Machine and Detector Design at the LHeC Part I

Polini, R. Wallny

CWGs

Outline

- Aim of present studies a
- Baseline Option(s) for the Detector Design
 Enhancements and R&D Options

P. Kos

- Somparison with other HEP experim
 - **Options and Discussion**
 - Computing Envir

3rd CERN-ECFA-NuPECC Workshop on the LHC Electron-proton and electron-ion collisions at the LHC

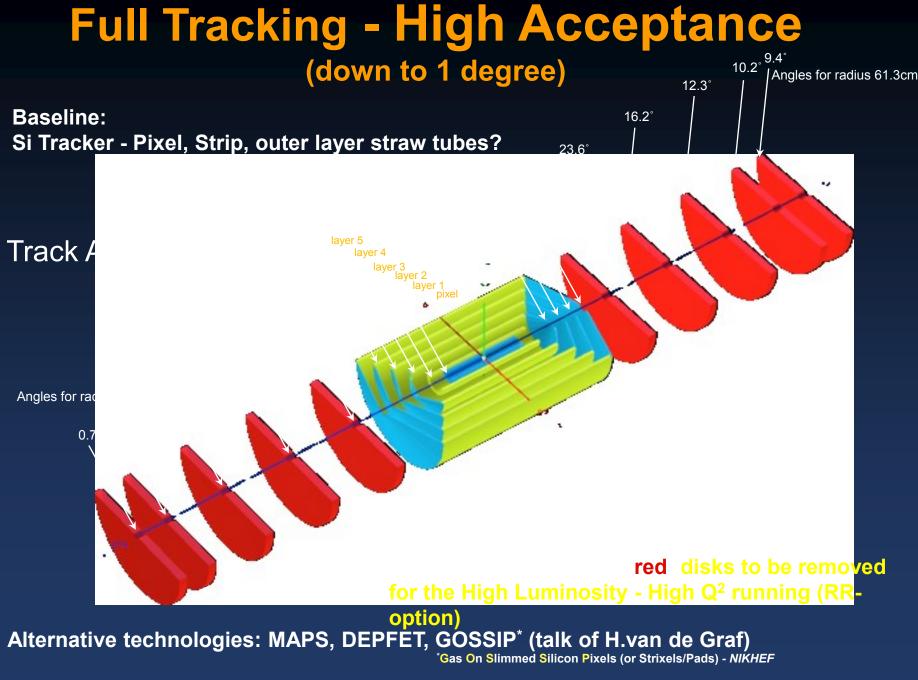
12-13 November 2010 Chavannes-de-Bogis, Switzerland

tette
 Scientific Adivisory Con
 Cade Standing Room
 Serge Berlander Grow
 Serge Berlander Grow

Accelerative Other Bourston Electronic CON. Barhan Electronic Constraints Bernhan Hock (CEN) Perm van Archeien (Artweyne) Descher Artweyne Bernhammer (CEN) Descher Artweyne Bernhammer Artweyne Bernhammer Congres Anateles Monthall Companyels Inter (CEN) Oct Bernhammer Congres Anateles Monthall Companyels (Monthall Companyel

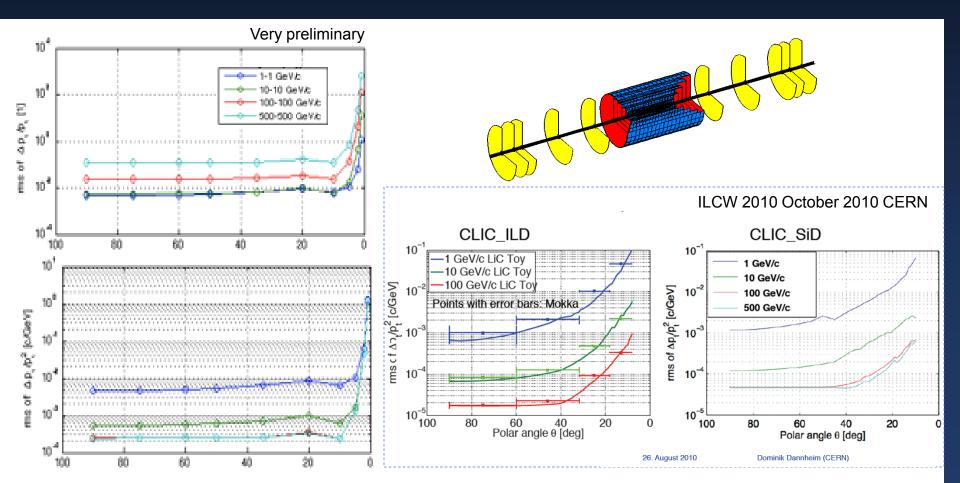
ctober 2010

European Organization for Nuclear Research

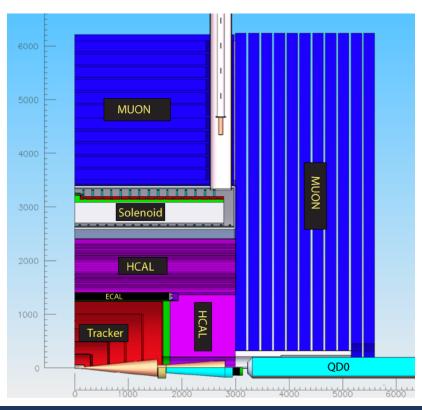

Aim of present studies

- Prove together with Physics & Machine WG the feasibility and the physics potential
- Establish the Machine and the Interaction Region constrains (beam-pipe, synchr. rad, magnets)
- Provide a detector baseline within reach of currently available and established technologies
- Verify that such solution already fulfills the physics requirements
- Foresee more advanced options means R&D available by the time of detector construction

Back to the Detector


- Tracking
 - High/low acceptance option (Ring Ring)
 - Bending Dipoles (Linac Ring)
 - Solenoid
 - Size, Inside/outside CAL, Return Flux
 - → Calorimeter options
 - Experience from HERA, new frontiers ... TeV
 - → Full detector Layout
 - Comparison to present and future HEP Experiments
 - Discussion on technologies
 - Foresee Heavy Ion running
 - Detector construction within 10 years from now (?)

Tracking Simulation


- LicToy 2.0 Simulation (<u>http://wwwhephy.oeaw.ac.at/p3w/ilc/lictoy/UserGuide_20.pdf</u>)
- Simplified Geometry (barrel cylinders, fwd/bwd disks, no fwd/bwd cones)
- with basic assumption (layer resolutions, X/X₀)

A look at ... ILC/CLIC

ILD

SiD

- 5 T solenoid
- Full Silicon Tracker:

5 cyl, 7+7 fwd pixel; 5 cyl + 4+4 fwd strip

- PFA Calorimetry (26 x₀ Si-W), (4.5 λ_i RPC/GEM-Iron)
- Iron Return + Muon

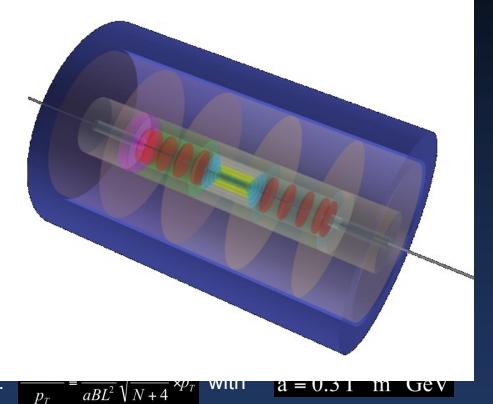
- 3.5 T solenoid
- Silicon Tracker
- Large TPC + Silicon Envelope
- PFA Calorimetry (25mm² for ecal, 1 to 9 cm² for the hcal)
- Iron Return + Muon

Solenoid

Modular structure:

 assembly CMS like on surface level or in the experimental area depending on time constraints and access share

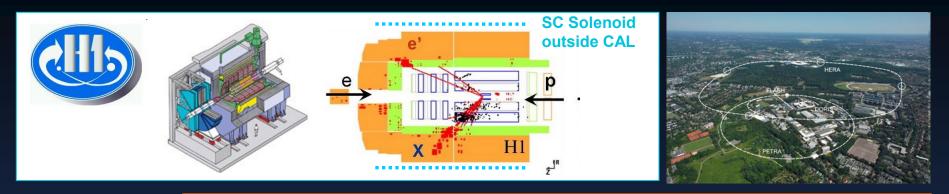
Solenoid dimensions:

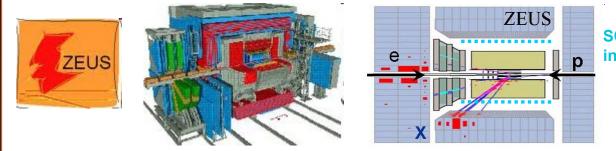

- 6m half length
- 300 cm inner radius
- B field = 3.5 T

Geometry constraints:

- Current beam pipe dimensions
- Requirement of 10° tracking cove
- Homogeneous B field in the trackin

Detector Track Resolution:


i.e. assuming / using (Glückstern relation).



N track points on L; length of track perpendicular to field B, accuracy $\sigma(x)$ B = 3.5 T, N_{min}= 56 track points (2 x 5 (min. hits per layer) x 5 + 2 x 3 B-layer hits) s-gas module ~10° inclined more track points for inclined tracks - extended track segments $\Rightarrow \Delta p_T/p_T = 0.03\% p_T$

Calorimeter

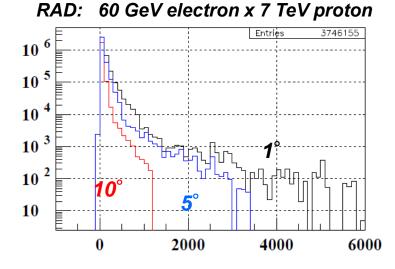
HERA Calorimeters

SC Solenoids inside CAL

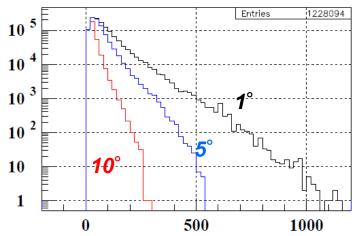
• H1

- Liquid Argon (cf. ATLAS)
- High granularity, compensation achieved via software
- Solenoid outside of the LAr CAL
- ZEUS
 - Compensating Calorimeter (Uranium Scintillator)
 - EMC 15%/□E; HAC 35%/□E, up to 7 L
 - Lower granularity
 - Solenoid between central tracking and main CAL

- HERA
- 920 GeV p
 27 GeV e[±]
- c.m.s. energy □s ~ 300 GeV


ATLAS and CMS

	ATLAS	CMS
MAGNET (S)	Air-core toroids + solenoid in inner cavity 4 magnets Calorimeters in field-free region	Solenoid Only 1 magnet Calorimeters inside field
TRACKER	Si pixels+ strips TRT \rightarrow particle identification B=2T $\sigma/p_T \sim 5x10^{-4} p_T \oplus 0.01$	Si pixels + strips No particle identification B=4T $\sigma/p_T \sim 1.5 \times 10^{-4} p_T \oplus 0.005$
EM CALO	Pb-liquid argon $\sigma/E \sim 10\%/\sqrt{E}$ uniform longitudinal segmentation	PbWO ₄ crystals $\sigma/E \sim 2-5\%/\sqrt{E}$ no longitudinal segm.
HAD CALO	Fe-scint. + Cu-liquid argon (10 λ) $\sigma/E \sim 50\%/\sqrt{E \oplus 0.03}$	Cu-scint. (> 5.8 λ +catcher) $\sigma/E \sim 100\%/\sqrt{E \oplus 0.05}$
MUON	Air $\rightarrow \sigma/p_{\rm T} \sim 7 \%$ at 1 TeV standalone	Fe $\rightarrow \sigma/p_T \sim 5\%$ at 1 TeV only combining with tracker

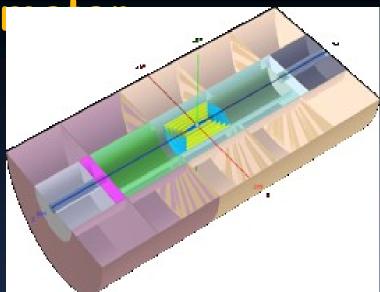

Detector Acceptance

RAPGAP-3.2 (H.Jung et.al. - http://www.desy.de/~jung/rapgap.html) HzTooL-4.2 (H.Jung et.al. - <u>http://projects.hepforge.org/hztool/</u>) selection: q².gt.5.

\rightarrow Highest acceptance desirable


DIFF : 60 GeV electron x 7 TeV proton

CHARM: 60 GeV electron x 7 TeV proton



LHeC Calori

For the geometry given:

- Electromagnetic Calorimeter:
 - ~30 x X₀ Pb/W & different det./R/O
- Hadronic Calorimeter:
 - 6 ~10+ x λ_1 Fe/Cu & different det./R/O

- Presently the fwd/bwd calorimeter asymmetry more in functionality/detector response rather then in geometry
- A dense EmCAL with high granularity (small transverse size cells), high segmentation (many thin absorber layers), and with ratio λ_l/X_0 large, is optimal for E-Flow measurement \rightarrow 3-D shower reconstruction
- Example Fe, W

Material	Nuclear interaction	Density	Moliere	Radiation length	$\lambda/\mathbf{X_0}$
	length λ [cm]	$[g/cm^3]$	radius [cm]	<i>X</i> 0 [cm]	
Fe	16.98	7.87	1.66	1.77	9.59
W	10.31	19.3	0.92	0.35	29.46

- brass (Cu) an option also (CMS), λ_l =15.1cm denser than Fe (adding λ_l)
- Liquid Argon Calorimeter (H1/ATLAS) being also considered as Baseline (B|R CAL)

Calorimeter Discussion

Requirements:

- Precision physics
- Similar energies and resolution required for ILC
- Jet Energies ~ O(1 TeV) especially in the p forward region
- High energy resolution, higher granularity
- Possibly compact design (detector size)

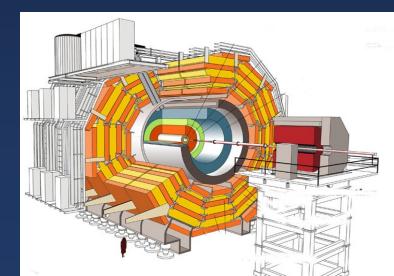
Technologies:

- Liquid Argon (H1/ATLAS) concept applicable as baseline solution
- PFA (particle Flow Algorithm) → see F. Simon
 CALICE High granularity calorimeters. Software compensation & PID combining with information coming from the tracking system
- New Concepts

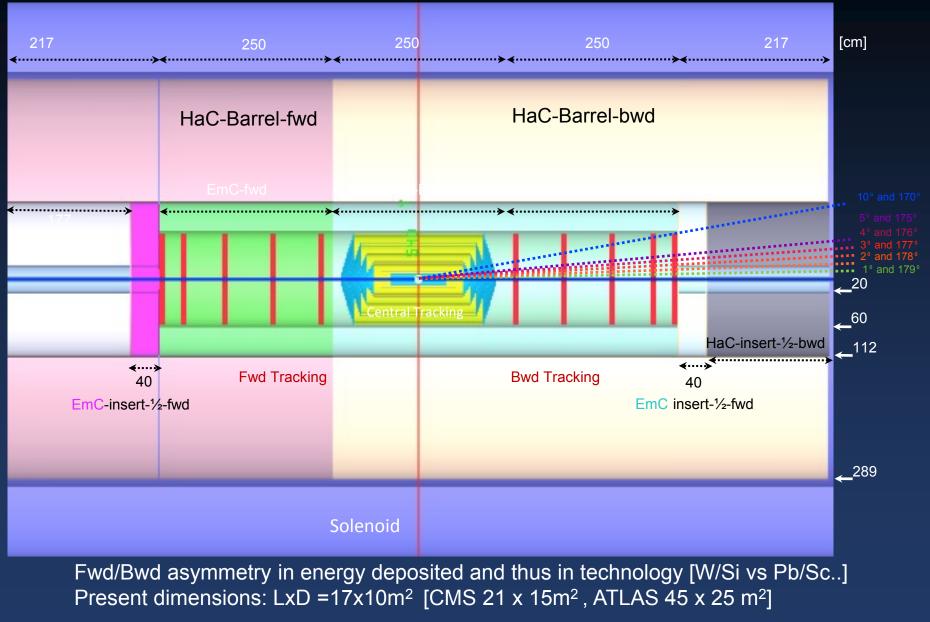
New Materials, Silicon, RPC, etc.

Full Active/Dual Readout Calorimeters: → see C. Gatto

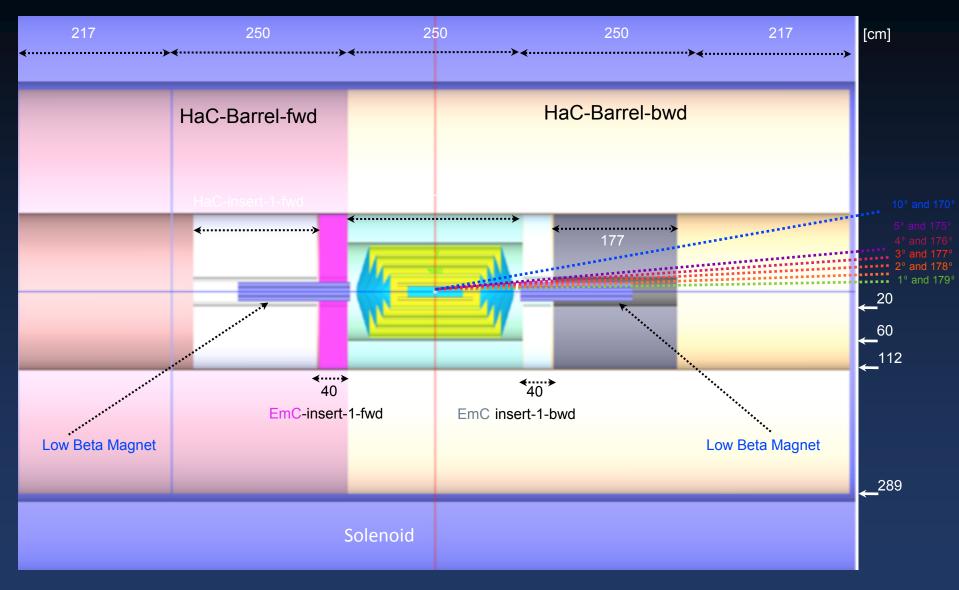

Combine energy and Cherenkov measurements


Overall Design Choices

Overall Design


ILC /CLIC Calorimeters:

- No material between tracking and calorimeters
- Synergy with tracking, Particle Flow Algorithms
- High granularity, non compensating CAL
- CAL inside strong solenoidal field
- LHC:
- H1/CMS Cal insideZEUS/ATLAS Cal outside

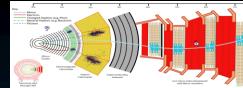

The Detector - High Acceptance

Kostka, Polini, Wallny

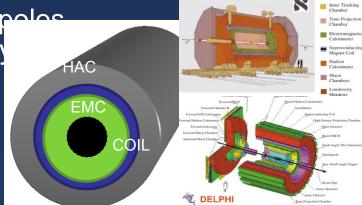
LHeC Workshop, Chavannes de Bogis, 12th 13h October 2010

The Detector - High Luminosity

→ Aim of current evaluations: avoid detector split in two phases: time and effort


Solenoid Options

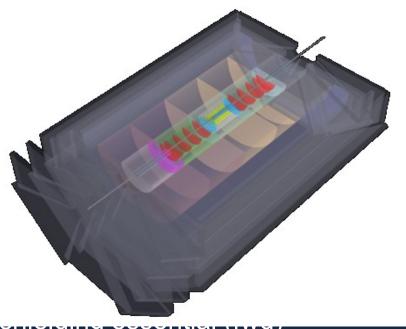
Option One


- Large Solenoid containing the Calorimeter
- 3.5 T Solenoid of similar to CMS/ILC
- Precise Muon measurement
- Large return flux either enclosed with Iron or Option of active B shielding with 2nd solenoid

Small Coil

- Smaller Solenoid placed between EMC and HAC
- Cheaper option
- Convenient displacement of Solenoid and Dipolos in same cold vacuum vessel (Linac-Ring Only)
- Smaller return flux (less iron required)
- Muon p, p_t measurement compromised

Genera	General parameters		
Magnetic length	12.5 m		
Free bore diameter	6.3 m		
Central magnetic induction	4 T		
Total Ampere-turns	41.7 MA-t		
Nominal current	19.14 kA		
Inductance	14.2 H		
Stored energy	2.6 GJ		
Cold mass			
Layout	Five modu coupled		
Radial thickness of cold mass	312 mm		
Radiation thickness of cold mass	$3.9 X_0$		
Weight of cold mass	220 t		
Maximum induction on conductor	4.6 T		
Temperature margin wrt operating temperature	1.8 K		
Stored energy/unit cold mass	11.6 kJ/kg		
Ire	on yoke		
Outer diameter of the iron flats	14 m		
Length of barrel	13 m		
Thickness of the iron layers in barrel	300, 630 a		
Mass of iron in barrel	6000 t		
Thickness of iron disks in endcaps	250, 600 a		
Mass of iron in each endcap	2000 t		
Total mass of iron in return yoke	10 000 t		


Muon Dete

• Physics:

- Heavy flavour
- Vector Mesons
- Diffraction etc.

• HERA Experience:

- Beam background understanding/
- Running in conjuction with tracking (forward) and CAL has shown to be very important both for trigger and RO
- LHeC Different Energy Range. Large acceptance could extend the LHeC physics potential
- Detector technologies
 - Detector technologies available (LHC) and very active R&D developments ongoing (sLHC)
- Magnet design essential for an independent momentum measurements

 The beam p defining the

Summary - Outlook

and the interaction region design play tector and currently in focus

- Big progres in defining and studying the detector constraints (Machine options and Interaction Region), the detector design heavily dep ands on.
- A baseline of is being def
- Detector-wi preferred. R L-R bending
- The CDR is
- The LHeC c an LHC det a fantastic challenge to it build.

tector concepts following the Physics requirements

ne" with a large solenoid (CMS/ILC) is R High Lumi Focussing Magnet or prds different solution

siza