Detector Design at the LHeC WG - Summary

Polini, R. Wallny

Outline

Detector Session
 Present Design
 me of Discussion

3rd CERN-ECFA-NuPECC Workshop on the LHeC

12-13 November 2010 Chavannes-de-Bogis, Switzerland

mmittee Scientific Advisory Commit

ty CERN)
 Code Attantilitor
 Code

Accelerator Olives Human & Charles Accelerator Benerical Charles Benerical Charles Benerical Charles Benerical Charles Carego Academic Charles Carego Academic March March March Carego Academic March Ma

2

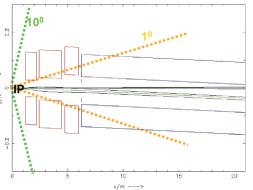
onean Organization for Nuclear Research

Detector Sessions

Detector KLEIN, Max 🖻 Requirements	RR Interaction THOMPSON, Luke Region	Solenoid, TEN KATE, H. Dipole Design
Chavannes-de-Bogis, Switzerland	LR TOMAS, Rogelio 🛅 Interaction Region	Comparison with HERA/LHC/ILC Detectors Chavannes-de-Bogis, Switzerland
Detector KOSTKA, Peter Design Studies	IR quadrupole magnets 🗈 Chavannes-de-Bogis, Switzerland	Particle Flow SIMON, Frank Calorimetry and CALICE Detectors
Chavannes-de-Bogis, Switzerland	IR SR BERNARD, Nathan 🛅	A Dual Readout Integrally
Beam pipe VENESS, R. 🛅	Chavannes-de-Bogis, Switzerland	Active Calorimetry (ADRIANO)
Chavannes-de-Bogis, Switzerland	RR PIELONI, Tatiana 🛅 beam-beam	
Si pixel/strip ALLPORT, Ph. 🛅	effects	Calorimeter Discussion
Tracker	Vacuum 🗎	Chavannes-de-Bogis, Switzerland
	Chavannes-de-Bogis, Switzerland	Luminosity LEVONIAN, S.
Chavannes-de-Bogis, Switzerland	BNL studies	Measurement and e/y taggers
Si-Gas pixel/strip Tracker 🛅 H. Van Der Graaf	Chavannes-de-Bogis, Switzerland	Neutron BUNYATYAN, A. 🛅 Tagging
Chavannes-de-Bogis, Switzerland		

- Latest updates on LHeC design, constrains, R&D Technologies
- Very interesting discussions
- Dialogue on Concerning the Two Chief World Systems ③

Aim of present studies

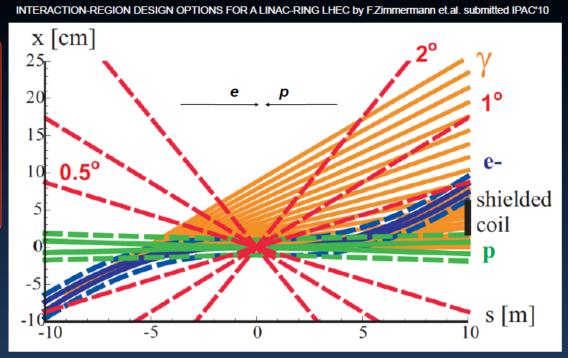

- Prove together with Physics & Machine WG the feasibility and the physics potential
- Establish the Machine and the Interaction Region constrains (beam-pipe, synchr. rad, magnets)
- Provide a detector baseline within reach of currently available and established technologies
- Verify that such solution already fulfills the physics requirements

 Foresee more advanced options means R&D available by the time of detector construction

Ring-Ring Option

	LHeC I	Ring-Ring	Option	B. Holzer	
	Ma	ain Paramete	rs		
	Electrons	Protons			
Energy	60 GeV	7 TeV			
Current	100mA	860mA			
Part. per Bunch	2*1010	1.7*1011	B. Holzer		
£x.	5*10 ⁻⁹ m	5*10 ⁻¹⁰ m			
	2.5*10 ⁻⁹ m	5*10 ⁻¹⁰ m			
<mark>ε_x</mark> P _γ	43.5 MW				
	1 degree		10 degree		
	Electrons	Protons	Electrons	Protons	
β _x	40cm	4.05 m	18 cm	1.8 m	
β _x β _x	20cm	0.97 m	10 cm	0.5 m	
σ _x	45µm		30µm		
σ _x	22µm		15.8µm		
Lo	8.5*1032		1.8*1033		
crossing angle	0.7mrad		1mrad		
loss factor	92 %		75%		
Ργ	44kW		28kW		
Leff	7.9*10 ³²		1.34*10 ³³		

Linac-Ring 3 2 5PL-Ring


- Hi Lumi / Low Lumi ~ 1.8
- Moving towards 1 option only?

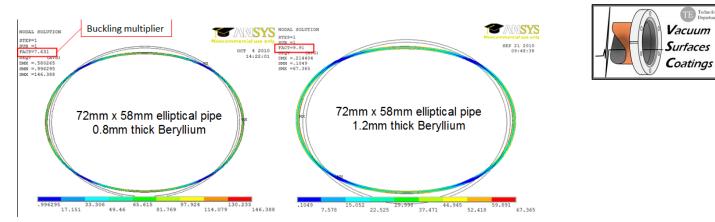
Linac-Ring Option

M. Sullivan

- Elliptical Beam Pipe: (March 2010 - prelim.)
- inner-ø_x = 12cm
- inner- $\varnothing_y = 5$ cm
- outer- $\emptyset_x = 12.4$ cm
- outer- $\emptyset_y = 5.4$ cm
- thickness: 0.2cm

Beam envelopes of 10σ (electrons) [solid blue] or 11σ (protons) [solid green], the same envelopes with an additional constant margin of 10 mm [dashed], the synchrotron radiation fan [orange], and the approximate location of the magnet coil between incoming protons and outgoing electron beam [black].

9 m 0.4 T bending dipoles inside the main detector



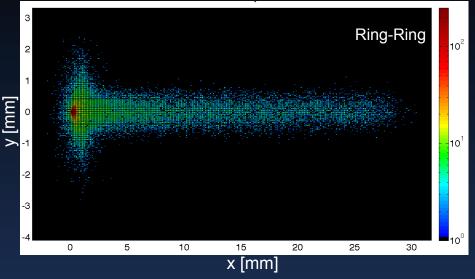
Preliminary View on the LHeC Experimental Vacuum Chambers

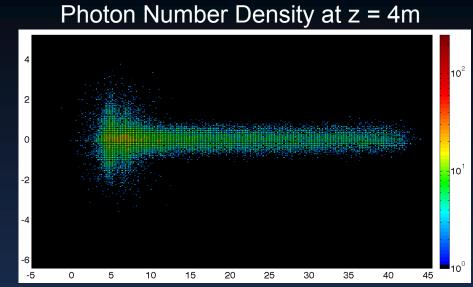
Jonathan Bosch - University of Manchester And Ray Veness - TE/VSC

Requirements for the LHC experimental vacuum systems Choice of beampipe materials and sections Preliminary calculations of LHeC geometries Conical beampipes Summary

• LHC requirements

 The <u>combined requirements of LHC machine and experiments</u> (of which not all have been considered here) <u>place a serious limit</u> on the choice of materials and forms for beampipes.

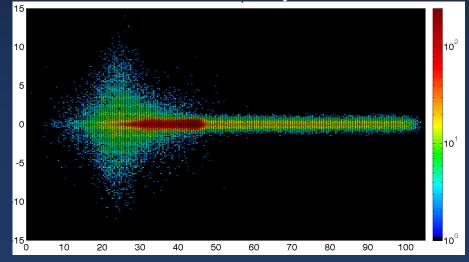

Preliminary analysis


- Preliminary calculations have been made for simple 'solid', elliptical geometries made from aluminium, titanium and beryllium.
- In beryllium, thickness in the order of 1 mm (for 72x58mm) and 2 mm (for 120x50mm) appear feasible.
- Experience with conical chambers at LHCb does not rule out development of "Fwd/Central/Bwd" beampipe design.
- Ongoing R&D for new materials and coatings may give other options

SR Fan Extension - High Lumi

[mm]

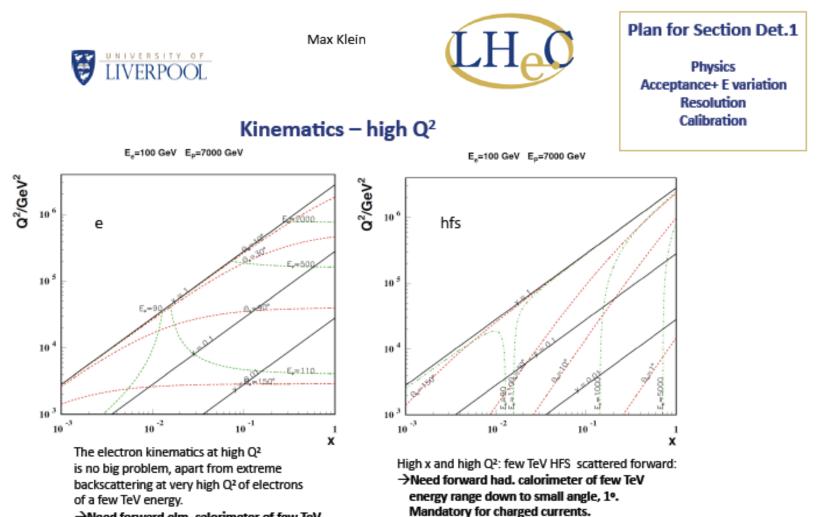
Photon Number Density at the IP



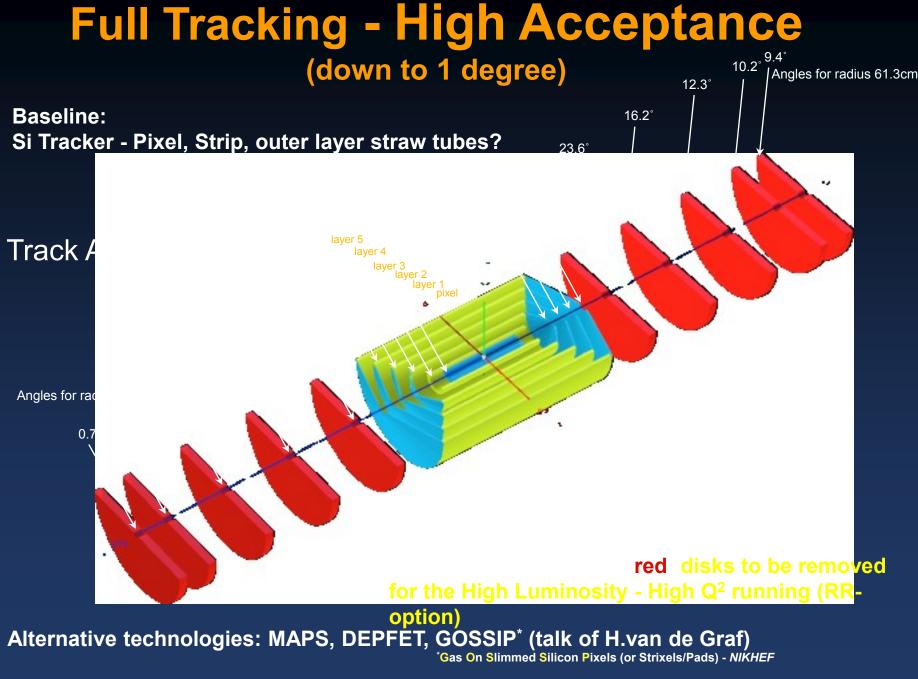
x [mm]

Calculations being cross checked and complemented using (by):

- GEANT4 (N.Bernard, UCLA/CERN)
- IRSYN (R.Appleby, Manch./Cockroft)
- MadX (B.Nagorny, DESY (left))
- GEANT4-Fluka (E.Pilicer, E.Eroglu, Uladag University)

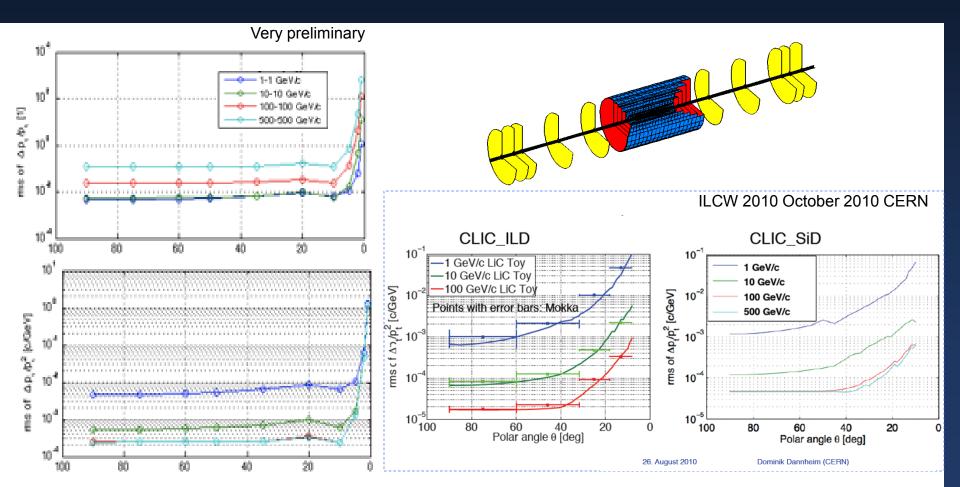

Photon Number Density at z = 9m

x [mm]


8

Requirements on the LHeC Detector

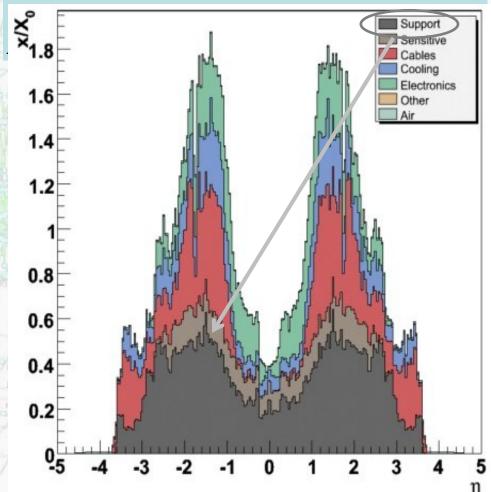
Need forward elm. calorimeter of few TeV energy range down to 10° and below with reasonable calibration accuracy.


Tracking

LHeC Workshop, Chavannes de Bogis, 12th 13h October 2010

Tracking Simulation

- LicToy 2.0 Simulation (<u>http://wwwhephy.oeaw.ac.at/p3w/ilc/lictoy/UserGuide_20.pdf</u>)
- Simplified Geometry (barrel cylinders, fwd/bwd disks, no fwd/bwd cones)
- with basic assumption (layer resolutions, X/X₀)


"Conventional" Silicon Pixel/Strip Tracker

Phil Allport The University of Liverpool 12/11/10 3rd CERN-ECFA-NuPECC Workshop on LHeC

Brief Overview of Tracking in CMS and ATLAS
Silicon Detectors for sLHC (High Luminosity Upgrade LHC)
LHC Vertex Detector Technologies
Suggestions for LHeC
Conclusions

CMS Tracker Services

- Be aware of material budget from services -cables, cooling, electronics dominant!
- LHeC tracker limited to
 radial track length ~60cm
- Si Pix/Strip ~8 points
 high accuracy

This is an old analysis but it still illustrates where one needs to focus

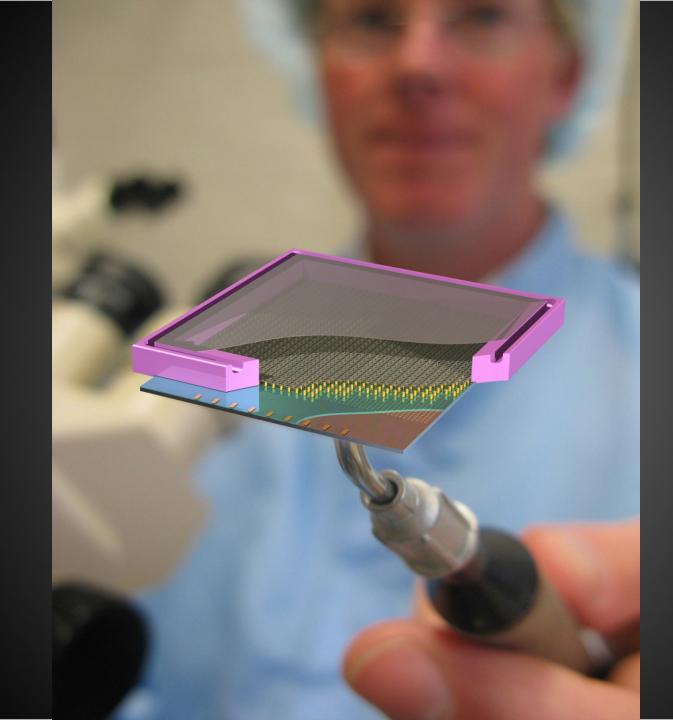
Costing Speculations [CHF/cm²] R. Horisberger PSI (2006)

	Pixel (now)	Large pixels	Macropixels	MAPS	CMOS+Sensor
Pixel Area	0.015 mm ²	0.15 mm ²	1.5 mm ²		
Sensor/ROC	1/1	1/1	10 / 1	0/1	1/1
Tiling unit	10 cm ²	40 cm ²	100 cm ²	4 cm ²	4 cm ²
Bumping	320	20*	2*	0	0
Sensors	80	10	10	0	10+10? ⁽⁴⁾
ROC	25	50	2	50	200? ⁽³⁾
HDI	30	30	3	30	30
Cables	8	8	0.8	8	8
Baseplate	5	5	0.5	5	5
Pitchadjust	0	0	15 ⁽²⁾	0	0
Optical Link (1) 32	6	0.6	6	32
pxFED	25	4	0.4	4	25
Total	525	~130	~35	~105	~320?

(1) ~ 320 CHF/channel

(2) ~ 0.02 CHF/cm fine pitch trace

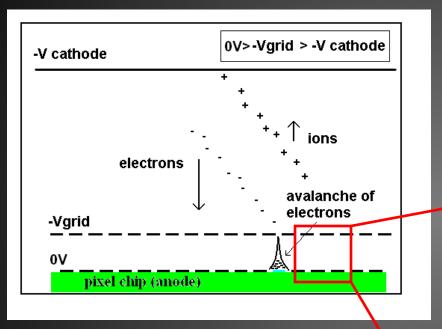
(3) Yield speculations based on experience with DMILL SOI-wafers


(4) Extra cost for anodic wafer bonding or SOI wafer growth

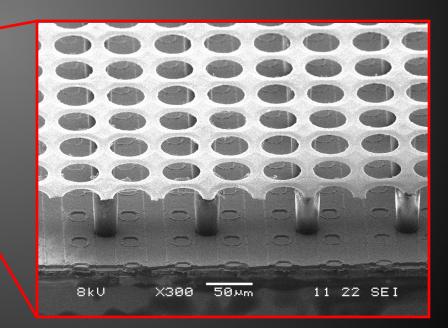
(Current CMS microstrips ~40CHF/cm²)

15

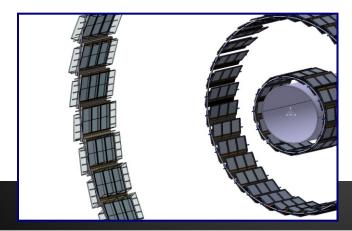
Implications of LHeC Tracker Layout

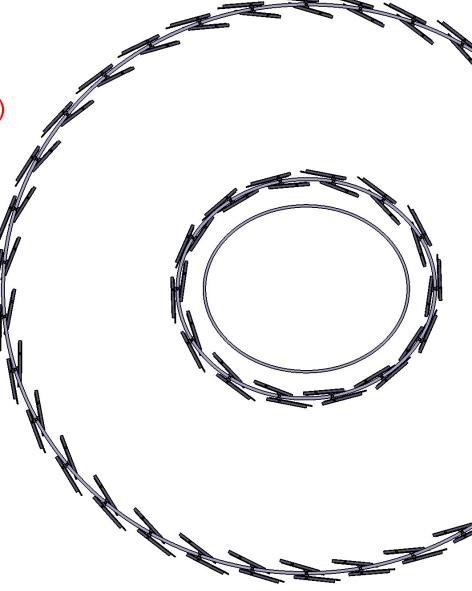

- Without knowing the average track densities per beam crossing it is hard to gauge at what radii the transition from pixel layers to strip layers should take place
- A similar comment applies to radiation levels, but it is hard to believe the expected levels for current ATLAS and CMS (never mind at sLHC) would be exceeded
- Since pixel layers are capable of having very low occupancy and being therefore much better for pattern recognition (never mind vertexing), a possible solution might be a highly performant (4-5 layer) central pixel detector, with the strip layers mostly for sagitta measurement (ie as a spectrometer)
- Issues of material tend to be more influenced by supports and services than very fancy sensor designs
- Silicon based tracking would seem to meet LHeC requirements but optimisation depends on required radiation tolerance and granularity

Gossip/GridPix LHeC Nov 12, 2010


HvdG Nikhef

GridPix detectors


- Cathode
 - Drift volume (~0.1-few kV/cm)
- Grid
 - Gain region (~50-150 kV/cm)
- Pixel readout chip

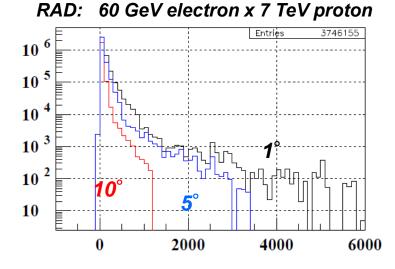

- Pixels of chip: x & y-coordinate
- Drift time gives z-coordinate
- Sensitive to single electrons

Gossip/GridPix in LHeC

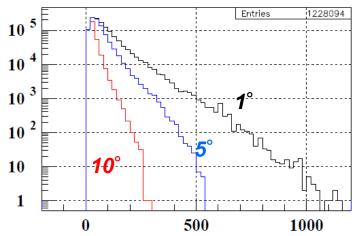
See for many issues:

http://www.nikhef.nl/~d90/gossip/RD51ATLASGossip.pdf

- detector layer radiation length
- rate effects: space charge, occupancy
- ageing
- vertex layer performance:
 - track efficiency
 - position resolution
 - rate effects
- LVL1 performance
- TRT performance

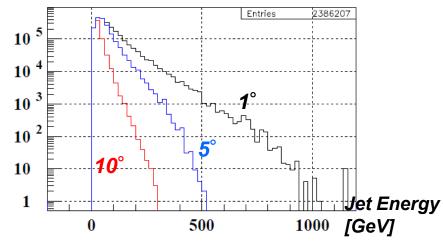

Nikhef can deliver information & hardware Nikhef can NOT participate in LHeC: representative required

Calorimetry


Detector Acceptance

RAPGAP-3.2 (H.Jung et.al. - http://www.desy.de/~jung/rapgap.html) HzTooL-4.2 (H.Jung et.al. - <u>http://projects.hepforge.org/hztool/</u>) selection: q².gt.5.

\rightarrow Highest acceptance desirable

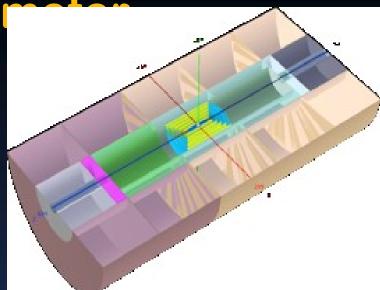

DIFF : 60 GeV electron x 7 TeV proton

CHARM: 60 GeV electron x 7 TeV proton

Calorimeter Discussion

Requirements:

- Precision physics
- Similar energies and resolution required for ILC
- Jet Energies ~ O(1 TeV) especially in the p forward region
- High energy resolution, higher granularity
- Possibly compact design (detector size)

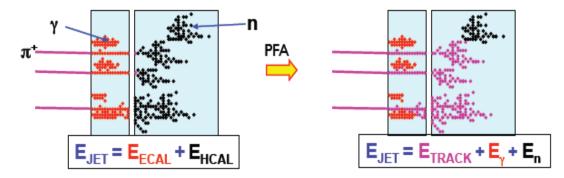

Technologies:

- Liquid Argon (H1/ATLAS) concept applicable as baseline solution
- PFA (particle Flow Algorithm) → see F. Simon
 CALICE High granularity calorimeters. Software compensation & PID combining with information coming from the tracking system
- New Concepts
 - Silicon, RPC, Micromegas etc.
 - Full Active/Dual Readout Calorimeters: → see C. Gatto Combine energy and Cherenkov measurements

LHeC Calori

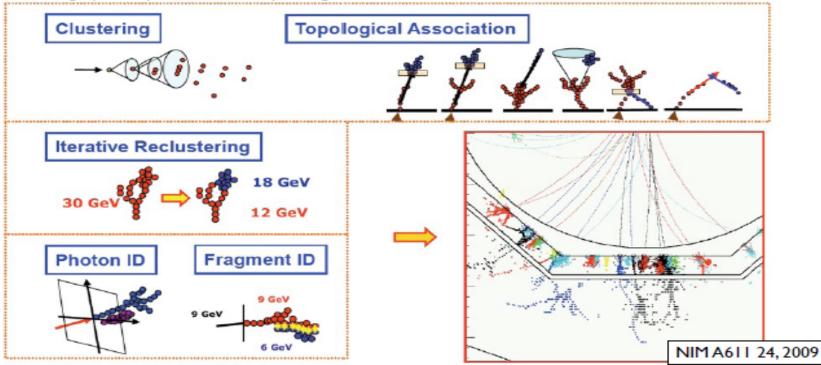
For the geometry given:

- Electromagnetic Calorimeter:
 - ~30 x X₀ Pb/W & different det./R/O
- Hadronic Calorimeter:
 - 6 ~10+ x λ_1 Fe/Cu & different det./R/O


- Presently the fwd/bwd calorimeter asymmetry more in functionality/detector response rather then in geometry
- A dense EmCAL with high granularity (small transverse size cells), high segmentation (many thin absorber layers), and with ratio λ_l/X_0 large, is optimal for E-Flow measurement \rightarrow 3-D shower reconstruction
- Example Fe, W

Material	Nuclear interaction length λ [cm]	Density [g/cm ³]	Moliere radius [cm]	Radiation length X ₀ [cm]	$\lambda/\mathbf{X_0}$
Fe	16.98	7.87	1.66	1.77	9.59
W	10.31	19.3	0.92	0.35	29.46

brass (Cu) an option also (CMS), λ_l =15.1cm - denser than Fe (adding λ_l)
 → Liquid Argon Calorimeter (H1/ATLAS) being also considered as Baseline


Particle Flow Calorimetry and CALICE Detectors

Frank Simon MPI for Physics & Excellence Cluster 'Universe' Munich, Germany ← 60% of the jet (charged hadrons) are measured with better precision in the tracker!

Particle Flow Algorithms: Technology

- The most performant PFA at present: PandoraPFA (Mark Thomson, Cambridge)
 - highly complex software package

ADRIANO: A Dual Readout Integrally Active Non-segmented Option for Future Colliders

Corrado Gatto INFN

o On behalf of:

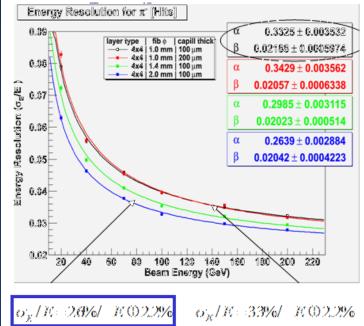
TWICE Collaboration

Merging the advantages of sampling and total active techniques

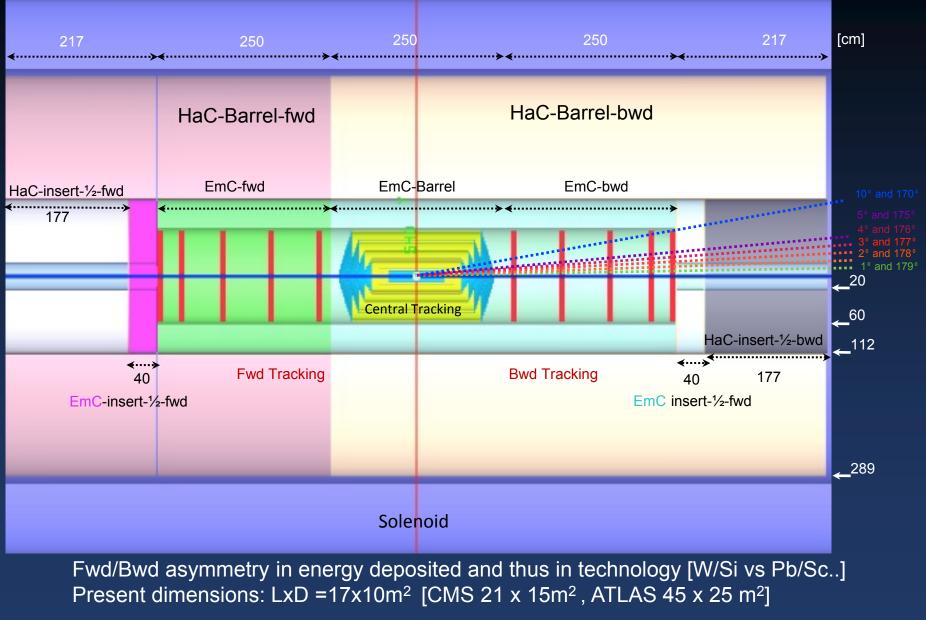
ADRIANO technique: i.e. embedd scintillating fibers into heavy glass

Active Cerenkov component is Optical Heavy Glass

- It functions as an <u>active</u> <u>absorber</u>
- No scintillation light
- Lots of Cerenkov photons thanks to n_j=1.85
- o Scintillating component are scintillating fibers
 - Optically separated irom Carankov absorber
 - Control the scintillation/Cerenkov signal with appropriate pitch between fibers
 - Faction of surface to instrument with photodetectros = 8%

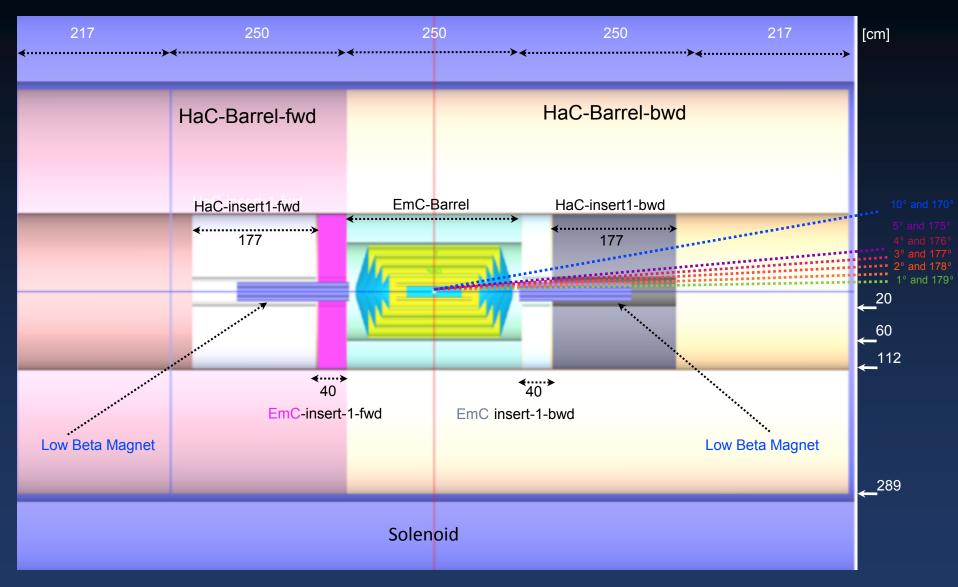

ADRIANO Calorimeter

- Lead glass + scintillating fibers
- Fully projective layout
 - ~1.4° aperture angle
- 4x4 cm² cells


- Length = 180 cm
- Azimuth to 2.8°

- Barrel: 16384 cells
- Endcap: 7450 cells/ea

ADRIANO in Dual-readout


The Detector - High Acceptance

Kostka, Polini, Wallny

LHeC Workshop, Chavannes de Bogis, 12th 13h October 2010

The Detector - High Luminosity

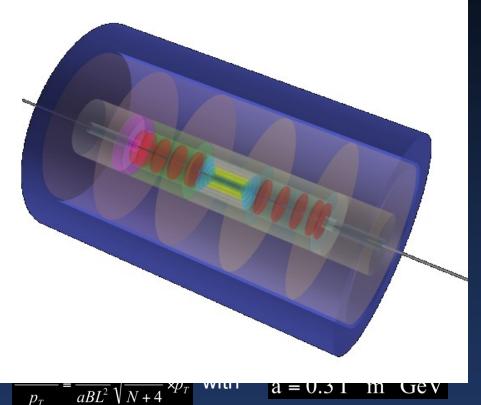
→ Aim of current evaluations: avoid detector split in two phases: time and effort

Solenoid

Modular structure:

 assembly CMS like on surface level or in the experimental area depending on time constraints and access shaft energing

Solenoid dimensions:


- 6m half length
- 300 cm inner radius
- B field = 3.5 T

Geometry constraints:

- Current beam pipe dimensions
- Requirement of 10° tracking cove
- Homogeneous B field in the trackin

Detector Track Resolution:

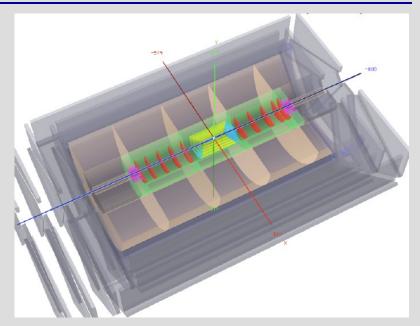
i.e. assuming / using (Glückstern relation).

N track points on L; length of track perpendicular to field B, accuracy $\sigma(x)$ B = 3.5 T, N_{min}= 56 track points (2 x 5 (min. hits per layer) x 5 + 2 x 3 B-layer hits) s-gas module ~10° inclined more track points for inclined tracks - extended track segments $\Rightarrow \Delta p_T/p_T = 0.03\% p_T$

LHeC

Superconducting Magnets for LHeC

Solenoids, e-bending Dipoles and a Toroid

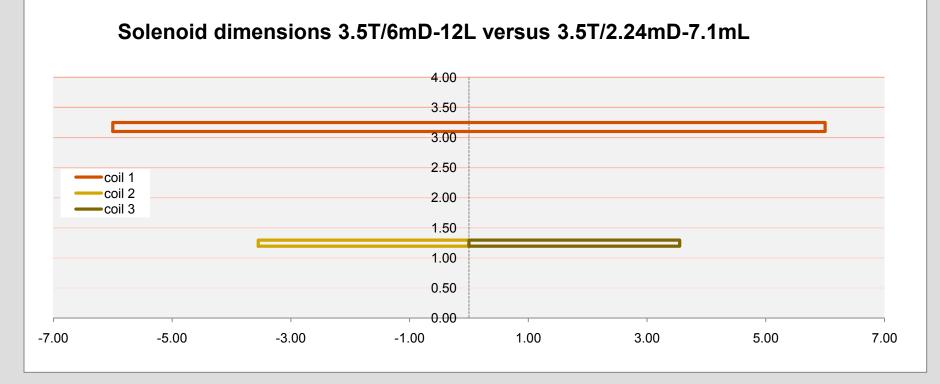

Herman ten Kate and Alexey Dudarev CERN Physics Department

Content 1. Solenoid and Dipole options

- 2. Big or small solenoid
- 3. Proposed Hybrid Solenoid-Dipole solution
- 4. How the small 3.5T solenoid looks
- 5. Iron or active shielding
- 6. Forward Toroid option for low angle jets
- 7. Conclusion

Solenoid and Dipole (LR) Options

- 1. Large solenoid outside the H-cal 3.5T, 6.0m bore,12m long with iron yoke (CMS like)
- Large solenoid outside H-cal
 3.5T, 6.0m bore,12m long
 with shielding solenoid for flux return
- Small solenoid in between E- and H-cal 3.5T, 2.2m bore, 7.1m long with iron return yoke


4. Small solenoid in between E-cal and H-cal3.5T, 2.2m bore, 7.1m long with shielding solenoid

Combine solenoid options with twin dipole on 6 or 2.2m bore ?

- However, dipole on 6m bore is very inefficient and bulky, so needs to be positioned at low radius
- If space is reserved along 12m for the twin dipole at low radius, then combine with the solenoid

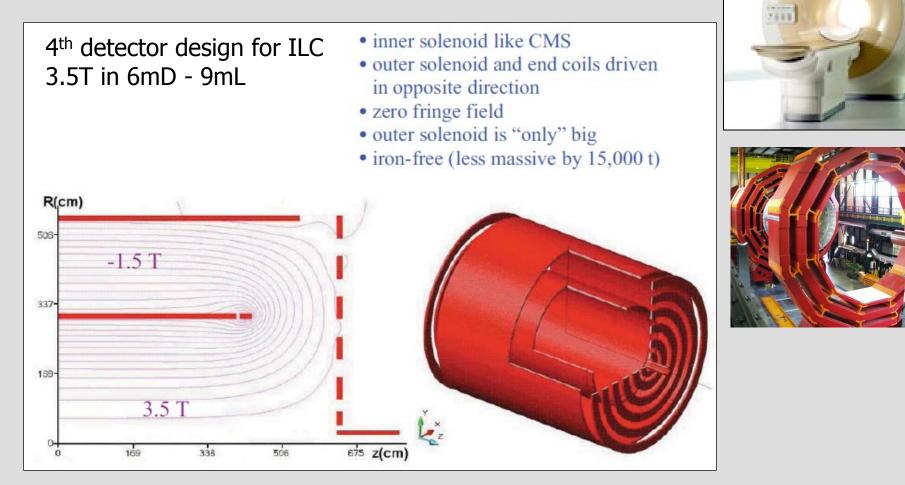
Dramatic difference in size, complexity & cost of these two options

- Big solenoid requires 3m thick iron shielding weighing 10,000 tons
- Small solenoid at 3m radius shows ~0.15T to shield, iron of < 500 tons!</p>
- If for physics acceptable, take the small solenoid !

3.5T – 2.24mD – 7.1mL Solenoid arrangement

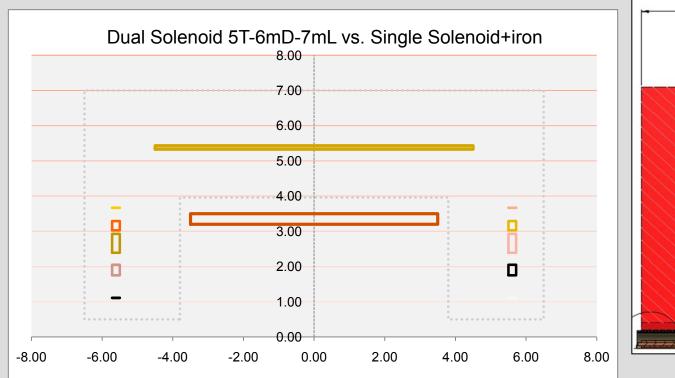
Solenoid and Twin Dipole arrangement as required for LR option

Elegant solution: combine solenoid and the 9m long dipoles

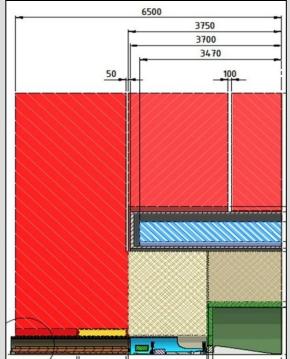

✓ 6m long sections of dipoles within the detector bore in one cryostat, add the remaining 3m long side dipoles separately

7.1 m long solenoid combined withtwo 6m long dipoles andtwo 3m smaller radius side dipoles

Dipole 0.4T on axis, 0.8T in windings 10 kA, ~3.5 MJ each, ~8MJ in total 10mm thick winding pack, ~260t force/6m


Iron or actively shielded solenoid

Flux return by active outer solenoid in stead of iron: much lighter, more elegant, muon tracking space for "free", possibly cheaper as well

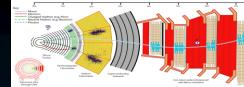


Example LCD-CLIC SiD 5T-6mD-7mL

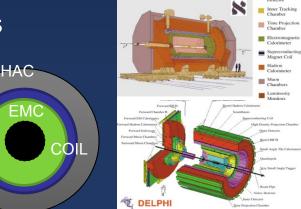
Alternative Conceptual Design of a 5T CLIC detector magnet 50% smaller, 20 times lighter, easy to move, "modern in 2025-2035" (but not X-ray closed, like ATLAS and most detectors are not hermetic)

~400t Solenoids + ~200t Structures = ~600t only! And a nice ~3T muon tracking volume for free

~ 14000t iron ~ 20 times heavier ! Heavy and expensive


Solenoid Options

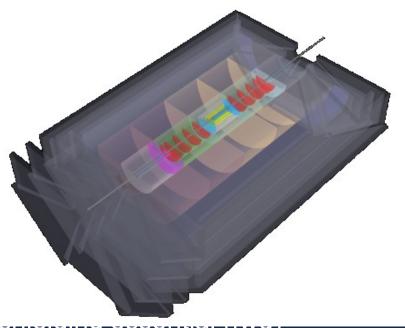
Large Coil


- Large Solenoid containing the Calorimeter
- 3.5 T Solenoid of similar to CMS/ILC
- Precise Muon measurement
- Large return flux either enclosed with Iron or Option of active B shielding with 2nd solenoid

Small Coil

- Smaller Solenoid placed between EMC and HAC
- Cheaper option
- Convenient displacement of Solenoid and Dipoles in same cold vacuum vessel (Linac-Ring Only)
- Smaller return flux (less iron required)
- Muon p, p_t measurement compromised

Genera	General parameters		
Magnetic length	12.5 m		
Free bore diameter	6.3 m		
Central magnetic induction	4 T		
Total Ampere-turns	41.7 MA-t		
Nominal current	19.14 kA		
Inductance	14.2 H		
Stored energy	2.6 GJ		
Co	ld mass		
Layout	Five modur coupled		
Radial thickness of cold mass	312 mm		
Radiation thickness of cold mass	3.9 X ₀		
Weight of cold mass	220 t		
Maximum induction on conductor	4.6 T		
Temperature margin wrt operating temperature	1.8 K		
Stored energy/unit cold mass	11.6 kJ/kg		
Ire	on yoke		
Outer diameter of the iron flats	14 m		
Length of barrel	13 m		
Thickness of the iron layers in barrel	300, 630 a:		
Mass of iron in barrel	6000 t		
Thickness of iron disks in endcaps	250, 600 a:		
Mass of iron in each endcap	2000 t		
Total mass of iron in return yoke	10 000 t		


Muon Dete

• Physics:

- Heavy flavour
- Vector Mesons
- Diffraction etc.

• HERA Experience:

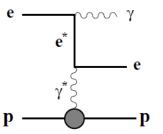
- Beam background understanding/
- Running in conjuction with tracking (forward) and CAL has shown to be very important both for trigger and RO
- LHeC Different Energy Range. Large acceptance could extend the LHeC physics potential
- Detector technologies
 - Detector technologies available (LHC) and very active R&D developments ongoing (sLHC)
- Magnet design essential for an independent momentum measurements

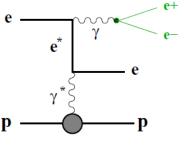
3rd CERN-ECFA-NuPECC Workshop on the LHeC

12 13 November 2010 Chavannes de Bogis, Switzerland

Luminosity Measurement and *e*-tagging at the LHeC

S. Levonian, DESY

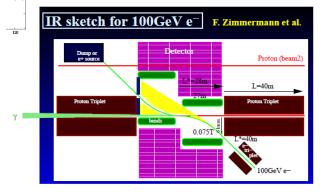



Mission

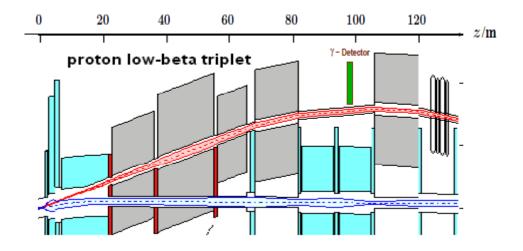
Challenges

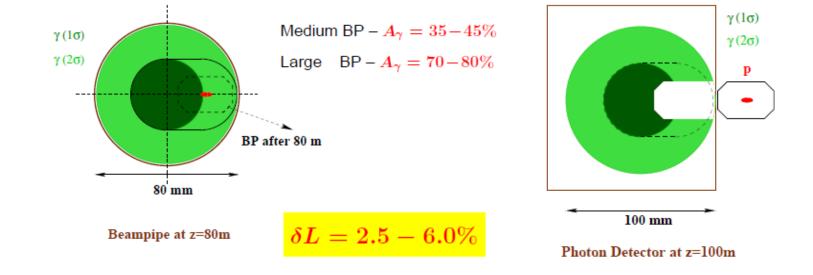
Possible options

Conclusions



Main detector				
QED Compton: $\sigma_{ m el}(heta < 179^o) = 5$ nb	F2 (NC DIS):	$\sigma(Q^2 > \ 10) = 300 \mathrm{nb}$		
(poles in γ^* propagator, but large e^* mass)	F2 (NC DIS).	$\sigma(Q^2>100)=~25{\rm nb}$		

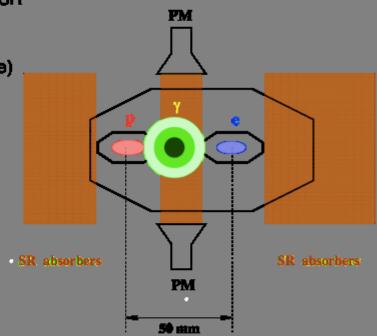

γTagger

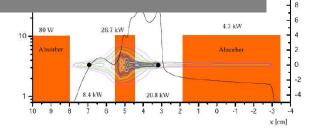

LR option

- Head-on collisions.
 Similar to HERA, γ's travel along the p-beam
- Lumi monitor located after proton dipole at z = 100m
 - \Rightarrow Challenge: large aperture required for proton magnets at z = 60 - 80m

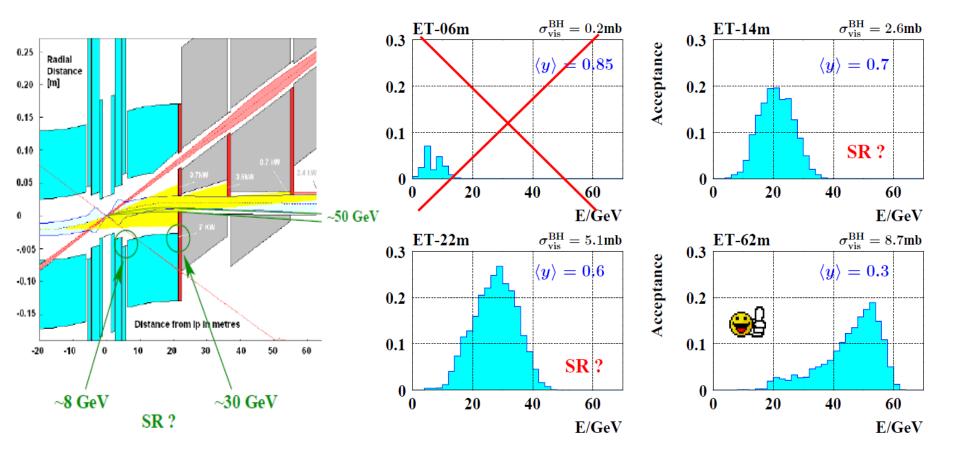
LR scheme

14


16 γTagger


Ring-Ring option

BH-photon detector integrated into SR absorber


- ullet Cooling system with 10-20 cm long water bath acting as Čerenkov radiator for BH γ 's
- Radiation hard, (almost) insensitive to SR (but: high E_{mit} ⇒ effect of the tail?)
- For latest optics (1 mrad crossing angle) acceptance is up to 90%
- Exact BH counter design and R/O still to be worked out
- Accurate acceptance control requires precise beam tilt monitoring (10-15% of the x-angle)

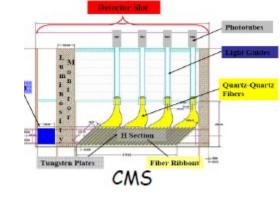
 $\delta L = 3\%$ within reach

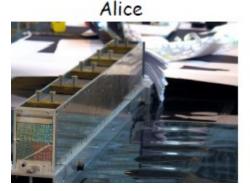
Options for Electron Taggers

- Luminosity measurement at the LHeC is a non-trivial task.
 HERA experience: surprises are possible ⇒ prepare several scenarios
- Precise integrated \mathcal{L} for physics is possible with main Detector (QEDC, F2) $\delta \mathcal{L} = 2\%$ is within reach
- Fast instantaneous *L* monitoring is challenging, but few options do exist
 - \triangleright Photon Detector for LR option requires large p-beampipe at z=80m
 - In case of RR option B-H photons can be detected using water Čerenkov counter integrated with SR absorber at 22m
 - \triangleright Electron tagger at 62 m is very promising for both LR and RR schemes
- Good control of the e-beam optics at the IP is essential to monitor acceptances of the tunnel detectors at 3-5% level

Tagging very forward neutral particles at the LHeC (Zero Degree Calorimeter)

Armen Bunyatyan


Zero Degree Calorimeter - important part of the future ep(ed,eA) detector.


For LHeC energies, we may have quite reasonable energy acceptance for forward neutrons with the calorimeter at ~100m and transverse acceptance of up to 3cm

Requirement to the calorimeter: measure energy and position of neutrons and photons with a reasonable resolution, identify $\gamma(\pi^0)$,n; reconstruct >1 particles ; radiation hard

Detector design - challenging task ! Based on the experience from FNC/ZDC calorimeters at the LHC, HERA and RHIC, explore novel methods

Next steps: clarify the geometrical constraints; Investigate the possible design options.

0.75 mrad aperture cut at HERA corresponds to 0.1 mrad at LHeC ! With ~ ±3cm we can get quite reasonable acceptance, >90% for $x_L>0.3$, |t|<3 GeV²

Summary - Outlook

- Important S • constraints
- s forward in the understanding of the machine. d the interaction region
- Possibly co-verging to 1 detector option (acceptance) •
- is being def
- Key decisio •
- Extensive c • needed
- New compu •
- Detector-wi • preferred. F L-R bending
- Converge to CDR

A baseline detector concepts following the Physics requirements ed together with attractive R & D options

agnet designs, etc.) in front of us

stion and feedback from Physics Groups

tform CERN SLC5

id (CMS/ILC) is Ma net or