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Outline

(1) Hard statistical problems (failure of regularity conditions,
nuisance parameters, asymptotics)

(2) Solution: Universal Inference: Exact (non asymptotic)
coverage. No approximations. No regularity assumptions.

(3) Efficiency
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Background

The usual statistical tests and confidence intervals rely on specific
mathematical assumptions.

Toy example: Y1, . . . ,Yn ∼ N(µ, 1)

Let ψ = µ2 and ψ̂ = Y
2
n.

If ψ 6= 0 then
√
n(ψ̂ − ψ) N(0, τ2) and

Cn = ψ̂ ± zα/2se

is a valid confidence interval.
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Toy Example

But if ψ = 0, ψ̂ ∼ χ2/n.

If ψ ≈ 0, neither Normal or χ2.

Formally, want P(ψn ∈ Cn)→ 1− α even if we let ψn change with
n.

Want uniformity. Or better yet, P(ψ ∈ Cn) ≥ 1− α for all n and
all ψ.
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Mixtures

p(x) = (1− λ)N(µ1, 1) + λN(µ2, 1)

(background + signal)

Null (no signal) =

{(µ1, µ2, λ) : λ = 0} = {(µ1, µ2, λ) : µ1 = µ2}

And when λ = 0, the parameter µ2 is not identified.

All of our standard machinery fails.
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Other Issues With the Usual Methods

Standard methods are asymptotic (only valid as sample size
−→∞)

Nuisance parameters.

Bootstrap: still requires regularity conditions and asymptotics.

Bayes: does not provide coverage/error guarantees.
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Want confidence set Cn such that
P(θ ∈ Cn) ≥ 1− α for all θ and all n. No regularity conditions.
Works with nuisance parameters.

Test H0 : θ ∈ Θ0.
Want: P(reject) under H0 to be ≤ α. for all θ and all n. No
regularity conditions. Works with nuisance parameters.
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Universal Inference

Model (pθ : θ ∈ Θ).

Split the data into two parts: D0,D1. (We’ll get rid the splitting
later.)

Get any estimate θ̂ from D1.

From D0 construct

C =
{
θ : T ≥ α

}
where T = L(θ)

L(θ̂)
and L(θ) =

∏
i∈D0

pθ(Yi ).

C is universal: P(θ ∈ Cn) ≥ 1− α
for all θ and all n. No asymptotics. No regularity conditions.
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Getting rid of splitting

Split. Get T1.
Split. Get T2.
Split. Get T3.
...
Let

T =
1

B

∑
j

Tj

and let
C =

{
θ : T ≥ α

}
then C is universal.



Nuisance Parameters

θ = (ψ, λ)

C =
{
ψ : T ≥ α

}
where now

T =
L(ψ)

L(θ̂)

where
L(ψ) = sup

λ
L(ψ, λ).

Still valid.
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Hypothesis Testing With Nuisance Parameters

Want to test H0 : θ ∈ Θ0. For example, θ = (µ, λ).

H0 : µ = µ0.

D1: any estimate θ̂.
D0: mle θ̂0 under H0.

T =
L(θ̂)

L(θ̂0)

Reject if T ≥ 1/α.

P(reject) under H0 is ≤ α for all θ and n, no conditions. Average
over splits to get rid of the randomness.
T is a p-value
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Efficiency

Suppose the usual regularity conditions do hold. How does the
universal method compare to the usual methods?

The confidence set has radius O(
√
d/n) same as usual size. The

constant is ≈ 2. In fact: T∞ ∼ (LRT )3/5(2/5)d/2

L ≤ r2(universal)

r2(LRT )
≤ U

where

L =
4 log(1/α) + 4d

2 log(1/α) + d + 2
√
d log(1/α)

U =
4 log(1/α) + 4d

2 log(1/α) + d − 5/2

i.e. r(universal)
r(LRT ) ≈ 2
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Applications

• Nonparametric problems as long as there is a likelihood function.
For example: H0: p is log-concave

• Empirical Bayes: Nguyen, Gupta (2021)

• Mixtures (Nguyen, Fryer and McLachlan) arXiv: 2103:10640

• Exact (nonasymptotic) inference with nuisance parameters.
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Log Concave

p is log-concave if p = ef where f is concave.

The nonparametric maximum likelihood estimate p̂ exists and can
be computed fairly efficiently.

We want to test:
H0 : p is log-concave
versus
H0 : p is not log-concave

There is no known finite sample test. There is a permutation
heuristic.
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