The genera ted Monte 
Carlo distributions show impact parameter resolu- 
tions 10% better than in the  da ta . A correction has  
been applied for this  e ffect by smearing the  track 
parameters  in the  Monte Carlo to calcula te  the  analy- 
s is  efficiency and half this  correction is  taken as  a  
systematic e rror in the  b tag efficiency. 

After this  correction is  applied, the  b tag effi- 
ciency is  compared in Monte Carlo and da ta  a t the  Z 
peak, by measuring the  number of events  with two 
and one hemispheres  tagged by the  a lgorithm. This  
method is  a  s implified version of tha t used to mea- 
sure  R, in Ref. [9]. In tha t paper the  equations for 
the  number of double and single tags  a re  solved to 
eliminate the  b tag efficiency and extract R,; here  
the  value of R, is  input and the  b tag efficiency is  
extracted. Fig. 3 shows the  resulting comparison of 
the  b tag efficiency as  a  function of the  neural 
network output for one je t. Da ta  and Monte Carlo 
agree  within the  s ta tis tica l e rrors . 

4. Event selection 

The da ta  samples  used in these  analyses comprise  
5.7pb-’ a t energies  of fi = 130.2 and 136.2GeV 
recorded in November 1995, 10.9pb-’ a t 161.3 GeV 
in the  summer of 1996, 1.1 pb-’ a t 170.3 GeV and 
9.5pb-’ a t 172.3GeV in autumn 1996. The new 
VDET was  completely installed for the  1996 da ta  
while  for the  November 1995 da ta  the  inner layer of 
the  de tector was  complete  but 5 out of 15 faces  were  
missing in the  outer layer. The appropria te  de tector 
geometries  were  used in the  Monte Carlo for the  two 
years . 

For cut optimization and background es timates  
Monte Carlo samples  were  genera ted using the  
HZHA [15] program for the  Higgs  signal production 
and PYTHIA 5.7 [ 161 for the  s tandard process  pro- 
duction. The backgrounds considered a re  described 
in Ref. [4]. 

-- 
4.1. The bbbbfinal state 

-- 
The bbbb final s ta te  is  characte rized by two clear 

s ignatures , the  four-je t topology and a  high b-quark 
content. These  properties  a re  the  main handles  for 
suppressing the  background. The main source  of 

ϵb−jet(c, ν) = ∫
c

0
p( f |y = 1,ν)df

ϵb−jet(c, ν) − ϵb−jet(c, ν = ν0)
ϵb−jet(c, ν = ν9)
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P r o p a g a t i n g  u n c e r t a i n t y  t o  d o w n s t r e a m  i n f e r e n c e

•After characterizing how the efficiency depends on the “working point”  and the 
nuisance parameters  the experiments use this information in the downstream 
statistical analysis.  

•For example: 

•And later one might form a statistical model for the number of events  that have 
, where  are some nominal number of signal and background events 

that would be produced,  is the parameter of interest,  is the nuisance 
parameter, and  is the likelihood associated to some auxiliary measurement 
used to estimate 

c
ν

n
f(x) > c s, b

μ ν
p(a |ν)

ν

11

ϵsig(ν) = ∫
c

0
p( f |y = 1,ν)df ϵbkg(ν) = ∫

c

0
p( f |y = 0,ν)df

p(n, a |μ, ν) = Pois(n |μϵsig(ν)s + ϵbkg(ν)b)p(a |ν)



A  v i s u a l  e x a m p l e

•…and later one might form a statistical model for the number of events  that 
have 

n
f(x) > c

12

x

f(x)p(x| )ν

c

p(n, a |μ, ν) = Pois(n |μϵsig(ν)s + ϵbkg(ν)b)p(a |ν)

n

ϵsig(ν) = ∫
c

0
p( f |y = 1,ν)df ϵbkg(ν) = ∫

c

0
p( f |y = 0,ν)df



A  v i s u a l  e x a m p l e
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A  v i s u a l  e x a m p l e

•…and later one might form a statistical model for the number of events  that 
have 

n
f(x) > c

12

x

f(x)p(x| )ν

c

p(n, a |μ, ν) = Pois(n |μϵsig(ν)s + ϵbkg(ν)b)p(a |ν)

n

ϵsig(ν) = ∫
c

0
p( f |y = 1,ν)df ϵbkg(ν) = ∫

c

0
p( f |y = 0,ν)df



C o m m e n t s

•The propagation of uncertainty approach is meant to ensure that downstream 
inference on parameter of interest  is not wrong… (e.g. coverage) 

•Totally factorized from training of the ML model  

• Therefore no reason to think that  is optimal from the point of view of 
power or sensitivity on  even if  was optimal for the supervised learning 
task with data generated from the nominal scenario  

•Ok, this is all standard stuff and background. Where do we go from here?

μ

f(x)

f(x)
μ f(x)

ν0

13

p(n, a |μ, ν) = Pois(n |μϵsig(ν)s + ϵbkg(ν)b)p(a |ν)



Where do we go from here?



N e w  P D G  C h a p t e r  o n  M L

15

2 41. Machine Learning

41.5.3.1 Feed-forward multi-layer perceptron . . . . . . . . . . . . . . . . . . 2946

41.5.3.2 Activation functions . . . . . . . . . . . . . . . . . . . . . . . . . . . 2947

41.5.3.3 Softmax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2948

41.5.3.4 The rise of deep learning . . . . . . . . . . . . . . . . . . . . . . . . 3049

41.5.3.5 Convolutional neural networks . . . . . . . . . . . . . . . . . . . . . 3050

41.5.3.6 Pooling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3251

41.5.3.7 CNN architectures for image analysis . . . . . . . . . . . . . . . . . 3352

Region Convolutional Neural Network . . . . . . . . . . . . 3353

U-Net . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3454

41.5.3.8 Residual networks and skip connections . . . . . . . . . . . . . . . . 3455

41.5.3.9 Recurrent Neural Networks . . . . . . . . . . . . . . . . . . . . . . . 3556

41.5.3.10 LSTM and GRU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3657

41.5.3.11 Attention . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3858

41.5.3.12 Scaled dot-product attention . . . . . . . . . . . . . . . . . . . . . . 3959

41.5.3.13 Transformer and multi-head attention . . . . . . . . . . . . . . . . . 4060

41.5.3.14 Graph networks and geometric deep learning . . . . . . . . . . . . . 4161

41.5.4 Deep Generative Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4262

41.5.4.1 Variational auto-encoders . . . . . . . . . . . . . . . . . . . . . . . . 4463

41.5.4.2 Generative Adversarial Networks . . . . . . . . . . . . . . . . . . . . 4664

41.5.4.3 Normalizing flows, autoregressive models, and score based models . 4765

41.6 Learning algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4866

41.6.1 Gradient-based optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . 4867

41.6.2 Stochastic Gradient Descent . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4968

41.6.3 Optimization Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4969

41.6.4 Automatic Di�erentiation and Back propagation . . . . . . . . . . . . . . . . 5070

41.6.5 The vanishing and exploding gradient problems . . . . . . . . . . . . . . . . . 5171

41.6.6 Early stopping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5272

41.6.7 Initialization of model parameters . . . . . . . . . . . . . . . . . . . . . . . . 5273

41.6.8 Input normalization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5274

41.6.9 Batch normalization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5375

41.6.10 Transfer learning: pre-training and fine-tuning . . . . . . . . . . . . . . . . . 5376

41.6.11 Zero, one, and a few shot learning . . . . . . . . . . . . . . . . . . . . . . . . 5477

41.7 Incorporating uncertainty . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5478

41.7.1 Propagation of errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5579

41.7.2 Domain Adaptation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5580

41.7.3 Parameterized models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5781

41.7.4 Data augmentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5782

41.7.5 Aleatoric and Epistemic Uncertainty . . . . . . . . . . . . . . . . . . . . . . . 5883

41.7.6 Model averaging and Bayesian machine learning . . . . . . . . . . . . . . . . 5884

41.7.7 Connection to probabilistic machine learning . . . . . . . . . . . . . . . . . . 6085

41.8 Infrastructure for deployment in experiments . . . . . . . . . . . . . . . . . . . . . 6186

87

41.1 Introduction88

This chapter gives an overview of the core concepts of machine learning that are relevant to89

particle physics with some examples of applications to the energy, intensity, cosmic, and accelerator90

frontiers. Machine learning (ML) is an enormous field that has grown substantially in the last91

decade, propelled largely by the emergence of so-called deep learning (DL) [1, 2]. ML has a long92
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T h r e e  F o u r  a p p r o a c h e s  t o  S y s t e m a t i c s

•propagation of errors: one works with a model  and simply characterizes how un- 
certainty in the data distribution propagate through the function to the down-stream task 
irrespective of how it was trained.  

•data augmentation: one trains a model  in the usual way using training data from 
multiple domains by sampling from some distribution over .  

•domain adaptation: one incorporates knowledge of the distribution for domains (or the 
parameterized family of distributions ) into the training procedure so that the per- 
formance of  for the down-stream task is robust or insensitive to the uncertainty in .  

•parameterized models: instead of learning a single function of the data , one learns a 
family of functions  that is explicitly parameterized in terms of nuisance parameters 
and then accounts for the dependence on the nuisance parameters in the down-stream 
task. 

f(x)

f(x)
ν

p(x |y, ν)
f(x) ν

f(x)
f(x; ν)
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D a t a  a u g m e n t a t i o n

•An intuitive approach to incorporate systematics into training is to train on 
“smeared data”, or data generated from a marginal model 

• Note: this requires a prior / proposal distribution  

•

p(ν)

17
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the uncertainty in the data distribution through the learned model as described in the preceding2218

section.2219

Note, this adversarial technique has also been employed in other settings where one would like2220

to decorrelate the output of the classifier with an observed quantity so that it can be used for back-2221

ground estimation [307]. Widely used alternative approaches to decorrelation include uboost [308]2222

and DDT [309]. Other examples of the domain adaptation and decorrelation use cases from the2223

Living Review include [302,307–322].2224

41.7.3 Parameterized models2225
ML:sec:parameterized_models

An alternative to learning a model f(x) that is pivotal — i.e. whose distribution is independent2226

of the nuisance parameter ‹ — is to learn a family of models f(x; ‹) that is parameterized in terms2227

of the nuisance parameters. In general, there is a tradeo� between the two terms of Eq. 41.74 for2228

a single model f(x). In a parameterized model, f(x; ‹) optimizes the performance of the model2229

for every value of ‹. Parameterized classifiers were first advocated in Ref. [58] in the context of2230

simulation-based inference (see Sec. 41.7.7) and in Ref. [323] for new physics searches. It has also2231

been applied to simulation-based inference for e�ective field theory parameters in Ref. [19] and2232

Ref. [324] provides additional pedagogical examples.2233

The training of a parameterized model is similar to the standard procedure. For example, if one2234

originally wanted to minimize the squared loss function L(y, f(x)) = (y ≠f(x))2 with training data2235

{xi, yi}i=1,...,n, then the corresponding training procedure for the parameterized model would be as2236

follows. One would need to construct a training set {xi, yi, ‹i}i=1,...,n as described in the preceeding2237

section, construct a parameterized model f(x; ‹) that takes as input the original feature vector x as2238

well as the nuisance parameters ‹, and then train using the same loss L(y, f(x; ‹)) = (y ≠f(x; ‹))2.2239

One complication of the parameterized approach is that it is no longer possible to evaluate2240

the model on a dataset {xi} and pass on only {fi} for downstream analysis tasks since f(xi; ‹)2241

still depends on ‹. Instead, one delay evaluating the model to some down-stream stage when the2242

dependence on ‹ would accounted for. For example, in the context of a likelihood based analysis2243

where one is testing a hypothesis where the nuisance parameters take on a particular value ‹test,2244

then one will consider the data distribution p(x|‹test), and at that point one would evaluate the2245

model at the corresponding nuisance parameter value, i.e. f(x; ‹test). Explicit examples are given2246

in Refs. [19,58,324]. While this may seem complicated, it actually corresponds to what is done in a2247

typical likelihood-based fit when the statistical model has nuisance parameters; i.e. the likelihood2248

ratio corresponds to the model f(x; ‹) as in Eq. 41.12.2249

41.7.4 Data augmentation2250

An intuitive approach to building in robustness to systematic e�ects that can lead to do-2251

main shift, is simply to augment the training data so that it includes examples correspond-2252

ing to several values of the nuisance parameter or systematic variations. As before one can2253

construct a dataset {xi, yi, ‹i}i=1,...,n, but instead of leveraging the information about ‹i, one2254

simply discards this information. This corresponds to sampling from the marginal distribution2255

xi, yi ≥ p(x, y) =
s

d‹p(x, y|‹)p(‹), and is often referred to as smearing. One can then use this2256

smeared dataset for supervised learning in the traditional way. While it is possible that this ap-2257

proach will lead to improved robustness to systematic variations (i.e. generalization for ‹ other than2258

the nominal value) than if systematic uncertainty weren’t considered at all), this intuitive approach2259

has several shortcomings. The approach does not yield a pivotal quantity as in the adversarial ap-2260

proach, so propagation of uncertainty through the network is still required. Moreover, there is2261

no direct way to control the trade-o� between independence from the nuisance parameter and the2262

original target loss as in the adversarial approach. Finally, it can lead to significant performance2263

loss compared to what is possible with the parameterized approach. These trade-o�s were studied2264
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F i x e d  c l a s s i f i e r  i s  n o t  o p t i m a l

•Imagine a simple example of bump on flat background 

• train on smeared samples with  to obtain fixed classifier  

• we can propagate the fixed learner, but classifier not optimal for any 

ν ∼ p(ν) fsmeared(x)

ν
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Reminder of standard statistical procedures in HEP
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THE PROFILE LIKELIHOOD RATIO

Consider statistical model with parameters of interest µ and nuisance (here called  

Define profile likelihood ratio 

‣ where                  is best fit with µ fixed  (the constrained maximum likelihood 
estimator, depends on data) 

‣ and θ̂ and µ̂ are best fit with both left floating (unconstrained) 
‣ D denotes observed data and G denotes “global observables” (central values for 

nuisance parameters) 
  
Wilks' Theorem:  under certain conditions the distribution of -2 ln λ (μ=μ0) given that 
the true value of μ is μ0 converges to a chi-square distribution  
‣ distribution is known and it is independent of θ ! 
‣  ⇒ robust to uncertainty, a quantity like this is called a “pivot” 

θ)

21

�(µ) =
L(µ, ˆ̂✓(µ))

L(µ̂, ✓̂)
=

f(D,G|µ, ˆ̂✓(µ;D,G) )
f(D,G|µ̂, ✓̂)

ˆ̂✓(µ;D,G)



P r o p a g a t i n g  u n c e r t a i n t y  w i t h  a  p i v o t a l  c l a s s i f i e r

•If we have a pivotal classifier, then efficiencies are independent of  

•Thus one won’t “pay more” when accounting for systematics in the downstream 
analysis 

•… but that still doesn’t mean that  is optimizing power / sensitivity. 

•How do we obtain a pivotal classifier?

ν

f(x)

22

ϵsig(ν) = ∫
c

0
p( f |y = 1,ν)df ϵbkg(ν) = ∫

c

0
p( f |y = 0,ν)df

p(n, a |μ, ν) = Pois(n |μϵsig(ν)s + ϵbkg(ν)b)p(a |ν)

⇒ Pois(n |μϵsigs + ϵbkgb)



L e a r n i n g  t o  p i v o t  w i t h  a d v e r s a r i a l  n e t w o r k s

• Typically classifier  trained to minimize loss Lf.  

• want classifier output to be insensitive to systematics 
(nuisance parameter ν) 

• introduce an adversary r that tries to predict ν based 
on .  

• setup as a minimax game:

f(x)

f
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2

Classifier f

X

✓f

f(X; ✓f )

Lf (✓f )

...

Adversary r

�1(f(X; ✓f ); ✓r)

�2(f(X; ✓f ); ✓r)

. . .

✓r

...

Z

p✓r (Z|f(X; ✓f ))

P(�1, �2, . . . )

Lr(✓f , ✓r)

FIG. 1. Architecture for the adversarial training of a binary classifier f against a nuisance parameters Z. The adversary r
models the distribution p(z|f(X; ✓f ) = s) of the nuisance parameters as observed only through the output f(X; ✓f ) of the
classifier. By maximizing the antagonistic objective Lr(✓f , ✓r) (as part of minimizing Lf (✓f ) � �Lr(✓f , ✓r)), the classifier f
forces p(z|f(X; ✓f ) = s) towards the prior p(z), which happens when f(X; ✓f ) is independent of the nuisance parameter Z and
therefore pivotal.

parameters. This implies that f(X; ✓f ) and Z are inde-
pendent random variables.

As stated in Eqn. 1, the pivotal quantity criterion is
imposed with respect to p(X|Z) where Y is marginalized
out. In some situations however (see e.g., Sec. VB), class
conditional independence of f(X; ✓f ) on the nuisance Z

is preferred, which can then be stated as requiring

p(f(X; ✓f ) = s|z, y) = p(f(X; ✓f ) = s|z0, y) (2)

for one or several specified values y 2 Y.

III. METHOD

Joint training of adversarial networks was first pro-
posed by [21] as a way to build a generative model capable
of producing samples from random noise z. More specif-
ically, the authors pit a generative model g : Rn 7! Rp

against an adversary classifier d : Rp 7! [0, 1] whose an-
tagonistic objective is to recognize real data X from gen-
erated data g(Z). Both models g and d are trained simul-
taneously, in such a way that g learns to produce samples
that are di�cult to identify by d, while d incrementally
adapts to changes in g. At the equilibrium, g models a
distribution whose samples can be identified by d only
by chance. That is, assuming enough capacity in d and
g, the distribution of g(Z) eventually converges towards
the real distribution of X.

In this work, we repurpose adversarial networks as a
means to constrain the predictive model f in order to
satisfy Eqn. 1. As illustrated in Fig. 1, we pit f against
an adversary model r := p✓r (z|f(X; ✓f ) = s) of pa-
rameters ✓r and associated loss Lr(✓f , ✓r). This model
takes as input realizations f(X; ✓f ) and produces as out-
put a function modeling the posterior probability den-

sity p✓r (z|f(X; ✓f ) = s). Intuitively, if p(f(X; ✓f ) = s|z)
varies with z, then the corresponding correlation can be
captured by r. By contrast, if p(f(X; ✓f ) = s|z) is invari-
ant with z, as we require, then r should perform poorly
and be close to random guessing. Training f such that
it additionally minimizes the performance of r therefore
acts as a regularization towards Eqn. 1.
If Z takes discrete values, then p✓r can be represented

e.g. as a probabilistic classifier R 7! R|Z| whose j
th out-

put (for j = 1, . . . , |Z|) is the estimated probability mass
p✓r (zj |f(X; ✓f ) = s). Similarly, if Z takes continuous
values, then we can model the posterior probability den-
sity p(z|f(X; ✓f ) = s) with a su�ciently flexible para-
metric family of distributions P(�1, �2, . . . ), where the
parameters �j depend on f(X, ✓f ) and ✓r. The adver-
sary r may take any form, i.e. it does not need to be
a neural network, as long as it exposes a di↵erentiable
function p✓r (z|f(X; ✓f ) = s) of su�cient capacity to rep-
resent the true distribution. Fig. 1 illustrates a concrete
example where p✓r (z|f(X; ✓f ) = s) is a mixture of gaus-
sians, as modeled with a mixture density network [10]).
The j

th output corresponds to the estimated value of
the corresponding parameter �j of that distribution (e.g.,
the mean, variance and mixing coe�cients of its compo-
nents). As in [10, 26], the estimated probability density
p✓r (z|f(X; ✓f ) = s) can then be evaluated for any z 2 Z
and any score s 2 S.
As with generative adversarial networks, we propose

to train f and r simultaneously, which we carry out by
considering the value function

E(✓f , ✓r) = Lf (✓f )� Lr(✓f , ✓r) (3)

that we optimize by finding the minimax solution

✓̂f , ✓̂r = argmin
✓f

max
✓r

E(✓f , ✓r). (4)

4

• ✓̂f maximizes the conditional entropy
H(Z|f(X; ✓f )), since H(Z|f(X; ✓))  H(Z)
from the properties of entropy. Note that this
latter inequality holds for both the discrete and
the di↵erential definitions of entropy.

By assumption, the lower bound is active, thus we have
H(Z|f(X; ✓f )) = H(Z) because of the second condition,
which happens exactly when Z and f(X; ✓f ) are inde-
pendent variables. In other words, the optimal classifier
f(·; ✓̂f ) is also a pivotal quantity.

Proposition 1 suggests that if at each step of Algo-
rithm 1 the adversary r is allowed to reach its optimum
given f (e.g., by setting K su�ciently high) and if f is
updated to improve Lf (✓f ) � H(Z|f(X; ✓f )) with su�-
ciently small steps, then f should converge to a classifier
that is both optimal and pivotal, provided such a clas-
sifier exists. Therefore, the adversarial term Lr can be
regarded as a way to select among the class of all opti-
mal classifiers a function f that is also pivotal. Despite
the former theoretical characterization of the minimax
solution of Eqn. 4, let us note that formal guarantees
of convergence towards that solution by Algorithm 1 in
the case where a finite number K of steps is taken for r
remains to be proven.

On many practical problems, the assumption of exis-
tence of an optimal and pivotal classifier may not hold
because the nuisance parameter directly shapes the deci-
sion boundary. In this case, the lower bound

H(Y |X)�H(Z) < Lf (✓f )�H(Z|f(X; ✓f )) (10)

is strict: f can either be an optimal classifier or a pivotal
quantity, but not both simultaneously. In this situation,
it is natural to rewrite the value function E as

E�(✓f , ✓r) = Lf (✓f )� �Lr(✓f , ✓r), (11)

where � � 0 is a hyper-parameter controlling the trade-
o↵ between the performance of f and its independence
with respect to the nuisance parameter. Setting � to a
large value will preferably enforces f to be pivotal while
setting � close to 0 will rather constraint f to be optimal.
When the lower bound is strict, let us note however that
there may exist distinct but equally good solutions ✓f , ✓r
minimizing Eqn. 11. In this zero-sum game, an increase
in accuracy would exactly be compensated by a decrease
in pivotality and vice-versa. How to best navigate this
Pareto frontier to maximize a higher-level objective re-
mains a question open for future works.

Interestingly, let us finally emphasize that these results
hold using only the (1D) output s of f(·; ✓f ) (in the case
of binary classification) as input to the adversary. We
could similarly enforce an intermediate representation of
the data to be pivotal, e.g. as in [19], but this is in fact
not necessary.

V. EXPERIMENTS

A. Toy example

As a guiding toy example, let us consider the binary
classification of 2D data drawn from multivariate gaus-
sians with equal priors, such that

x ⇠ N
✓
(0, 0),


1 �0.5

�0.5 1

�◆
when Y = 0, (12)

x ⇠ N
✓
(1, 1 + Z),


1 0
0 1

�◆
when Y = 1. (13)

The continuous nuisance parameter Z represents in this
case our uncertainty about the exact location of the mean
of the second gaussian. Our goal is to build a classifier
f(·; ✓f ) for predicting Y given X, but such that the prob-
ability distribution of f(X; ✓f ) is invariant with respect
to the nuisance parameter Z.
Assuming a gaussian prior z ⇠ N (0, 1), we start by

generating training data {xi, yi, zi}Ni=1, from which we
train a neural network classifier f minimizing Lf (✓f )
without considering its adversary r. The network ar-
chitecture comprises 2 dense hidden layers of 20 nodes
respectively with tanh and ReLU activations, followed by
a dense output layer with a single node with a sigmoid
activation. As shown in Fig. 2, the resulting classifier
is not pivotal, as the conditional probability densities of
its decision scores f(X; ✓f ) show large discrepancies be-
tween values z of the nuisance parameters. While not
shown here, a classifier trained only from data generated
at the nominal value Z = 0 would also not be pivotal.
Let us now consider the joint training of f against an

adversary r implemented as a mixture density network
modeling Z|f(X; ✓f ) as a mixture of five gaussians. The
network architecture of r comprises 2 dense hidden lay-
ers of 20 nodes with ReLU activations, followed by an
output layer of 15 nodes corresponding to the means,
standard deviations and mixture coe�cients of the five
gaussians. Output nodes for the mean values come with
linear activations, output nodes for the standard devi-
ations with exponential activations to ensure positivity,
while output nodes for the mixture coe�cients implement
the softmax function to ensure positivity and normaliza-
tion. When running Algorithm 1 as initialized with the
classifier f obtained previously, adversarial training e↵ec-
tively reshapes the decision function so it that becomes
almost independent on the nuisance parameter, as shown
in Fig. 2. In particular, the conditional probability den-
sities of the decision scores f(X; ✓f ) are now very similar
to each other, indicating only a small residual depen-
dency on the nuisance, as theoretically expected. The
dynamics of adversarial training is illustrated in Fig. 3,
where the losses Lf , Lr and Lf ��Lr are evaluated after
each iteration of Algorithm 1. In the first iterations, we
observe that the global objective Lf � �Lr is minimized
by making the classifier less accurate, hence the corre-
sponding increase of Lf , but which results in a classifier

Objective

• Consider the value function

V (D,G ) = Ex⇠pdata [log(D(x))] + Ez⇠pnoise [log(1� D(G (z)))];

• We want to
For fixed G , find D which maximizes V (D,G ),
For fixed D, find G which minimizes V (D,G );

• In other words, we are looking for the saddle point

(D⇤,G ⇤) = max
D

min
G

V (D,G ).
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which happens exactly when Z and f(X; ✓f ) are inde-
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ciently small steps, then f should converge to a classifier
that is both optimal and pivotal, provided such a clas-
sifier exists. Therefore, the adversarial term Lr can be
regarded as a way to select among the class of all opti-
mal classifiers a function f that is also pivotal. Despite
the former theoretical characterization of the minimax
solution of Eqn. 4, let us note that formal guarantees
of convergence towards that solution by Algorithm 1 in
the case where a finite number K of steps is taken for r
remains to be proven.

On many practical problems, the assumption of exis-
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because the nuisance parameter directly shapes the deci-
sion boundary. In this case, the lower bound
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is strict: f can either be an optimal classifier or a pivotal
quantity, but not both simultaneously. In this situation,
it is natural to rewrite the value function E as
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where � � 0 is a hyper-parameter controlling the trade-
o↵ between the performance of f and its independence
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there may exist distinct but equally good solutions ✓f , ✓r
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in accuracy would exactly be compensated by a decrease
in pivotality and vice-versa. How to best navigate this
Pareto frontier to maximize a higher-level objective re-
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hold using only the (1D) output s of f(·; ✓f ) (in the case
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could similarly enforce an intermediate representation of
the data to be pivotal, e.g. as in [19], but this is in fact
not necessary.
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without considering its adversary r. The network ar-
chitecture comprises 2 dense hidden layers of 20 nodes
respectively with tanh and ReLU activations, followed by
a dense output layer with a single node with a sigmoid
activation. As shown in Fig. 2, the resulting classifier
is not pivotal, as the conditional probability densities of
its decision scores f(X; ✓f ) show large discrepancies be-
tween values z of the nuisance parameters. While not
shown here, a classifier trained only from data generated
at the nominal value Z = 0 would also not be pivotal.
Let us now consider the joint training of f against an

adversary r implemented as a mixture density network
modeling Z|f(X; ✓f ) as a mixture of five gaussians. The
network architecture of r comprises 2 dense hidden lay-
ers of 20 nodes with ReLU activations, followed by an
output layer of 15 nodes corresponding to the means,
standard deviations and mixture coe�cients of the five
gaussians. Output nodes for the mean values come with
linear activations, output nodes for the standard devi-
ations with exponential activations to ensure positivity,
while output nodes for the mixture coe�cients implement
the softmax function to ensure positivity and normaliza-
tion. When running Algorithm 1 as initialized with the
classifier f obtained previously, adversarial training e↵ec-
tively reshapes the decision function so it that becomes
almost independent on the nuisance parameter, as shown
in Fig. 2. In particular, the conditional probability den-
sities of the decision scores f(X; ✓f ) are now very similar
to each other, indicating only a small residual depen-
dency on the nuisance, as theoretically expected. The
dynamics of adversarial training is illustrated in Fig. 3,
where the losses Lf , Lr and Lf ��Lr are evaluated after
each iteration of Algorithm 1. In the first iterations, we
observe that the global objective Lf � �Lr is minimized
by making the classifier less accurate, hence the corre-
sponding increase of Lf , but which results in a classifier
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T h e  A d v e r s a r i a l  m o d e l

•the γ₁, γ₂, … are the mean, standard deviation, and 
amplitude for the Gaussian Mixture Model. 

• the neural network takes in  and predicts γ₁, γ₂, 
…

f
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Classifier f

X

✓f

f(X; ✓f )

Lf (✓f )

...

Adversary r

�1(f(X; ✓f ); ✓r)

�2(f(X; ✓f ); ✓r)

. . .

✓r

...

Z

p✓r (Z|f(X; ✓f ))

P(�1, �2, . . . )

Lr(✓f , ✓r)

FIG. 1. Architecture for the adversarial training of a binary classifier f against a nuisance parameters Z. The adversary r
models the distribution p(z|f(X; ✓f ) = s) of the nuisance parameters as observed only through the output f(X; ✓f ) of the
classifier. By maximizing the antagonistic objective Lr(✓f , ✓r) (as part of minimizing Lf (✓f ) � �Lr(✓f , ✓r)), the classifier f
forces p(z|f(X; ✓f ) = s) towards the prior p(z), which happens when f(X; ✓f ) is independent of the nuisance parameter Z and
therefore pivotal.

parameters. This implies that f(X; ✓f ) and Z are inde-
pendent random variables.

As stated in Eqn. 1, the pivotal quantity criterion is
imposed with respect to p(X|Z) where Y is marginalized
out. In some situations however (see e.g., Sec. VB), class
conditional independence of f(X; ✓f ) on the nuisance Z

is preferred, which can then be stated as requiring

p(f(X; ✓f ) = s|z, y) = p(f(X; ✓f ) = s|z0, y) (2)

for one or several specified values y 2 Y.

III. METHOD

Joint training of adversarial networks was first pro-
posed by [21] as a way to build a generative model capable
of producing samples from random noise z. More specif-
ically, the authors pit a generative model g : Rn 7! Rp

against an adversary classifier d : Rp 7! [0, 1] whose an-
tagonistic objective is to recognize real data X from gen-
erated data g(Z). Both models g and d are trained simul-
taneously, in such a way that g learns to produce samples
that are di�cult to identify by d, while d incrementally
adapts to changes in g. At the equilibrium, g models a
distribution whose samples can be identified by d only
by chance. That is, assuming enough capacity in d and
g, the distribution of g(Z) eventually converges towards
the real distribution of X.

In this work, we repurpose adversarial networks as a
means to constrain the predictive model f in order to
satisfy Eqn. 1. As illustrated in Fig. 1, we pit f against
an adversary model r := p✓r (z|f(X; ✓f ) = s) of pa-
rameters ✓r and associated loss Lr(✓f , ✓r). This model
takes as input realizations f(X; ✓f ) and produces as out-
put a function modeling the posterior probability den-

sity p✓r (z|f(X; ✓f ) = s). Intuitively, if p(f(X; ✓f ) = s|z)
varies with z, then the corresponding correlation can be
captured by r. By contrast, if p(f(X; ✓f ) = s|z) is invari-
ant with z, as we require, then r should perform poorly
and be close to random guessing. Training f such that
it additionally minimizes the performance of r therefore
acts as a regularization towards Eqn. 1.
If Z takes discrete values, then p✓r can be represented

e.g. as a probabilistic classifier R 7! R|Z| whose j
th out-

put (for j = 1, . . . , |Z|) is the estimated probability mass
p✓r (zj |f(X; ✓f ) = s). Similarly, if Z takes continuous
values, then we can model the posterior probability den-
sity p(z|f(X; ✓f ) = s) with a su�ciently flexible para-
metric family of distributions P(�1, �2, . . . ), where the
parameters �j depend on f(X, ✓f ) and ✓r. The adver-
sary r may take any form, i.e. it does not need to be
a neural network, as long as it exposes a di↵erentiable
function p✓r (z|f(X; ✓f ) = s) of su�cient capacity to rep-
resent the true distribution. Fig. 1 illustrates a concrete
example where p✓r (z|f(X; ✓f ) = s) is a mixture of gaus-
sians, as modeled with a mixture density network [10]).
The j

th output corresponds to the estimated value of
the corresponding parameter �j of that distribution (e.g.,
the mean, variance and mixing coe�cients of its compo-
nents). As in [10, 26], the estimated probability density
p✓r (z|f(X; ✓f ) = s) can then be evaluated for any z 2 Z
and any score s 2 S.
As with generative adversarial networks, we propose

to train f and r simultaneously, which we carry out by
considering the value function

E(✓f , ✓r) = Lf (✓f )� Lr(✓f , ✓r) (3)

that we optimize by finding the minimax solution

✓̂f , ✓̂r = argmin
✓f

max
✓r

E(✓f , ✓r). (4)

f(x)

G. Louppe, M. Kagan, K. Cranmer, arXiv:1611.01046

p(ν | f )

p(ν | f )



A n  e x a m p l e  o f  l e a r n i n g  t o  p i v o t

•Technique allows us to tune λ, the tradeoff between classification power and 
robustness to systematic uncertainty
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An example: 
background: 1000 QCD jets 
signal: 100 boosted W’s 

Train W vs. QCD classifier 

Pileup as source of 
uncertainty 

Simple cut-and-count 
analysis with background 
uncertainty. 

standard 
training

optimal tradeoff of classification vs. & robustness
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D o m a i n  a d a p t a t i o n

•In machine learning literature, the setting where training data doesn’t match real world data is referred 
to as “domain shift” and techniques to mitigate the loss in performance are called “domain 
adaptation” 

•A similar adversarial technique was introduced in arxiv:1505.07818 where adversary tries to get 
distribution of hidden state features to be invariant. This works for discrete domains, but doesn’t 
generalize well to continuous nuisance parameters. 

• adversary works on some low-level features (not just the class prediction )
26

https://arxiv.org/pdf/1505.07818.pdf

Ganin, Ustinova, Ajakan, Germain, Larochelle, Laviolette, Marchand and Lempitsky

Figure 1: The proposed architecture includes a deep feature extractor (green) and a deep
label predictor (blue), which together form a standard feed-forward architecture.
Unsupervised domain adaptation is achieved by adding a domain classifier (red)
connected to the feature extractor via a gradient reversal layer that multiplies
the gradient by a certain negative constant during the backpropagation-based
training. Otherwise, the training proceeds standardly and minimizes the label
prediction loss (for source examples) and the domain classification loss (for all
samples). Gradient reversal ensures that the feature distributions over the two
domains are made similar (as indistinguishable as possible for the domain classi-
fier), thus resulting in the domain-invariant features.

predictor and into the domain classifier (with loss weighted by �). The only di↵erence is
that in (13), the gradients from the class and domain predictors are subtracted, instead of
being summed (the di↵erence is important, as otherwise SGD would try to make features
dissimilar across domains in order to minimize the domain classification loss). Since SGD—
and its many variants, such as ADAGRAD (Duchi et al., 2010) or ADADELTA (Zeiler,
2012)—is the main learning algorithm implemented in most libraries for deep learning, it
would be convenient to frame an implementation of our stochastic saddle point procedure
as SGD.

Fortunately, such a reduction can be accomplished by introducing a special gradient
reversal layer (GRL), defined as follows. The gradient reversal layer has no parameters
associated with it. During the forward propagation, the GRL acts as an identity trans-
formation. During the backpropagation however, the GRL takes the gradient from the
subsequent level and changes its sign, i.e., multiplies it by �1, before passing it to the
preceding layer. Implementing such a layer using existing object-oriented packages for deep
learning is simple, requiring only to define procedures for the forward propagation (identity
transformation), and backpropagation (multiplying by �1). The layer requires no parame-
ter update.

The GRL as defined above is inserted between the feature extractor Gf and the domain
classifier Gd, resulting in the architecture depicted in Figure 1. As the backpropagation
process passes through the GRL, the partial derivatives of the loss that is downstream

12

https://arxiv.org/pdf/1505.07818.pdf


L e a r n e d  a d v e r s a r y   e x p l i c i t  r e g u l a r i z a t i o n→

•One way of interpreting the mini-max game  
is to minimize a regularized loss term  where the 

optimization with respect to  is not exposed 

•This motivates another approach in which the regularization is not achieved 
through a learned adverary, but some other measure of discrepancy

L̃(θf) = arg max
θr

Eλ(θf, θr)

θr

27
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Classifier f

X

✓f

f(X; ✓f )

Lf (✓f )

...

Adversary r

�1(f(X; ✓f ); ✓r)

�2(f(X; ✓f ); ✓r)

. . .

✓r

...

Z

p✓r (Z|f(X; ✓f ))

P(�1, �2, . . . )

Lr(✓f , ✓r)

FIG. 1. Architecture for the adversarial training of a binary classifier f against a nuisance parameters Z. The adversary r
models the distribution p(z|f(X; ✓f ) = s) of the nuisance parameters as observed only through the output f(X; ✓f ) of the
classifier. By maximizing the antagonistic objective Lr(✓f , ✓r) (as part of minimizing Lf (✓f ) � �Lr(✓f , ✓r)), the classifier f
forces p(z|f(X; ✓f ) = s) towards the prior p(z), which happens when f(X; ✓f ) is independent of the nuisance parameter Z and
therefore pivotal.

parameters. This implies that f(X; ✓f ) and Z are inde-
pendent random variables.

As stated in Eqn. 1, the pivotal quantity criterion is
imposed with respect to p(X|Z) where Y is marginalized
out. In some situations however (see e.g., Sec. VB), class
conditional independence of f(X; ✓f ) on the nuisance Z

is preferred, which can then be stated as requiring

p(f(X; ✓f ) = s|z, y) = p(f(X; ✓f ) = s|z0, y) (2)

for one or several specified values y 2 Y.

III. METHOD

Joint training of adversarial networks was first pro-
posed by [21] as a way to build a generative model capable
of producing samples from random noise z. More specif-
ically, the authors pit a generative model g : Rn 7! Rp

against an adversary classifier d : Rp 7! [0, 1] whose an-
tagonistic objective is to recognize real data X from gen-
erated data g(Z). Both models g and d are trained simul-
taneously, in such a way that g learns to produce samples
that are di�cult to identify by d, while d incrementally
adapts to changes in g. At the equilibrium, g models a
distribution whose samples can be identified by d only
by chance. That is, assuming enough capacity in d and
g, the distribution of g(Z) eventually converges towards
the real distribution of X.

In this work, we repurpose adversarial networks as a
means to constrain the predictive model f in order to
satisfy Eqn. 1. As illustrated in Fig. 1, we pit f against
an adversary model r := p✓r (z|f(X; ✓f ) = s) of pa-
rameters ✓r and associated loss Lr(✓f , ✓r). This model
takes as input realizations f(X; ✓f ) and produces as out-
put a function modeling the posterior probability den-

sity p✓r (z|f(X; ✓f ) = s). Intuitively, if p(f(X; ✓f ) = s|z)
varies with z, then the corresponding correlation can be
captured by r. By contrast, if p(f(X; ✓f ) = s|z) is invari-
ant with z, as we require, then r should perform poorly
and be close to random guessing. Training f such that
it additionally minimizes the performance of r therefore
acts as a regularization towards Eqn. 1.
If Z takes discrete values, then p✓r can be represented

e.g. as a probabilistic classifier R 7! R|Z| whose j
th out-

put (for j = 1, . . . , |Z|) is the estimated probability mass
p✓r (zj |f(X; ✓f ) = s). Similarly, if Z takes continuous
values, then we can model the posterior probability den-
sity p(z|f(X; ✓f ) = s) with a su�ciently flexible para-
metric family of distributions P(�1, �2, . . . ), where the
parameters �j depend on f(X, ✓f ) and ✓r. The adver-
sary r may take any form, i.e. it does not need to be
a neural network, as long as it exposes a di↵erentiable
function p✓r (z|f(X; ✓f ) = s) of su�cient capacity to rep-
resent the true distribution. Fig. 1 illustrates a concrete
example where p✓r (z|f(X; ✓f ) = s) is a mixture of gaus-
sians, as modeled with a mixture density network [10]).
The j

th output corresponds to the estimated value of
the corresponding parameter �j of that distribution (e.g.,
the mean, variance and mixing coe�cients of its compo-
nents). As in [10, 26], the estimated probability density
p✓r (z|f(X; ✓f ) = s) can then be evaluated for any z 2 Z
and any score s 2 S.
As with generative adversarial networks, we propose

to train f and r simultaneously, which we carry out by
considering the value function

E(✓f , ✓r) = Lf (✓f )� Lr(✓f , ✓r) (3)

that we optimize by finding the minimax solution

✓̂f , ✓̂r = argmin
✓f

max
✓r

E(✓f , ✓r). (4)

Phys.Rev.Lett. 125 (2020) 12, 122001



Is there a better way?



THE PROFILE LIKELIHOOD RATIO

Consider statistical model with parameters of interest µ and nuisance (here called  

Define profile likelihood ratio 

‣ where                  is best fit with µ fixed  (the constrained maximum likelihood 
estimator, depends on data) 

‣ and θ̂ and µ̂ are best fit with both left floating (unconstrained) 
‣ D denotes observed data and G denotes “global observables” (central values for 

nuisance parameters) 
 
The data                           are iid, so the likelihood is just a product over events. 
‣ Profiling introduces a coupling across events:  
‣ But we can postpone profiling to the final inference stage and frame optimal ML 

model (eg. classifier) at the event-level by targeting the likelihood ratio 

θ)

29

�(µ) =
L(µ, ˆ̂✓(µ))

L(µ̂, ✓̂)
=

f(D,G|µ, ˆ̂✓(µ;D,G) )
f(D,G|µ̂, ✓̂)

ˆ̂✓(µ;D,G)

𝒟 = {x1, …, xN}
ˆ̂✓(µ;D,G)



L i k e l i h o o d  R a t i o  Tr i c k

30

s(x) =
p(x|H1)

p(x|H0) + p(x|H1)

• binary classifier: find function  that minimizes loss: 
 
 
 
 

• i.e. approximate the optimal classifier 

 

• which is 1-to-1 with the likelihood ratio

s(x)
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Figure 4: Example plots for classifier output distributions for signal and background events from the academic
test sample. Shown are likelihood (upper left), PDE range search (upper right), Multilayer perceptron (MLP
– lower left) and boosted decision trees.

• TMVA tutorial: https://twiki.cern.ch/twiki/bin/view/TMVA.

• An up-to-date reference of all configuration options for the TMVA Factory, the fitters, and all
the MVA methods: http://tmva.sourceforge.net/optionRef.html.

• On request, the TMVA methods provide a help message with a brief description of the method,
and hints for improving the performance by tuning the available configuration options. The
message is printed when the option ”H” is added to the configuration string while booking
the method (switch o↵ by setting ”!H”). The very same help messages are also obtained by
clicking the “info” button on the top of the reference tables on the options reference web page:
http://tmva.sourceforge.net/optionRef.html.

• The web address of this Users Guide: http://tmva.sourceforge.net/docu/TMVAUsersGuide.pdf.

• The TMVA talk collection: http://tmva.sourceforge.net/talks.shtml.
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Figure 5: Example for the background rejection versus signal e�ciency (“ROC curve”) obtained by cutting
on the classifier outputs for the events of the test sample.

• TMVA versions in ROOT releases: http://tmva.sourceforge.net/versionRef.html.

• Direct code views via ViewVC: http://tmva.svn.sourceforge.net/viewvc/tmva/trunk/TMVA.

• Class index of TMVA in ROOT: http://root.cern.ch/root/htmldoc/TMVA Index.html.

• Please send questions and/or report problems to the tmva-users mailing list:
http://sourceforge.net/mailarchive/forum.php?forum name=tmva-users (posting messages requires
prior subscription: https://lists.sourceforge.net/lists/listinfo/tmva-users).

3 Using TMVA

A typical TMVA classification or regression analysis consists of two independent phases: the training
phase, where the multivariate methods are trained, tested and evaluated, and an application phase,
where the chosen methods are applied to the concrete classification or regression problem they have
been trained for. An overview of the code flow for these two phases as implemented in the examples
TMVAClassification.C and TMVAClassificationApplication.C (for classification – see Sec. 2.5),
and TMVARegression.C and TMVARegressionApplication.C (for regression) are sketched in Fig. 7.
Multiclass classification does not di↵er much from two class classification from a technical point of
view and di↵erences will only be highlighted where neccessary.

In the training phase, the communication of the user with the data sets and the MVA methods
is performed via a Factory object, created at the beginning of the program. The TMVA Factory
provides member functions to specify the training and test data sets, to register the discriminating

Figure 1: Left: an example of the distributions f0(s|✓) and f1(s|✓) when the classifier s is
a boosted-decision tree (BDT). Right: the corresponding ROC curve (right) for this and
other classifiers. Figures taken from TMVA manual.

These steps lead to a subsequent statistical analysis where one observes in data {xe},
where e is an event index running from 1 to n. For each event, the classifier is evaluated and
one performs inference on a parameter µ related to the presence of the signal contribution.
In particular, one forms the statistical model

p({xe} |µ, ✓) =
nY

e=1

[µf1(s(xe) | ✓) + (1 � µ) f0(s(xe) | ✓) ] , (1)

where µ = 0 is the null (background-only) hypothesis and µ > 0 is the alternate (signal-
plus-background) hypothesis.1 Typically, we are interested in inference on µ and ✓ are
nuisance parameters; though, sometimes ✓ may include some components that we are also
wish to infer (like the mass of a new particle that a↵ects the distribution x for the signal
events).

1.2 Comments on typical usage of machine learning in HEP

Nuisance parameters are an after thought in the typical usage of machine learning in HEP.
In fact, most machine learning discussions would only consider f0(x) and f1(x). However,
as experimentalists we know that we must account for various forms of systematic uncer-
tainty, parametrized by ✓. In practice, we take the classifier as fixed and then propagate
uncertainty through the classifier as in Eq. 1. Building the distribution f(s(x)|✓) for values
of ✓ other than the nominal ✓0 used to train the classifier can be thought of as a calibration

1Sometimes there is an additional Poisson term when expected number of signal and background events
is known.

2

s(x)        0 1

[Hastie et al., 2001; Sugiyama et al., 2012; Cranmer et. al., 2015] 

L[s] = Ep(x|H1)[� log s(x)] + Ep(x|H0)[� log(1� s(x))]
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s(x) =
p(x|H1)

p(x|H0) + p(x|H1)

• binary classifier: find function  that minimizes loss: 
 
 
 
 

• i.e. approximate the optimal classifier 

 

• which is 1-to-1 with the likelihood ratio

s(x)
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Figure 4: Example plots for classifier output distributions for signal and background events from the academic
test sample. Shown are likelihood (upper left), PDE range search (upper right), Multilayer perceptron (MLP
– lower left) and boosted decision trees.

• TMVA tutorial: https://twiki.cern.ch/twiki/bin/view/TMVA.

• An up-to-date reference of all configuration options for the TMVA Factory, the fitters, and all
the MVA methods: http://tmva.sourceforge.net/optionRef.html.

• On request, the TMVA methods provide a help message with a brief description of the method,
and hints for improving the performance by tuning the available configuration options. The
message is printed when the option ”H” is added to the configuration string while booking
the method (switch o↵ by setting ”!H”). The very same help messages are also obtained by
clicking the “info” button on the top of the reference tables on the options reference web page:
http://tmva.sourceforge.net/optionRef.html.

• The web address of this Users Guide: http://tmva.sourceforge.net/docu/TMVAUsersGuide.pdf.

• The TMVA talk collection: http://tmva.sourceforge.net/talks.shtml.
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Figure 5: Example for the background rejection versus signal e�ciency (“ROC curve”) obtained by cutting
on the classifier outputs for the events of the test sample.

• TMVA versions in ROOT releases: http://tmva.sourceforge.net/versionRef.html.

• Direct code views via ViewVC: http://tmva.svn.sourceforge.net/viewvc/tmva/trunk/TMVA.

• Class index of TMVA in ROOT: http://root.cern.ch/root/htmldoc/TMVA Index.html.

• Please send questions and/or report problems to the tmva-users mailing list:
http://sourceforge.net/mailarchive/forum.php?forum name=tmva-users (posting messages requires
prior subscription: https://lists.sourceforge.net/lists/listinfo/tmva-users).

3 Using TMVA

A typical TMVA classification or regression analysis consists of two independent phases: the training
phase, where the multivariate methods are trained, tested and evaluated, and an application phase,
where the chosen methods are applied to the concrete classification or regression problem they have
been trained for. An overview of the code flow for these two phases as implemented in the examples
TMVAClassification.C and TMVAClassificationApplication.C (for classification – see Sec. 2.5),
and TMVARegression.C and TMVARegressionApplication.C (for regression) are sketched in Fig. 7.
Multiclass classification does not di↵er much from two class classification from a technical point of
view and di↵erences will only be highlighted where neccessary.

In the training phase, the communication of the user with the data sets and the MVA methods
is performed via a Factory object, created at the beginning of the program. The TMVA Factory
provides member functions to specify the training and test data sets, to register the discriminating

Figure 1: Left: an example of the distributions f0(s|✓) and f1(s|✓) when the classifier s is
a boosted-decision tree (BDT). Right: the corresponding ROC curve (right) for this and
other classifiers. Figures taken from TMVA manual.

These steps lead to a subsequent statistical analysis where one observes in data {xe},
where e is an event index running from 1 to n. For each event, the classifier is evaluated and
one performs inference on a parameter µ related to the presence of the signal contribution.
In particular, one forms the statistical model

p({xe} |µ, ✓) =
nY

e=1

[µf1(s(xe) | ✓) + (1 � µ) f0(s(xe) | ✓) ] , (1)

where µ = 0 is the null (background-only) hypothesis and µ > 0 is the alternate (signal-
plus-background) hypothesis.1 Typically, we are interested in inference on µ and ✓ are
nuisance parameters; though, sometimes ✓ may include some components that we are also
wish to infer (like the mass of a new particle that a↵ects the distribution x for the signal
events).

1.2 Comments on typical usage of machine learning in HEP

Nuisance parameters are an after thought in the typical usage of machine learning in HEP.
In fact, most machine learning discussions would only consider f0(x) and f1(x). However,
as experimentalists we know that we must account for various forms of systematic uncer-
tainty, parametrized by ✓. In practice, we take the classifier as fixed and then propagate
uncertainty through the classifier as in Eq. 1. Building the distribution f(s(x)|✓) for values
of ✓ other than the nominal ✓0 used to train the classifier can be thought of as a calibration

1Sometimes there is an additional Poisson term when expected number of signal and background events
is known.

2

s(x)        0 1

[Hastie et al., 2001; Sugiyama et al., 2012; Cranmer et. al., 2015] 
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�yi log s(xi)� (1� yi) log(1� s(xi))
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•Can do the same thing for any two points  &  in parameter space .  
 
 
 
 
Or train to classify data from  versus some fixed reference  
 
 
 
 
I call this a parametrized classifier.  

θ0 θ1 Θ

p(x |θ) pref (x)

31K.C., G. Louppe, J. Pavez: Approximating Likelihood Ratios with Calibrated Discriminative Classifiers [arXiv:1506.02169]

r(x; ✓) =
p(x|✓)
pref(x)

= 1� 1

s(x; ✓)
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•We want a learner parametrized by  

• augment training data (x,y) → (x, ,y) to obtain f(x; )
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32

f(x; )ν

• problem: how do we evaluate on testing data when  is unknown?ν
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A m o r t i z e d  l i k e l i h o o d  r a t i o

•Once we’ve learned the likelihood ratio , we can apply it to any data .  

• It is amortized, we pay biggest computational costs up front 

• Great for calibrated frequentist confidence intervals with guaranteed coverage  

• Here we repeat inference thousands of times & check asymptotic statistical theory

r(x; θ) x

33

(a) Exact vs. approximated MLEs. (b) p(�2 log⇤(� = 0.05) | � = 0.05)

Figure 2: Using approximated likelihood ratios for parameter inference yields an unbi-

ased maximum likelihood estimator �̂, as empirically estimated from an ensemble of 1000

artificial datasets.

An advantage of this approach compared to Approximate Bayesian Computation (Beau-

mont et al., 2002) is that the classifier and calibration – computationally intensive parts of

the approximation – are independent of the dataset D. Thus once trained and calibrated,

the approximation can be applied to any dataset D. This makes it computationally e�cient

to perform ensemble tests of the method.

Figure 2a shows the empirical distribution of the maximum likelihood estimators (MLEs)

from the approximate likelihood compared to the distribution of the MLEs from the exact

likelihood. It clearly demonstrates that in this case the approximate likelihood yields an

unbiased estimator with essentially the same variance as the exact MLE. In addition to

the MLE, we can study the coverage of a confidence interval based on the likelihood ra-

tio test statistic. This is done by evaluating �2 log⇤(� = 0.05) for samples drawn from

p(x|� = 0.05). Wilks’s theorem states that the distribution of �2 log⇤(� = 0.05) should

follow a �2
1 distribution. Figure 2b also confirms this behavior, supporting the applicability

18

K.C., G. Louppe, J. Pavez: http://arxiv.org/abs/1506.02169
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Figure 4: Example plots for classifier output distributions for signal and background events from the academic
test sample. Shown are likelihood (upper left), PDE range search (upper right), Multilayer perceptron (MLP
– lower left) and boosted decision trees.

• TMVA tutorial: https://twiki.cern.ch/twiki/bin/view/TMVA.

• An up-to-date reference of all configuration options for the TMVA Factory, the fitters, and all
the MVA methods: http://tmva.sourceforge.net/optionRef.html.

• On request, the TMVA methods provide a help message with a brief description of the method,
and hints for improving the performance by tuning the available configuration options. The
message is printed when the option ”H” is added to the configuration string while booking
the method (switch o↵ by setting ”!H”). The very same help messages are also obtained by
clicking the “info” button on the top of the reference tables on the options reference web page:
http://tmva.sourceforge.net/optionRef.html.

• The web address of this Users Guide: http://tmva.sourceforge.net/docu/TMVAUsersGuide.pdf.

• The TMVA talk collection: http://tmva.sourceforge.net/talks.shtml.
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Figure 5: Example for the background rejection versus signal e�ciency (“ROC curve”) obtained by cutting
on the classifier outputs for the events of the test sample.

• TMVA versions in ROOT releases: http://tmva.sourceforge.net/versionRef.html.

• Direct code views via ViewVC: http://tmva.svn.sourceforge.net/viewvc/tmva/trunk/TMVA.

• Class index of TMVA in ROOT: http://root.cern.ch/root/htmldoc/TMVA Index.html.

• Please send questions and/or report problems to the tmva-users mailing list:
http://sourceforge.net/mailarchive/forum.php?forum name=tmva-users (posting messages requires
prior subscription: https://lists.sourceforge.net/lists/listinfo/tmva-users).

3 Using TMVA

A typical TMVA classification or regression analysis consists of two independent phases: the training
phase, where the multivariate methods are trained, tested and evaluated, and an application phase,
where the chosen methods are applied to the concrete classification or regression problem they have
been trained for. An overview of the code flow for these two phases as implemented in the examples
TMVAClassification.C and TMVAClassificationApplication.C (for classification – see Sec. 2.5),
and TMVARegression.C and TMVARegressionApplication.C (for regression) are sketched in Fig. 7.
Multiclass classification does not di↵er much from two class classification from a technical point of
view and di↵erences will only be highlighted where neccessary.

In the training phase, the communication of the user with the data sets and the MVA methods
is performed via a Factory object, created at the beginning of the program. The TMVA Factory
provides member functions to specify the training and test data sets, to register the discriminating

Figure 1: Left: an example of the distributions f0(s|✓) and f1(s|✓) when the classifier s is
a boosted-decision tree (BDT). Right: the corresponding ROC curve (right) for this and
other classifiers. Figures taken from TMVA manual.

These steps lead to a subsequent statistical analysis where one observes in data {xe},
where e is an event index running from 1 to n. For each event, the classifier is evaluated and
one performs inference on a parameter µ related to the presence of the signal contribution.
In particular, one forms the statistical model

p({xe} |µ, ✓) =
nY

e=1

[µf1(s(xe) | ✓) + (1 � µ) f0(s(xe) | ✓) ] , (1)

where µ = 0 is the null (background-only) hypothesis and µ > 0 is the alternate (signal-
plus-background) hypothesis.1 Typically, we are interested in inference on µ and ✓ are
nuisance parameters; though, sometimes ✓ may include some components that we are also
wish to infer (like the mass of a new particle that a↵ects the distribution x for the signal
events).

1.2 Comments on typical usage of machine learning in HEP

Nuisance parameters are an after thought in the typical usage of machine learning in HEP.
In fact, most machine learning discussions would only consider f0(x) and f1(x). However,
as experimentalists we know that we must account for various forms of systematic uncer-
tainty, parametrized by ✓. In practice, we take the classifier as fixed and then propagate
uncertainty through the classifier as in Eq. 1. Building the distribution f(s(x)|✓) for values
of ✓ other than the nominal ✓0 used to train the classifier can be thought of as a calibration

1Sometimes there is an additional Poisson term when expected number of signal and background events
is known.

2

✓0✓1
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•We can weaken the requirements for the likelihood ratio trick in case the classifier  

•If the scalar map s: X → ℝ has the same level sets as the likelihood ratio 

•We can show that an equivalent test can be made from 1-D projection 

• 
 
Estimating the density of                      with data from the simulator calibrates the ratio.

s(x; ✓0; ✓1) = monotonic[ p(x|✓0)/p(x|✓1) ]

p(x|✓0)
p(x|✓1)

=
p(s(x; ✓0, ✓1)|✓0)
p(s(x; ✓0, ✓1)|✓1)

s(x; ✓0, ✓1)

Cranmer, Louppe, Pavez: Approximating Likelihood Ratios with Calibrated Discriminative Classifiers [arXiv:1506.02169] 
[Dalmasso, Izbicki, Lee, ICML2020 arXiv:2002.10399 ]

http://arxiv.org/abs/1506.02169


S o m e  p a r a m e t e r i z e d  c l a s s i f i e r  h i s t o r y

•2015 NeurIPS ML & Physics workshop: 

• http://yandexdataschool.github.io/aleph2015/  

• https://indico.cern.ch/event/465572/  

•2016 ATLAS Statistics & ML workshop: 

• https://indico.cern.ch/event/577209/ 

•Thinking about systematics in ML is what inspired my work in simulation-based 
inference 

• Slack channel I use for ML work is called 
“systematics” and has 115 members  
and >175,000 messages!
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S o m e  p a r a m e t e r i z e d  c l a s s i f i e r  h i s t o r y

•Thinking about systematics in ML is what inspired my work in simulation-based 
inference 

• Slack channel I use for ML work is called 
“systematics” started in 2016,  
has 115 members and >175,000 messages! 

•2015 NeurIPS ML & Physics workshop: 

• http://yandexdataschool.github.io/aleph2015/  

• https://indico.cern.ch/event/465572/  

•2016 ATLAS Statistics & ML workshop: 

• https://indico.cern.ch/event/577209/
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Dealing with Nuisance Parameters using Machine
Learning in High Energy Physics: a Review

T. Dorigo and P. de Castro Manzano

Istituto Nazionale di Fisica Nucleare - Sezione di Padova,
Via Marzolo 8, 35131 Padova - Italy,

tommaso.dorigo@cern.ch⇤ pablo.de.castro@cern.ch

In this work we discuss the impact of nuisance parameters on the ef-
fectiveness of machine learning in high-energy physics problems, and
provide a review of techniques that allow to include their e↵ect and re-
duce their impact in the search for optimal selection criteria and variable
transformations. The introduction of nuisance parameters complicates
the supervised learning task and its correspondence with the data anal-
ysis goal, due to their contribution degrading the model performances
in real data, and the necessary addition of uncertainties in the result-
ing statistical inference. The approaches discussed include nuisance-
parameterized models, modified or adversary losses, semi-supervised
learning approaches, and inference-aware techniques.

1. Introduction

Particle physics o↵ers a variety of use cases for machine learning techniques.
Of these, probably the most common is the use of supervised classifica-
tion to construct low-dimensional event summaries, which allow to perform
statistical inference on the parameters of interest. The learned summary
statistics –functions of the data that are informative about the relevant
properties of the data– can e�ciently combine high-dimensional informa-
tion from each event into one or a few variables which may be used as the
basis of statistical inference. The informational source for this compres-
sion are simulated observations produced by a complex generative model;
the latter reproduces the chain of physical processes occurring in subnu-
clear collisions and the subsequent interaction of the produced final state

⇤Corresponding author.
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Tr a d i t i o n  m e e t s  d i f f e r e n t i a b l e  p r o g r a m m i n g  

•Recent efforts in particle physics to maintain traditional 
approaches to likelihood estimation with summaries, but 
optimize summary statistics with automatic differentiation 

• Connects to differentiable programming paradigm 

• Optimization objective is power of full statistical analysis, 
which involves backproping through statistical procedure 

• Does not exploit i.i.d. property, optimization is “global”

38
https://github.com/pyhf/neos 

statistic s and a statistical procedure to obtain an unbiased interval estimate of the parameter of interest
which accounts for the effect of nuisance parameters. The resulting interval can be characterised by
its width �Ê0 = Ê̂

+
0 ≠ Ê̂

≠
0 , defined by some criterion so as to contain on average, upon repeated

samping, a given fraction of the probability density, e.g. a central 68.3% interval. The expected size
of the interval depends on the summary statistic s chosen: in general, summary statistics that are more
informative about the parameters of interest will provide narrower confidence or credible intervals on
their value. Under this figure of merit, the problem of choosing an optimal summary statistic can be
formally expressed as finding a summary statistic s

ú that minimises the interval width:
s

ú = argmins�Ê0. (2)
The above construction can be extended to several parameters of interest by considering the interval
volume or any other function of the resulting confidence or credible regions.

3 Method

In this section, a machine learning technique to learn non-linear sample summary statistics is described
in detail. The method seeks to minimise the expected variance of the parameters of interest obtained
via a non-parametric simulation-based synthetic likelihood. A graphical description of the technique
is depicted on Fig. 1. The parameters of a neural network are optimised by stochastic gradient descent
within an automatic differentiation framework, where the considered loss function accounts for the
details of the statistical model as well as the expected effect of nuisance parameters.
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ŝ2

...

ŝb log L̂A

� @2

@✓i@✓j

U

I�1

simulator or
approximation

neural
network

summary
statistic

inference-aware
loss

compute via automatic di↵erentiation

stochastic gradient update �t+1 = �t + ⌘(t)r�U

Figure 1: Learning inference-aware summary statistics (see text for details).

The family of summary statistics s(D) considered in this work is composed by a neural network
model applied to each dataset observation f(x; „) : X ™ Rd æ Y ™ Rb, whose parameters „

will be learned during training by means of stochastic gradient descent, as will be discussed later.
Therefore, using set-builder notation the family of summary statistics considered can be denoted as:

s(D, „) = s ( { f(xi; „) | ’ xi œ D } ) (3)
where f(xi; „) will reduce the dimensionality from the input observations space X to a lower-
dimensional space Y . The next step is to map observation outputs to a dataset summary statistic,
which will in turn be calibrated and optimised via a non-parametric likelihood L(D; ◊, „) created
using a set of simulated observations Gs = {x0, ..., xg}, generated at a certain instantiation of the
simulator parameters ◊s.

In experimental high energy physics experiments, which are the scientific context that initially
motivated this work, histograms of observation counts are the most commonly used non-parametric
density estimator because the resulting likelihoods can be expressed as the product of Poisson factors,
one for each of the considered bins. A naive sample summary statistic can be built from the output of
the neural network by simply assigning each observation x to a bin corresponding to the cardinality
of the maximum element of f(x; „), so each element of the sample summary will correspond to the
following sum:

si(D; „) =
ÿ

xœD

I
1 i = argmaxj={0,...,b}(fj(x; „))
0 i ”= argmaxj={0,...,b}(fj(x; „)) (4)
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Tr a d i t i o n  m e e t s  d i f f e r e n t i a b l e  p r o g r a m m i n g  

•Recent efforts in particle physics to maintain traditional 
approaches to likelihood estimation with summaries, but 
optimize summary statistics with automatic differentiation 

• Connects to differentiable programming paradigm 

• Optimization objective is power of full statistical analysis, 
which involves backproping through statistical procedure 

• Does not exploit i.i.d. property, optimization is “global”
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statistic s and a statistical procedure to obtain an unbiased interval estimate of the parameter of interest
which accounts for the effect of nuisance parameters. The resulting interval can be characterised by
its width �Ê0 = Ê̂

+
0 ≠ Ê̂

≠
0 , defined by some criterion so as to contain on average, upon repeated

samping, a given fraction of the probability density, e.g. a central 68.3% interval. The expected size
of the interval depends on the summary statistic s chosen: in general, summary statistics that are more
informative about the parameters of interest will provide narrower confidence or credible intervals on
their value. Under this figure of merit, the problem of choosing an optimal summary statistic can be
formally expressed as finding a summary statistic s

ú that minimises the interval width:
s

ú = argmins�Ê0. (2)
The above construction can be extended to several parameters of interest by considering the interval
volume or any other function of the resulting confidence or credible regions.

3 Method

In this section, a machine learning technique to learn non-linear sample summary statistics is described
in detail. The method seeks to minimise the expected variance of the parameters of interest obtained
via a non-parametric simulation-based synthetic likelihood. A graphical description of the technique
is depicted on Fig. 1. The parameters of a neural network are optimised by stochastic gradient descent
within an automatic differentiation framework, where the considered loss function accounts for the
details of the statistical model as well as the expected effect of nuisance parameters.
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ŝb log L̂A

� @2

@✓i@✓j

U

I�1

simulator or
approximation

neural
network

summary
statistic

inference-aware
loss

compute via automatic di↵erentiation

stochastic gradient update �t+1 = �t + ⌘(t)r�U

Figure 1: Learning inference-aware summary statistics (see text for details).

The family of summary statistics s(D) considered in this work is composed by a neural network
model applied to each dataset observation f(x; „) : X ™ Rd æ Y ™ Rb, whose parameters „

will be learned during training by means of stochastic gradient descent, as will be discussed later.
Therefore, using set-builder notation the family of summary statistics considered can be denoted as:

s(D, „) = s ( { f(xi; „) | ’ xi œ D } ) (3)
where f(xi; „) will reduce the dimensionality from the input observations space X to a lower-
dimensional space Y . The next step is to map observation outputs to a dataset summary statistic,
which will in turn be calibrated and optimised via a non-parametric likelihood L(D; ◊, „) created
using a set of simulated observations Gs = {x0, ..., xg}, generated at a certain instantiation of the
simulator parameters ◊s.

In experimental high energy physics experiments, which are the scientific context that initially
motivated this work, histograms of observation counts are the most commonly used non-parametric
density estimator because the resulting likelihoods can be expressed as the product of Poisson factors,
one for each of the considered bins. A naive sample summary statistic can be built from the output of
the neural network by simply assigning each observation x to a bin corresponding to the cardinality
of the maximum element of f(x; „), so each element of the sample summary will correspond to the
following sum:

si(D; „) =
ÿ

xœD

I
1 i = argmaxj={0,...,b}(fj(x; „))
0 i ”= argmaxj={0,...,b}(fj(x; „)) (4)
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C o n c l u s i o n

•Traditional (non-ML) approaches used by physicists design analyses to be robust to 
systematic uncertainties through heuristics 

• While not formalized, physicists are quite good at this 

•First wave of ML in physics optimized for a nominal scenario and then propagate uncertainty 
through the ML components in downstream inference 

• “Not optimal, but not wrong” 

•In order to optimize sensitivity in an ML context, we need to formalize what we want (or some 
heuristic) so that we can operationalize it 

• e.g. a pivotal classifier. Tradeoff between dependence on nuisance parameter and  
classification/regression performance 

• a parameterized classifier: more moving parts, but closest to the ideal single-step 
likelihood ratio test in high dimensions
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A comment on 
Aleatoric and Epistemic Uncertainty 



•“roughly speaking, aleatoric (aka statistical) uncertainty refers to the notion of 
randomness, that is, the variability in the outcome of an experiment which is due 
to inherently random effects”, while “epistemic (aka systematic) uncertainty refers 
to uncertainty caused by a lack of knowledge (about the best model)”.  

•
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•In the literature on Uncertainty Quantification (UQ), which is more closely connected to physics  
given the role of computer simulations, the terminology is more fine grained and less ambiguous.  

•That community uses the terms: 

• parameter uncertainty (i.e. nuisance parameters),  

• structural uncertainty (i.e. mismodelling),  

• algorithmic uncertainty (i.e. numerical uncertainty),  

• experimental uncertainty (i.e. uncertainty from experimental resolution and statistical fluctuations), 
and 

• interpolation uncertainty (i.e. uncertainty due to interpolating between different parameter values 
due to lack of computational resources).  

•
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•Perhaps a more important distinction between the perspective of physicists and machine 
learning  researchers has to do with the use of the term “model” and what exactly is 
uncertain. In physics, the systematic and epistemic uncertainty is typically associated to our 
understanding of the underlying physics and “the model” usually refers to the physics 
model, detector model encapsulated in a simulation. In contrast, for machine learning 
research, “the model” usually refers to the trained model f ∈ F used as described in 
Section 41.2.1 (or the class of functions F itself). This makes sense if we recall that in the 
bulk of machine learning research, one has little insight into the process that generated the 
data (e.g. images of cats and dogs, natural language, etc.). In that sense, the epistemic 
uncertainty in machine learning is usually associated to uncertainty in the model 
parameters φ after training, which would be reduced if one could collect more training 
data (see Ref. [328] for this point of view).  

•
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