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Asymptotic theory

8 > 00

LARGE-SAMPLE THEORY

(asymptotic approximation)



Algeri et al. (2020)

RECOMMENDATION

M) Check for updates

Searching for new phenomena
with profile likelihood ratio tests

Sara Algeri®', Jelle Aalbers®?3, Knut Dundas Mora®?** and Jan Conrad®**

Abstract | Likelihood ratio tests are standard statistical tools used in particle physics to perform
tests of hypotheses. The null distribution of the likelihood ratio test statistic is often assumed to
be ), following Wilks' theorem. However, in many circumstances relevant to modern experiments
this theoremis not applicable. In this Expert Recommendation, we overview practical ways to
identify these situations and provide guidelines on how to construct valid inference. We use
examples from particle physics, but the statistical constructs discussed here can be used in any
scientific discipline that relies on data analysis.



“Regularity” conditions (Algeri et al., 2020)

Box 2 | Necessary conditions for Wilks' theorem

Asymptotic
Sufficientdataare collected.

Interior

Only values of the parameters of interest u and
nuisance parameters fthat are not on the boundaries
of their parameter space are admitted.

Identifiable
Different values of the parameters specify distinct
models.

Nested

The null hypothesis H, is a limiting case of the general
case hypothesis H,, for example, with some parameter
constrained to a subrange of the entire parameter space.

Correct
The true model is specified either under H, or underH,.



Recommendations (Algeri et al., 2020)

Table 1| Statistical techniques and assumptions necessary for their applicability

Technique Asymptotic Interior Identifiable Nested Correct
Wilks' theorem ® ° ® ® °
Higher-order asymptotics - ° ° ° ®
Boundary corrections ° - ® ° °
Look-elsewhere corrections ® o - ° °
Testfornon-nestedmodels o ° ° - °
Bootstrap/Monte Carlo - o - - °
Nuisance parameters o o o o o

Non-parametric methods - - - - -

The closed circlesrepresent strict assumptions and open circles represent assumptions that
canbe relaxed with simple extensions. A dash indicates that the technique does not rely on
that assumption.



Nuisance parameters (Algeri et al., 2020, p.251)

* Ifthe true values of the parameters are not in the
interior of their parameter space, one can implement
boundary corrections for the P values. Conversely,
Ing to address the problem by means of
there are situations where classical
the nuisance parameters should be
replaced by more efficient estimators to guarantee the
consistency of the solution.
If the nuisance parameters are not identifiable and
a fully simulated solution is too computationally
expensive, corrections for the look-elsewhere effect
allow one to perform inference while drastically
reducing the number of simulations required.
If the models under comparison are non-nested, a
simple solution is to specify a model thatincludes the
models under study as special cases
If the likelihood specified is not correct, one may
attempt torecover the structure of the true underlying
model by adding nuisance parameters and applying
any of the above-mentioned inferential methods.
As for any other modeling strategy, however, the
bias-variance trade-off must be taken into account

Finally, if none of the assumptions above hold, or the
correct models cannot be recovered by simply adding
nuisance parameters, one may refer to non-parametric
methods or other specialized procedures to correct
mis-modelling.

10



Modern likelihood inference

LARGE-SAMPLE THEORY
(asymptotic approximation)

|

SMALL-SAMPLE THEORY

(higher order asymptotics)
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Want to know more?

Applied Asymptotics
Case Studies in Small-Sample

Statistics
A. R. Brazzale, A. C. Davison and N. Reld
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Cowan (2019)
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Error on errors (Cowan, 2019)

5 Single-measurement model

To investigate the asymptotic properties of the profile like-
lihood ratio it is useful to examine a simple model with a
single measured value y following a Gaussian with mean p
and standard deviation o. The parameter of interest is x and
we treat the variance o2 as a nuisance parameter, which is
constrained by an independent gamma-distributed estimate
v. Thus the likelihood is given by

L(p,o%) = fO.vin,0?)

! e~ - 20 iuﬂ—le—:h_ (29)
V2o I'a)

As before we set the parameters o and 8 of the gamma
distribution so that E[v] = o2 and so that from Eq. (9) the
standard deviation of v is o, = 2ra2, where r characterizes
the relative error on the error. This gives

a= (30)
1
B= ey 31

The goal is to construct a confidence interval for & by using
the profile likelihood ratio
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Likelihood ratio (Cowan, 2019)
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Bartlett correction (Cowan, 2019
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Our proposal (joint work with Glen Cowan)

Modified likelihood root
N 1 q(u)
) = 10+ o] T |
~ N(0,1)+ O(n%/?)

Lugannani-Rice tail approximation

& (1) = B(t) + 0 () (; - ;)
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Finite sample distribution
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True coverage
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Two-for-one

e nuisance parameters: 6= (u,A)

INCIDENTAL PARAMETERS !

E—>O

n

(1) = t(u) + tipr(p) + thp(u)
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(small-sample asymptotics)

AND

r—:0

(small-dispersion asymptotics)
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By-the-way

Feasible for complex models

Can be combined with simulation (empirical moments,
pre-pivoting)

Bayesian counterpart available

Directional p-values
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Questions?
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