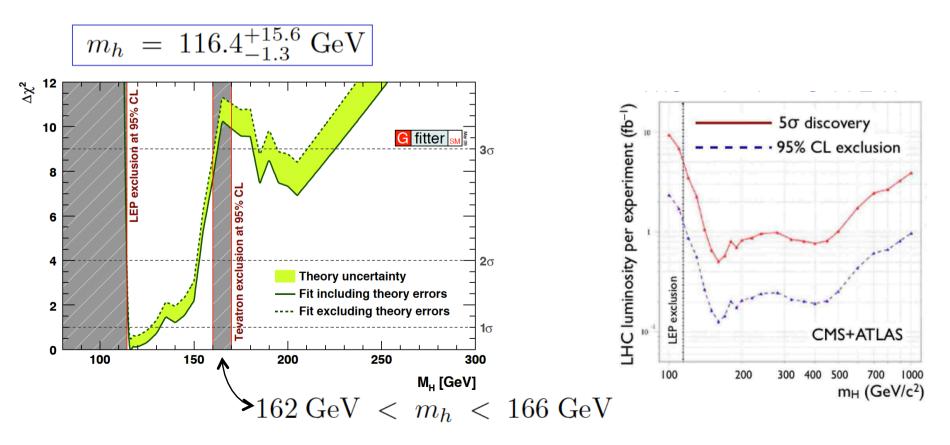
Light SM Higgs at LHeC

Uta Klein

on behalf of M. Ishitsuka, K. Kimura, M. Kuze, K. Sampei *Tokyo Institute of Technology* C. Hengler, U. Klein *University of Liverpool*

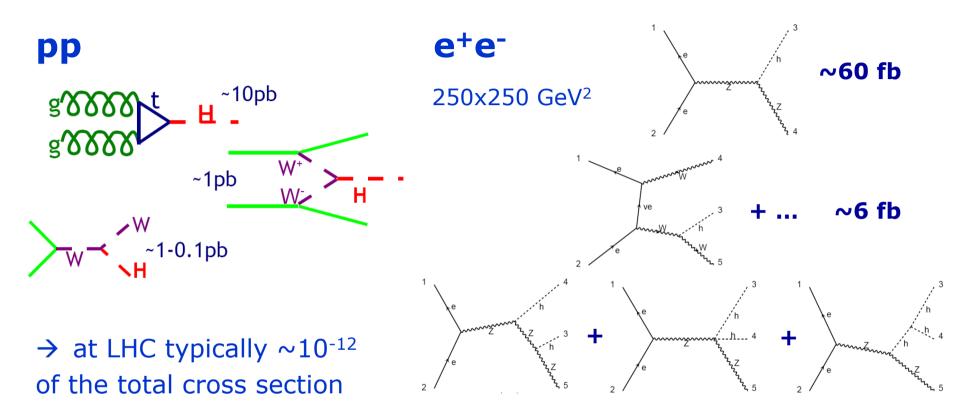


3rd LHeC Workshop, November 12th, 2010

Motivation

- SM gauge boson and fermion mass generation mechanism needs the Higgs boson.
- LHC and Tevatron experiments will have the capability to observe or exclude the Higgs.
- EW precision data and direct searches suggest a mass range $m_{H} \ge 114$ GeV, see e.g. recent review by J.Ellis [arXiv:1004.0648]

Higgs Boson Couplings

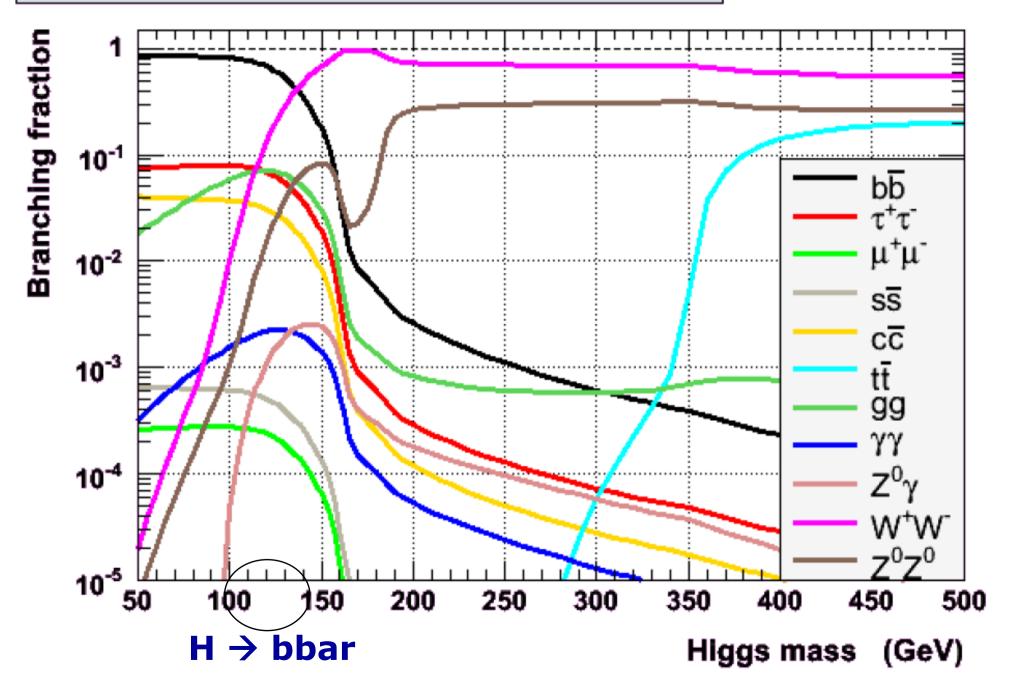

Higgs couplings to both gauge bosons and fermions determine the Higgs production cross sections.

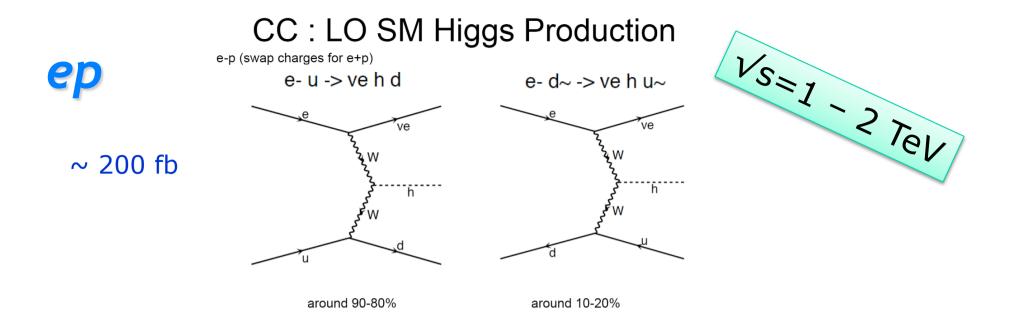
- → Measurements of those provide crucial tests of the mass generation mechanism realised in nature!
- → If a Higgs with mass < 200 GeV is discovered at LHC, Higgs boson couplings and the total width may be extracted after several years of running, see e.g. M. Duhrssen et al. [hep-ph/0406323]</p>
- → However, even then will be a measurement of the Higgs-bottom coupling extremely challenging since the H→bb dominant at $m_{\rm H} \le 130$ GeV is overwhelmed by QCD backgrounds for b-jets.

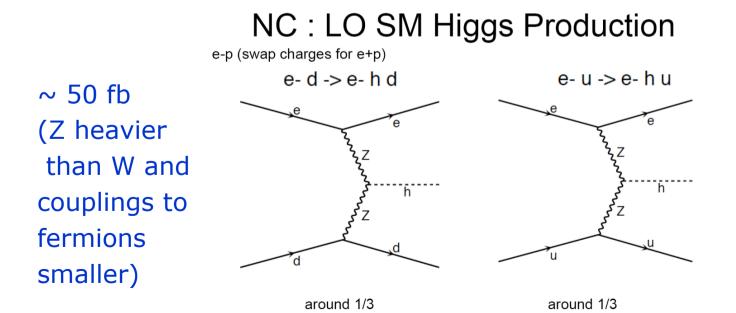
LHeC is an LHC upgrade proposal focusing on precision measurements of the partonic substructure of the proton and the strong coupling at \sqrt{s} of 1 to 2 TeV.

An ep collider can *add on valuable information w.r.t. LHC* measurements in particular if a light SM Higgs was discovered and some knowledge on the total width and some boson couplings are known.

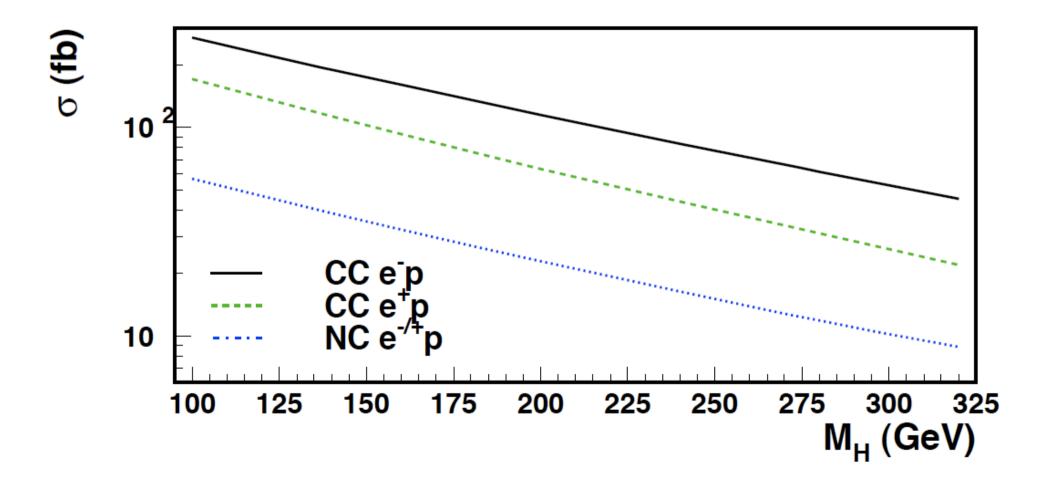
SM Higgs Production Examples

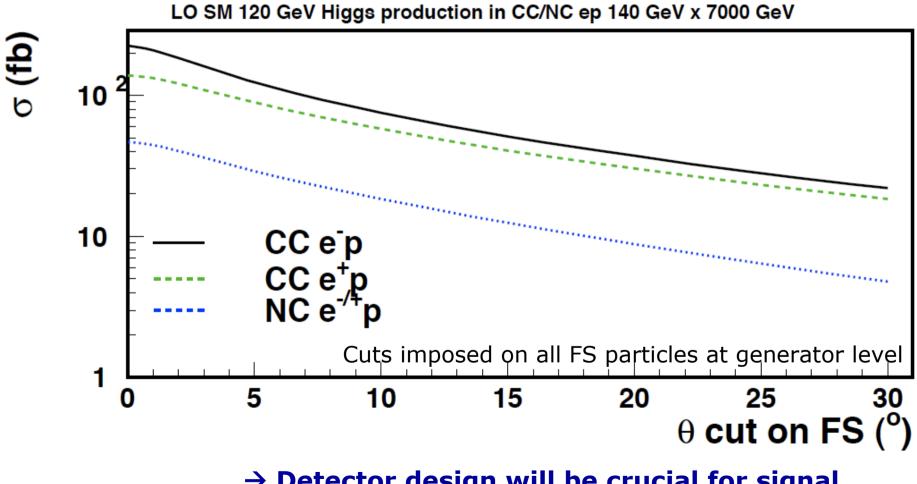

~0.2 fb


Decay depends strongly on m_H


- low masses : bbar, but also $\gamma\gamma$, $\tau+\tau$ -
- high masses : WW, ZZ ... ttbar

Variety of search topologies with different S/B


SM Higgs Branching Fractions (HDECAY 2.0)



Total LO Higgs Cross Sections vs M_H 140 GeV x 7000 GeV

Effect of Detector Acceptance M_H = 120 GeV

→ Detector design will be crucial for signal detection and background rejection efficiency.

Total CC e-p Higgs Cross Sections (fb) versus Electron Beam Energy

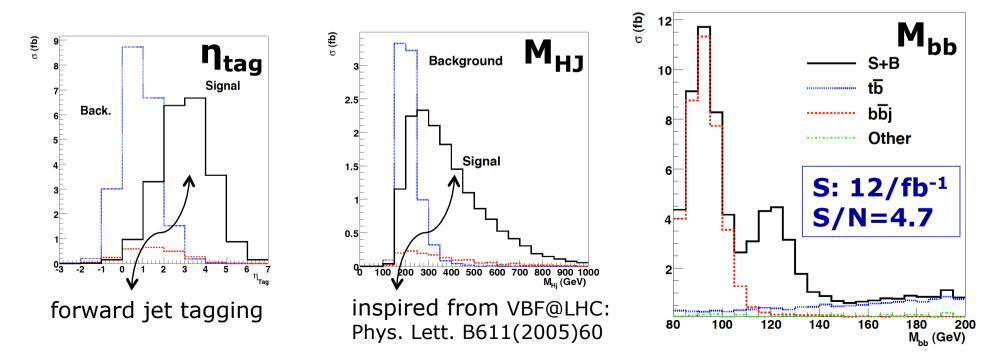
	100 GeV	120 GeV	160 GeV	200 GeV	240 GeV	280 GeV
50 GeV	102.4	80.6	50.3	31.6	19.9	12.5
100 GeV	201.3	165.3	113.2	78.6	55.2	39.1
150 GeV	286.3	239.5	170.4	123.3	90.5	67.1

→ Scale dependencies of the LO calculations are in the range of 5-10%.
 → QCD and QED corrections are moderate but sensitive to experimental cuts. NLO QCD corrections are small, but shape distortions of kinematic distributions up to 20%. QED corrections up to -5%.
 [J. Blumlein, G.J. van Oldenborgh , R. Ruckl, Nucl.Phys.B395:35-59,1993.]
 [B.Jager, arXiv:1001.3789.]

Methodology

MadGraph : tree level calculations of various processes

SM parameters can be steered via SM parameter calculator (change M_H) Beam energy, phase space cuts, PDF, scales etc. via steering card All Feynman diagrams shown in this talk have been produced using Madgraph.


Use Madgraph including pythia-pgs interface modified for DIS for 'detector-level' studies, see previous studies as listed in the backup.

New : use most recent Madgraph version 4.4.44 \rightarrow Higgs decay into bbar is done in Madgraph by package DECAY PDF : CTEQ6L1 (LO PDF and LO $\alpha_S = 0.13$) Factorisation and renormalisations scales set to partonic c.m.s. \rightarrow Perform generator and `detector-level' Higgs search

Generator-level Study

T.Han, B. Mellado arxiv:0909.2460

- M_H =120 GeV, ep: 140 Gev X 7000 GeV using Madgraph and DECAY
- generated parton energies and angles smeared by resolutions, e.g. $\delta E_{had} = 60\%$ yields $\delta m_H = 7\%$ (w/o angular smearing)
- 60% b-tagging efficiceny applied on b-quarks and rejection factors of 10 and 100 for c and light quarks, resp., for $|\eta| < 2.5$
- require mass of 2 b-partons to be within 120 ± 10 GeV (assume known M_H)
- tag the forward spectator parton within $1 < \eta < 5$ and $p_T > 30$ GeV
- high invariant mass of H-candidate and spectator jet, M_{HJ} >250 GeV

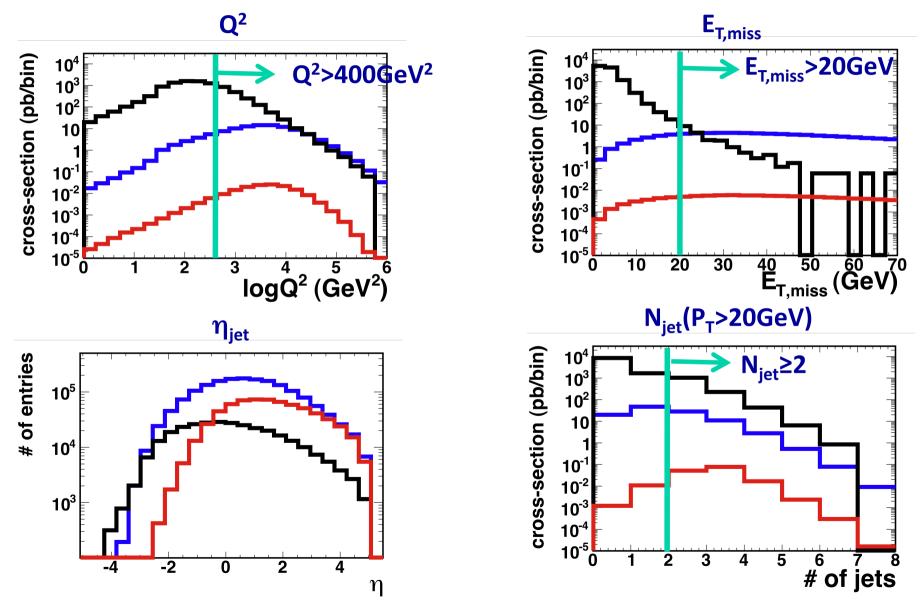
CC e-p Higgs 'Detector-level' Study

- > Parameters for $\sqrt{s} = 2.05 \text{ TeV}$
 - Proton beam $E_p = 7 \text{ TeV}$
 - Electron beam $E_e = 150 \text{ GeV}$
 - Higgs mass $M_{\rm H}$ =120 GeV
 - Luminosity $L=10 \text{ fb}^{-1}$

Generator cuts for all samples (j: udcsg ,l:eµ, γ: photon)

- $P_{T,j}$ > 5 GeV & $P_{T,lepton,photon}$ > 0.1 GeV
- $|\eta_{jet, b, lepton, photon}| < 5.0$
- $\Delta R(between FS particles) > 0.4$
- additional cut for 3 jet NC and CC background sample of $M_{\rm jj}$ > 30 GeV

Overview of generated Samples

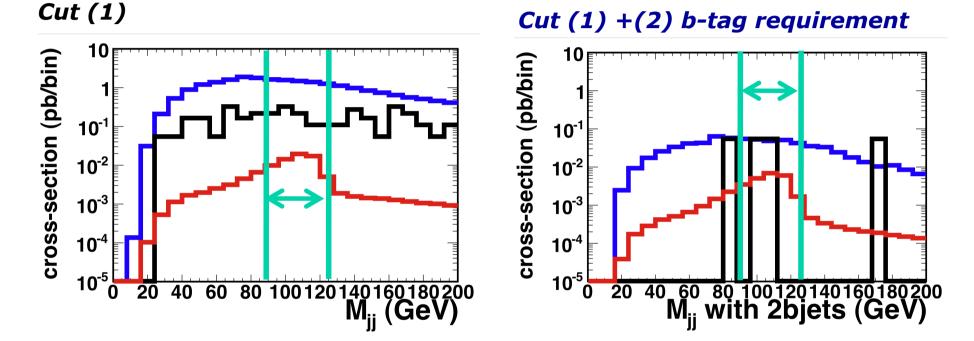

process	Cross-section with generator cut (pb)	# of diagrams	<pre># of generated events</pre>
Higgs decay to bb	0.160	2	200 000
CC 3jets bgd (w/o higgs)	111	384	720 000
NC 3jets bgd (w/o higgs)	11500	1428	190 000

'Detector' ...events passed thru PGS generic LHC detector

LHC	! parameter set name	
320	! eta cells in calorimeter	
200	! phi cells in calorimeter	
0.0314159	! eta width of calorimeter cells eta < 5	
0.0314159	! phi width of calorimeter cells	
0.01	! electromagnetic calorimeter resolution const	
0.2	! electromagnetic calorimeter resolution * sqrt(E)	20%→ 5%
0.8	! hadronic calolrimeter resolution * sqrt(E)	80%→60%
0.2	! MET resolution	
0.01	! calorimeter cell edge crack fraction	
cone	! jet finding algorithm (cone or ktjet)	jets: cone<0.5
5.0	! calorimeter trigger cluster finding seed threshold	(GeV)
1.0	! calorimeter trigger cluster finding shoulder thresh	nold (GeV)
0.5	! calorimeter kt cluster finder cone size (delta R)	
2.0	! outer radius of tracker (m)	
4.0	! magnetic field (T)	Disclaimer :
0.000013	! sagitta resolution (m)	PGS of LHC detector
0.98	! track finding efficiency	+ flat b-tagging
1.00	! minimum track pt (GeV/c)	in the full tracking range of
3.0	! tracking eta coverage	η <3.0
3.0	! e/gamma eta coverage	· · ·
2.4	! muon eta coverage	b: 60%, c: 10%, udsg: 1%
2.0	! tau eta coverage	CAL coverage until $ \eta < 5.0$

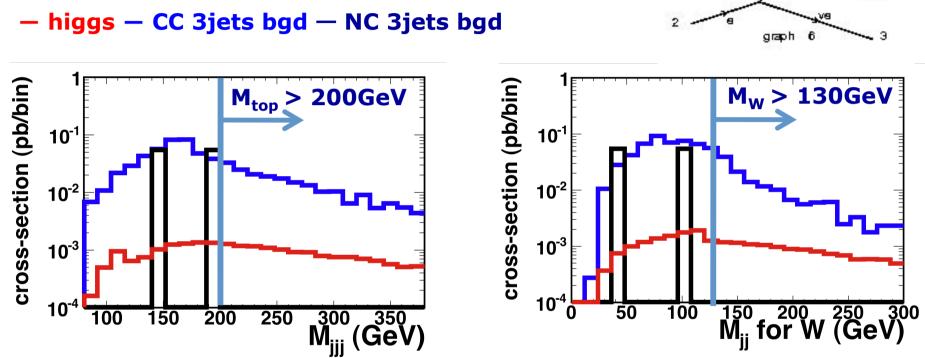
'PGS Detector' Quantities

– higgs – CC 3jets bgd – NC 3jets bgd



Event Selection

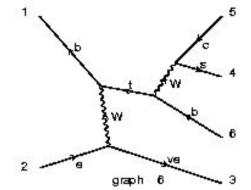
- Cut (1) exclude electron-tagged events. $E_{T,miss}$ >20 GeV, N_{Jet} ($P_{T,Jet}$ >20 GeV) ≥2, $E_{T,total}$ > 100 GeV, Q^2_{JB} >400 GeV², γ_{JB} <0.9
- Cut (2) b-tag requirement N_{b-Jet} (P_{T,Jet}>20GeV) ≥2 `b-Jet' is b-tagged jet
- Cut (3) single top candidate veto $N_{Jet} \ge 3$, $M_{jjj,top} > 200$ GeV, $M_{jj,W} > 130$ GeV
- Cut (4) tag of forward jet $1 < \eta_{fowardjet} < 5, M_{Hj} > 250 \text{ GeV}$
- Cut M_H 90 GeV < M_H < 125 GeV


Invariant Dijet Mass Distribution with and w/o b-tag requirement

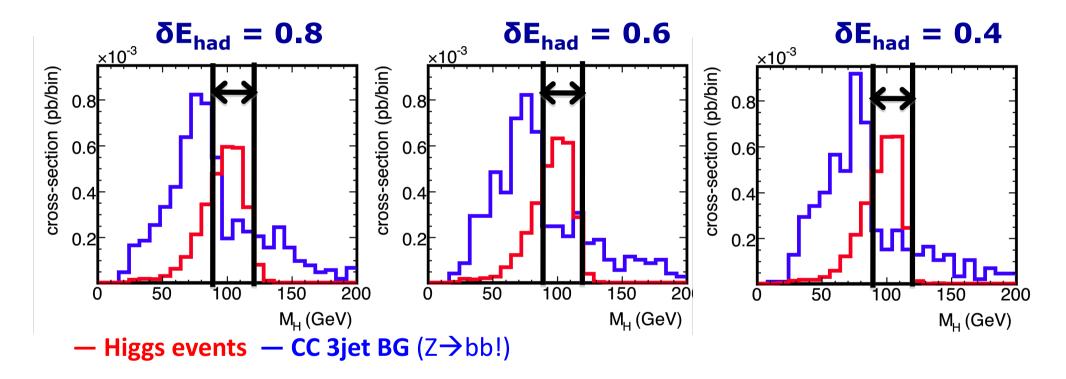
– higgs – CC 3jets bgd – NC 3jets bgd

Number of events (10 fb⁻¹)

Applied cut	H→bb	CC 3jets bg	NC 3jets bg
No cut (All events)	1600	1.11×10 ⁶	1.15×10 ⁸
Cut (1) + M _H	629	6.47×10 ⁴	8210
Cut (1) + (2) + M _H	222	2220	1090



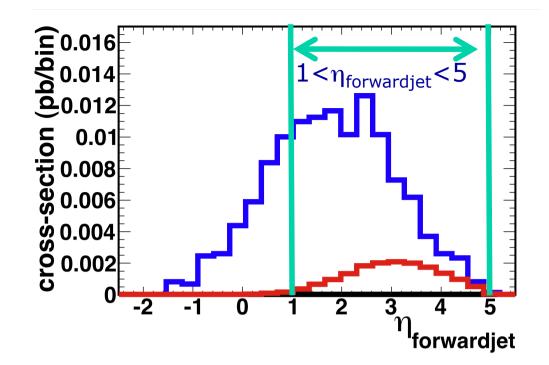
 $> M_{jjj,top}$ was reconstructed from two b-tagged jets with lowest $\eta + any 3^{rd}$ jet with lowest η (regardless of b-tag).

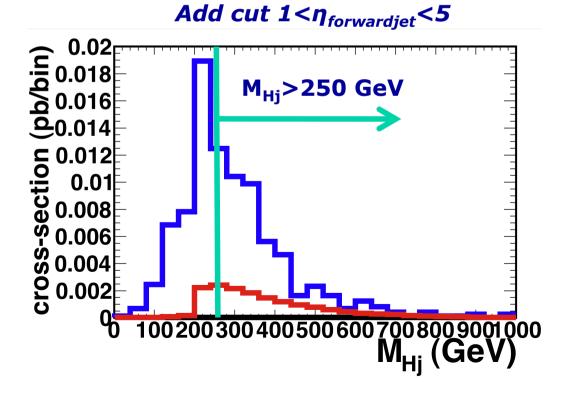

 $> M_{jj,W}$ was reconstructed from lowest η b-tagged jet + lowest η jet (regardless of b-tag but excluding 2nd lowest η b-jet).

Trijet and Dijet Masses

Veto single top candidates Cut (1) +(2) b-tag requirement applied

Background and Hadronic Energy Resolution after kinematic, b-tagging & single top cuts




→ plots (result of previous study) illustrate that an excellent hadronic energy resolution is crucial for background suppression

Forward Jet Tag

after kinematic, b-tagging & single top cuts

- higgs
- CC 3jets bgd
- NC 3jets bgd

 \bullet Reconstruct $M_{\rm Hj}$ with forward tagged jet and 2b-jets.

• Final requirement: Select the events with $M_{Hj} > 250$ GeV.

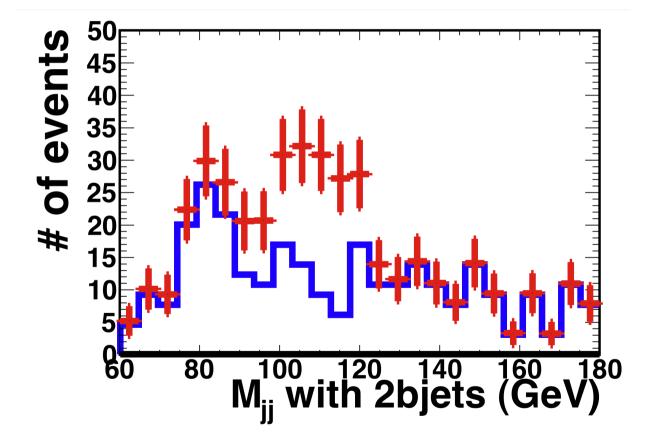
Number of Events (L=10 fb⁻¹) 90 GeV < M_{jj} < 125 GeV &

Number of events after cut (1) & (2) & (3) & M_H

	Higgs event	CC 3jets bg	NC 3jets bg	S/N	S∕√N
# of events after	129	310	0*	0.42	7.3

*statistics for NC 3jets bgd is not enough.

Number of events after ALL cuts.


	Higgs event	CC 3jets bg	NC 3jets bg	S/N	S∕√N
# of events	104	86.4	0	1.2	11

- Efficiency of Higgs event selection is 6.5% (104/1600)
- We could identify $H \rightarrow bb$ events within 11 σ .

Invariant Dijet Mass after ALL Cuts

Cut: (1) + (2) + (3) + (4) forward tagged jet cut

– higgs – CC 3jets bgd – NC 3jets bgd

Error bars show statistical errors only.

Summary & Outlook

 Studies on CC e-p higgs production confirms the early LEP+LHC studies on dominant dijet+spectator jet background and the importance of the b-tagging, hadronic energy resolution and forward jet tagging.

→ Our results are very encouraging and We could identify H→bb events within 11σ.

...It is all work in progress!

- Full MadGraph + Pythia + PGS chain is working for DIS and Pythia-Madevent files can be read in into detector simulation tools
 - \rightarrow Higgs channel has been used to optimise LHeC detector!
- More detailed background sources for CC e-p higgs has to be studied in particular beauty in photoproduction, but <u>we need our</u> <u>own detector simulation</u> for more sophisticated estimates of rejection factors or tagging possibilities.

Outlook

Tools:

- Thanks to H. Jung, we got a Rapgap (for PHP) and Djangoh (for CC multijet but w/o top, W, Z, H) stand alone versions which delivers also hepmc files.
- Thanks to S. Hoeche, we got a brand-new pre-release DIS version of Sherpa (v1.2.3).
- We started working with the Delphes detector simulation which is (in principle) more flexible than PGS and allows various file formats (hepmc, stdhep, lhe).

Physics:

- Study also NC Higgs searches which is an important benchmark process for understanding the HZZ coupling.
- Study the extraction of Hbb coupling using LHeC Higgs cross sections in NC and CC in combination with LHC Higgs signal projections...

Special thanks to

E.Perez, G.Azuelos, G.Grindhammer,
B.Kniehl, G.Kramer, H.Spiesberger,
G.Weiglein, W.Khater, B.Mellado,
O.Behnke, F.Krauss, S.Hoeche,
H.Jung, P.Kostka, M.Klein

... and others

for contributions and fruitful discussions.

Material

1st LHeC workshop, 1st - 3rd September 2008, Divonne.

http://indico.cern.ch/conferenceDisplay.py?confId=31463

Talks by E.Perez and G.Weiglein; M.Kuze et al.; U.Klein

LHeC pre Meeting at DIS 2009, 25th April 2009, Madrid.

http://indico.cern.ch/conferenceOtherViews.py? view=cdsagenda&confId=55684

Talks by M.Ishitsuka et al.; U.Klein

2nd LHeC workshop, 1st - 3rd September 2009, Divonne.

http://indico.cern.ch/conferenceDisplay.py?confId=59304

Talks by M.Kuze et al.; B.Mellado and T.Han; U.Klein

LHeC Mini_workshop, 8th April 2010, Hamburg.

<u>http://indico.cern.ch/conferenceDisplay.py?confId=83882</u> Talk by K.Kimura et al.

More material on the LHeC project can be found here: http://www.ep.ph.bham.ac.uk/exp/LHeC/

Some inspiring previous studies

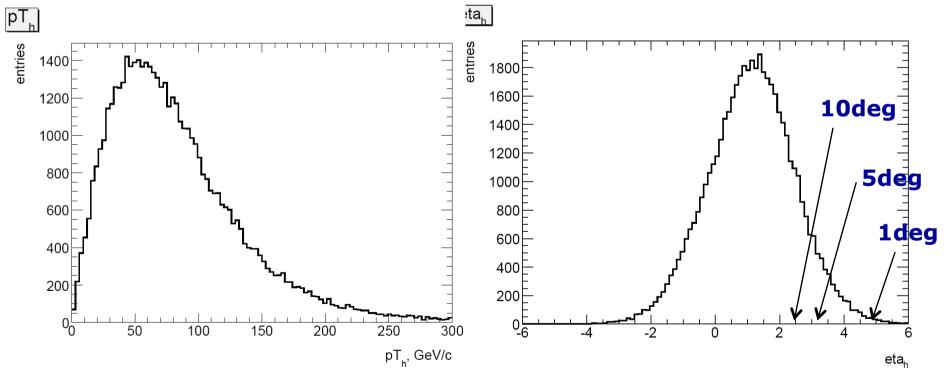
Searching for the Higgs in e p collisions at LEP / LHC.

G.Grindhammer, D. Haidt, J. Ohnemus, (Florida State U.), J. Vermaseren, D. Zeppenfeld. MAD-PH-618, Nov 1990. Contribution to Proc. of Large Hadron Collider Workshop, Aachen, Germany, Oct 4-9, 1990. Published in Aachen ECFA Workshop 1990:0967-985.

Standard-model Higgs boson production at HERA.

Bernd A. Kniehl Prepared for Workshop on Future Physics at HERA (Preceded by meetings 25-26 Sep 1995 and 7-9 Feb 1996 at DESY), Hamburg, Germany, 30-31 May 1996.

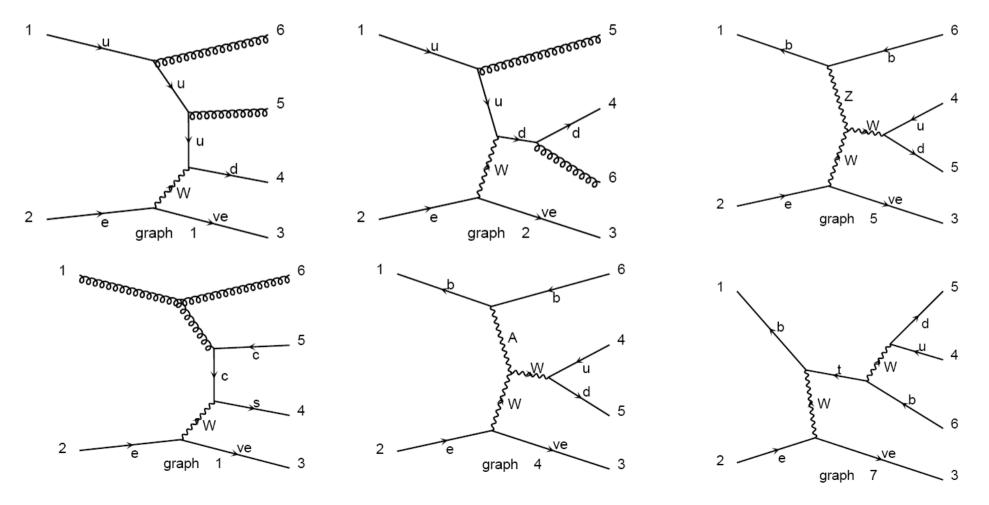
In *Hamburg 1995/96, Future physics at HERA, vol. 1* 219-221.

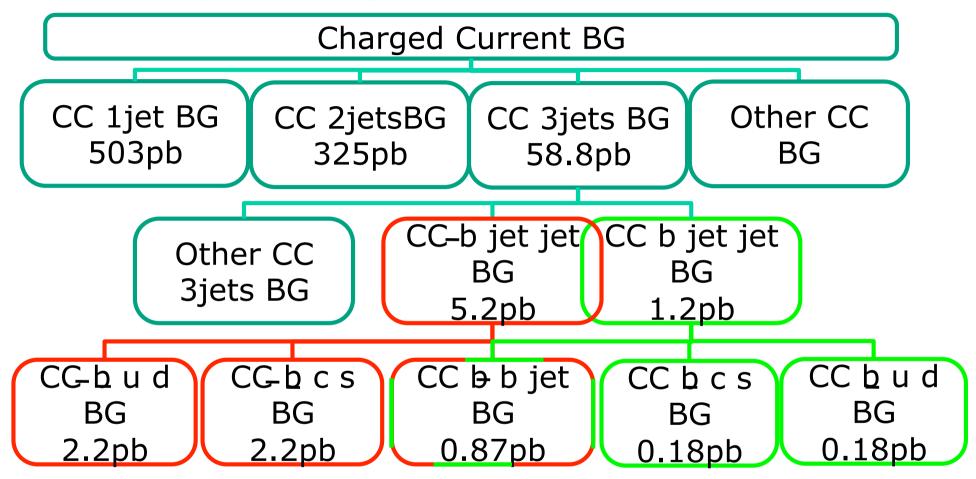

Additional Slides

Higgs Kinematics in e⁻p CC

- 50 k Higgs events, m_H =120 GeV, 150 GeV x 7000 GeV
- Higgs decay via Pythia :

~68% into bbar + other decay modes


...somewhat lower than expected, similar number via DECAY in Madgraph (~72%)


Higgs rapidity in central to forward region

Background

~100 k CC dijet+spectator events, $E_{jet}>5$ GeV, $\theta_{jet}>0.5$ deg, $M_{jj}>30$ GeV 58.8 pb (LO cross section, scale uncertainty expected to be 50-100%) MadGraph generated 542 diagrams including higgs, single top, single W \rightarrow After 'simple' dijet-selection: BG ~100 times larger than Higgs signal!

CC Dijet Subprocess Cross Sections

Large cross-sction of $\overline{b}\overline{c}s$ or $\overline{b}\overline{u}d$ 3 Jets events.

95% of these processes was single-top production $\overline{t} \rightarrow W\overline{b} \rightarrow (\overline{c}s \text{ or } \overline{u}d) \overline{b}$ They were suspected 3Jets background for Higgs discovery.