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(2) Solution: Universal Inference: Exact (non asymptotic)
coverage. No approximations. No regularity assumptions.

(3) Efficiency
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Background

The usual statistical tests and confidence intervals rely on specific
mathematical assumptions.

Toy example: Yi,..., Y, ~ N(u,1)
Let ¢ = u? and 15:7?7.
If ) # 0 then /n(¢) — 1) ~ N(0,72) and

C, = 1Z:|: Z j28€

is a valid confidence interval.
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Toy Example

But if ¥ =0, ,(ZN X2/n.
If 1) = 0, neither Normal or x2.

Formally, want P(¢, € C,;) — 1 — « even if we let ¥, change with
n.

Want uniformity. Or better yet, P(¢) € C,) > 1 — « for all n and
all 4.
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Mixtures

p(x) = (1 = A)N(p1,1) + AN(p2,1)

(background + signal)
Null (no signal) =

{(k1, 2, A) + A =0} = {(p1, p2, A) 0 i1 = pa}

And when A = 0, the parameter py is not identified.

All of our standard machinery fails.
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Other Issues With the Usual Methods

Standard methods are asymptotic (only valid as sample size
— )

Nuisance parameters.
Bootstrap: still requires regularity conditions and asymptotics.

Bayes: does not provide coverage/error guarantees.
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Test Hp : 6 € Oy.
Want: P(reject) under Hp to be < . for all # and all n. No
regularity conditions. Works with nuisance parameters.
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Universal Inference

Model (py : 0 € ©).

Split the data into two parts: Dg, Dy. (We'll get rid the splitting
later.)

Get any estimate 9 from Ds.

From Dg construct

C:{ez Tza}

L(6
where T = % and L(0) = HieDo po(Y7).

C is universal: P( € C,) >1—«
for all # and all n. No asymptotics. No regularity conditions.



Getting rid of splitting

Split. Get T;.
Split. Get T».
Split. Get Ts.

Let

and let

then C is universal.



Nuisance Parameters

C= {w T > a}
where now
L(6)
where



where now

where

Still valid.

Nuisance Parameters

C:{w: TZa}
"o
L(6)
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Hypothesis Testing With Nuisance Parameters

Want to test Hp : 6 € ©p. For example, 6 = (p, A).
Ho : = po.

D1: any estimate 0.

Dqy: mle 6y under Hy.

Reject if T > 1/a.

P(reject) under Hp is < « for all # and n, no conditions. Average
over splits to get rid of the randomness.
T is a p-value
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Efficiency

Suppose the usual regularity conditions do hold. How does the
universal method compare to the usual methods?

The confidence set has radius O(y/d/n) same as usual size. The
constant is =~ 2. In fact: T, ~ (LRT)3/5(2/5)9/2

L < r2(gniversa/) <
r2(LRT)
where
| 4log(l/a) + 4d
2log(1/a) +d +2/dlog(1/a)
4log(1/a) + 4d
" 2log(1/a) +d—5/2

r(universal) __ 2



Proportion

Efficiency

10 observations

1000 observations

Dimension

20

Bound on
P(2 (C"(@)) /2 (CH(«)) < 4)

== Upper bound
= Lower bound
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Applications

e Nonparametric problems as long as there is a likelihood function.
For example: Hy: p is log-concave

e Empirical Bayes: Nguyen, Gupta (2021)
e Mixtures (Nguyen, Fryer and McLachlan) arXiv: 2103:10640

e Exact (nonasymptotic) inference with nuisance parameters.
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Log Concave

p is log-concave if p = ef where f is concave.

The nonparametric maximum likelihood estimate p exists and can
be computed fairly efficiently.

We want to test:

Hp : p is log-concave

versus

Hp : p is not log-concave

There is no known finite sample test. There is a permutation
heuristic.



Mixture

Tests for Hy: Log-concave vs Hy: Not log-concave
Normal location family f(x) = 0.5¢4(x) + 0.5¢4(x — w). n = 100 obs. 200 sims.
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e Universal inference is easy and reliable.

e It can be expensive (repeated splits).

e |t requires a likelihood.

e THE END



