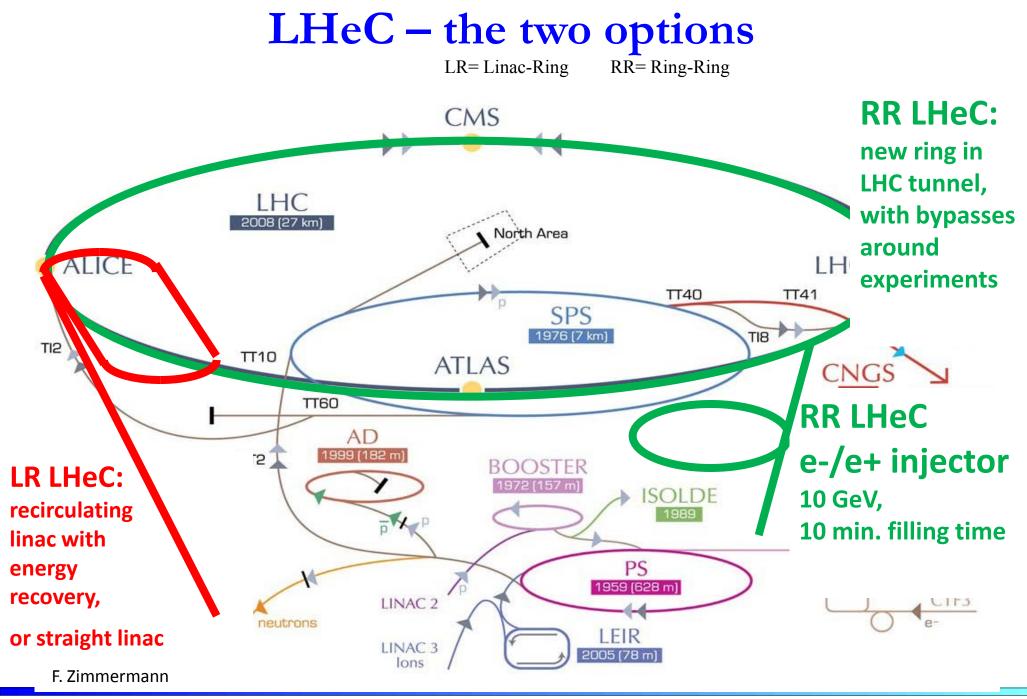
Sources + Injector


L. Rinolfi

Thanks, for useful discussions, to:

O. Brüning, H. Burkhardt, O. Dadoun, T. Omori, M. Petrarca, M. Poelker, D. Schulte, A. Vivoli, V. Yakimenko, F. Zimmermann

3rd LHeC workshop - Chavannes-de-Bogis

12th November 2010

3rd LHeC workshop - Chavannes-de-Bogis

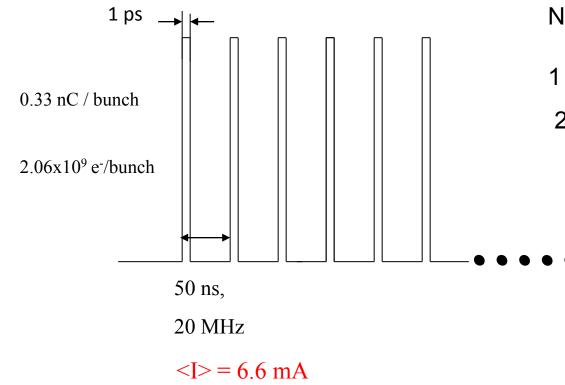
Linac – Ring option Polarized (e⁻)

LHeC parameters

Table 4: Lepton Beam Parameters and Luminosity	Table 4:	Lepton	Beam	Parameters	and	Luminosity
--	----------	--------	------	------------	-----	------------

1			
	p-60	erl	p-140
e ⁻ energy at IP [GeV]	60	60	140
luminosity $[10^{32} \text{ cm}^{-2} \text{s}^{-1}]$	1.1	10.1	0.4
polarization [%]	90	90	90
bunch population [10 ⁹]	4.5	2.0	1.6
e ⁻ bunch length [μ m]	300	300	300
bunch interval [ns]	50	50	50
transv. emit. $\gamma \epsilon_{x,y} [\mu \mathrm{m}]$	50	50	100
rms IP beam size $[\mu m]$	7	7	7
hourglass reduction H_{hg}	0.91	0.91	0.94
crossing angle θ_c	0	0	0
repetition rate [Hz]	10	\mathbf{CW}	10
bunches/pulse [10 ⁵]	1	N/A	1
pulse current [mA]	14.8	6.6	5.4
beam pulse length [ms]	5	N/A	5
ER efficiency η	0	94%	0
total wall plug power [MW]	100	100	100

LHeC Linac-Ring Design Status

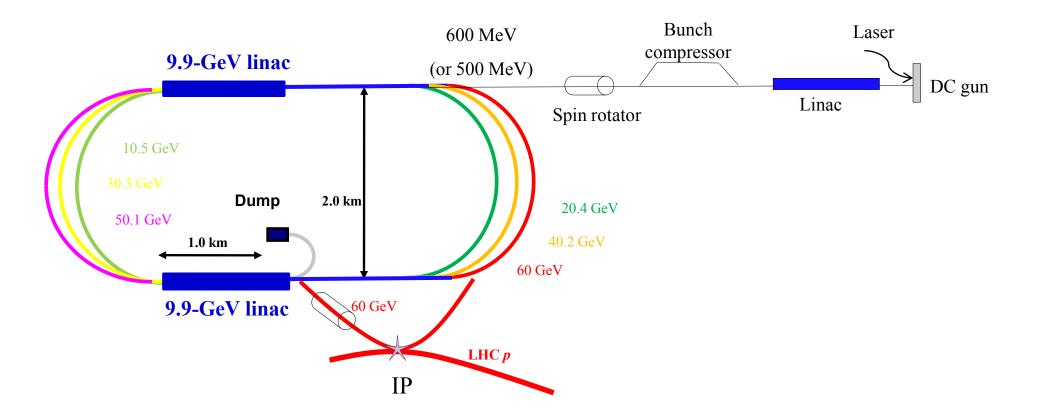

by F. Zimmermann

LHeC meeting

20th May 2010

The 60-GeV "erl" scenario, with a possible extension to 70 GeV, has been chosen as baseline for the linac-ring LHeC design.

LHeC-RL (60 GeV-ERL) beam structure at IP for e⁻ and e⁺



Number of bunches per second

 $1 / 50 \times 10^{-9} \text{ s} = 20 \times 10^{6} \text{ b/s}$

20x10⁶ b/s x 0.33x10⁻⁹ C/b = 6.6 mA

Injector for ERL

e⁻ source parameters

Parameters	LHeC 60 GeV "erl"	
Electrons/bunch (N _{e-})	2.2x10 ⁹ (*)	
Charge / bunch (q _e)	0.35 nC	
Number of bunches / s (n _b)	20 x10 ⁶	
Width of bunch (t _p)	10 - 100 ps (**)	
Time between bunches (Δt_b)	50 ns	
Pulse repetition rate	CW	
Average current	6.6 mA	
Peak current of bunch (I peak)	3.5 - 350 A	
Current density (1 cm radius)	1.1 - 110 A/cm ²	
Polarization	> 90%	

(*) Assumed 90% efficiency

(**) Microbunch width $(t_p)_{LHeC}$ between 10 and 100 ps (depends on the photocathode and laser)

cw laser parameters for LHeC e⁻ source

$$E_{L} = \frac{hc}{q} \frac{Q}{\lambda \times QE} \qquad \qquad E_{L}(J) = 1.24 \times 10^{-6} \frac{Q(nC)}{\lambda (nm) \times QE}$$

 $\lambda\thickapprox775$ - 780 nm for GaAs photocathodes

QE ≈ 0.2 %

Parameters	Units	LHeC
		60 GeV
Laser energy on photocathode (E_L) per pulse	J	0.28 x10 ⁻⁶
Peak power ($P_p = E_L / t_b$)	W	2.8 - 280 kW
Average power ($P_a = E_L x f_{las}$)	W	5.6 W

Expected performance for the LHeC e⁻ source

Parameters	Units	LHeC	
Gun high voltage	kV	140	
Initial charge at the gun	nC	0.35	
Initial bunch length at the cathode	ps	10 - 100	
Injector energy	MeV	500	
Bunch length after the Bunch Compressor	ps	1	
Energy spread	%	< 1	
Normalized rms emittance	mm.mrad	< 50	
Polarization	%	> 90	

Production of ultra-short pulse beam with high charge (< 10 ps, @1 nC/bunch) and low emittance (< 1 π .mm.mrad, @1 nC/bunch) is not yet obtained but achievable

Today status for photocathodes

Electron Spin Polarization >80 % and 0.2%<QE<1% has been obtained

Nagoya, KEK, JLAB, SLAC,

Surface Charge Limit for 0.4nC/bunch and 2.8ns bunch separation is ok KEK

Peak Current ~10A with ~ 4ns laser has been produced

SLAC

Assuming 10 A peak current possible, the LHeC charge (350 pC/bunch) => laser pulse = 35 ps

Project for ~ 1 mA with ~ 1 nC/bunch at XFEL based on concept of SRF hybrid Nb/Pb gun

ERL project ~10 mA with 77 pC/bunch at JAEA (Japan).

Today the production of the 7 mA average current with reasonable life time (> 1 week) seems doable from photocathodes but remains to be demonstrated !

Today status for the gun and laser

Gun:

- Load locked gun with high voltage 100 kV 200 kV, tunable gap, vacuum <10⁻¹⁰ Pa $_{JLAB}$
- DC gun 380 kV without beam, vacuum 10⁻⁹ Pa; tested for 8h at 500 kV JAERI

Laser:

Output laser pulse energy of $E_L \sim 1 \mu J$ is required in order to obtain $\sim 0.3 \mu J$ on the cathode. Oscillator technology with repetition rate > 20 MHz is available in solid state and fiber oscillator. Laser with required energy (1MHz and 500 ps) is available on the market for a fiber laser system. With a strong R&D, upgrading to 20MHz is probably feasible nowadays

R&D issues for the LHeC polarized source

- Operation with high average current (7 mA)
- Very good vacuum required for good lifetime
- Emittance growth due to space charge
- Space charge limit and Surface charge limit
- Field emission issue with very high voltage (>> 100kV)
- Laser performance issue
- Cathode/anode design for 100% transport
- Higher QE (Quantum Efficiency)

R&D is required in order to get the expected performance

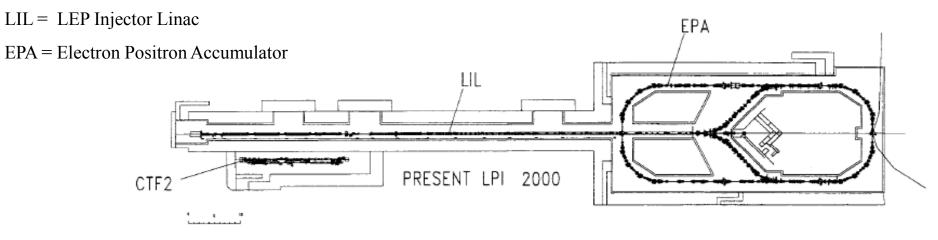
Summary for LHeC e⁻ Injector

For the source (photocathode, DC gun and laser), experimental test facility required => R&D.

A conventional Injector Linac accelerates beam up to 500 MeV before injection in the ERL.

One (or several) stage of bunch compressor required to reach the 1 ps bunch length (compensation of longer initial laser pulse and space charge effects inducing bunch lengthening).

Implementation of spin rotators.

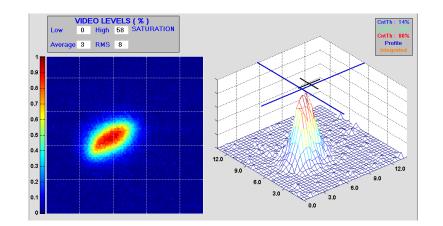

Beam instrumentation to measure the 90% polarization.

Ring – Ring option Unpolarized (e⁻and e⁺)

The LPI* as an e⁻ and e⁺ sources

(*) LPI = LEP Pre-Injector

See H. Burkhardt talk


LL Beam Characteristics

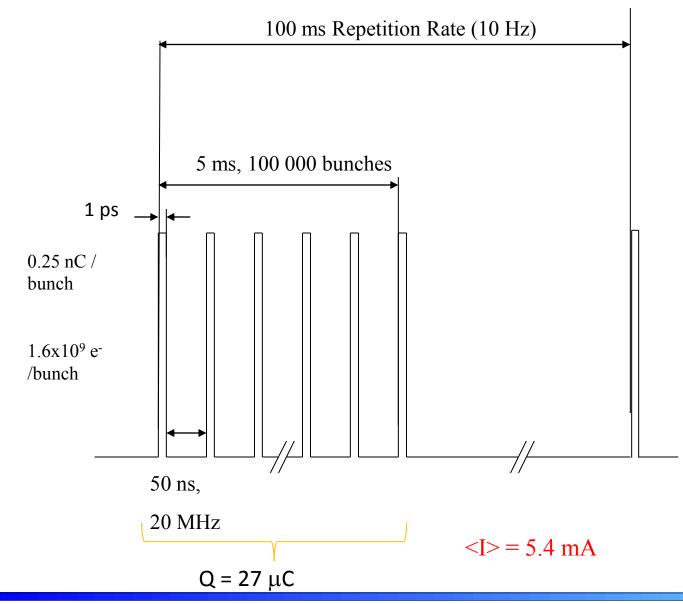
Energy : 200 to 700 MeV

Intensity : $5x10^8$ to $2x10^{10}$ e⁻ / pulse Pulse length 10 to 35 ns (FWHM)

Frequency: 1 to 100 Hz

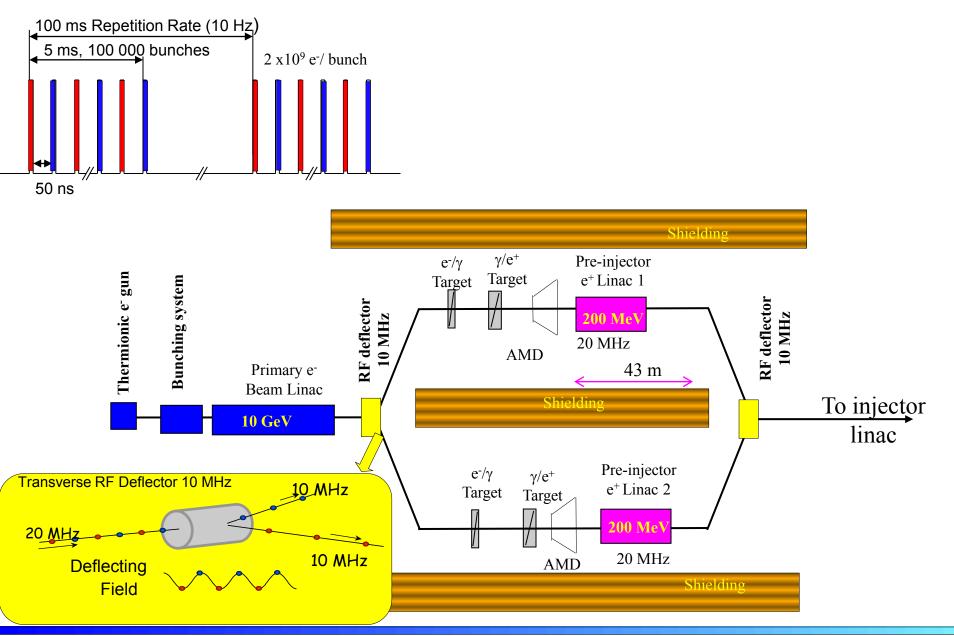
Beam sizes: $\sigma_x = \sigma_y = 3 \text{ mm}$

EPA ring


EPA	Range
Energy	200 to 600 MeV
Charge	up to 4.5 x 10 ¹¹
Intensity	up to 0.172 A
Nb buckets	1 to 8
Emittance	0.1 mm.mrad
Tune	Q _x = 4.537; Q _y = 4.298
Vacuum	10 ⁻⁸ Pa

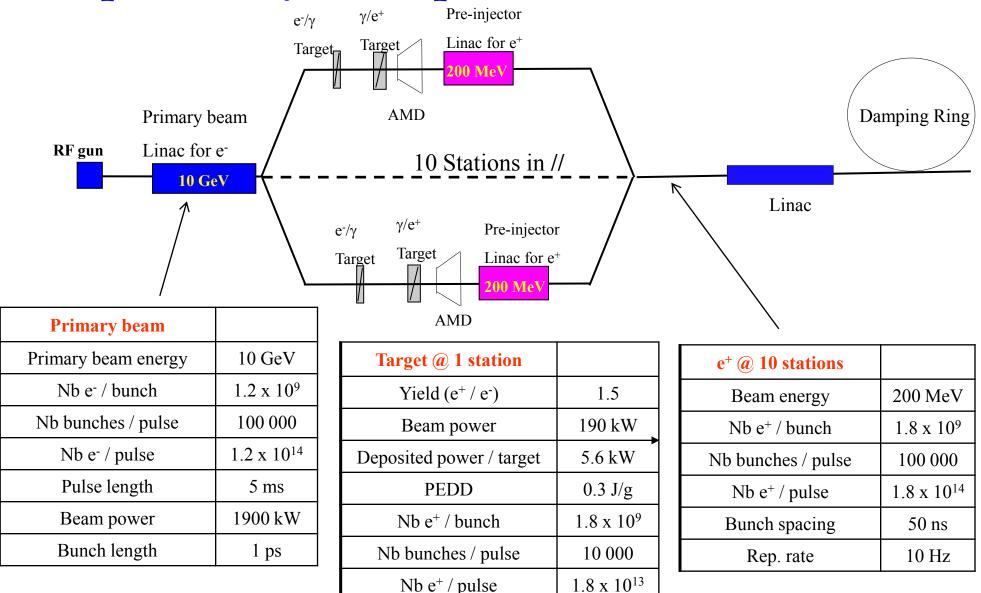
Linac – Ring option Unpolarized (e⁺)

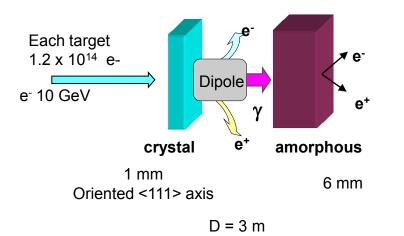
Flux of e⁺


	SLC	CLIC (3 TeV)	LHeC p-140	LHeC ERL
Energy	1.19 GeV	2.86 GeV	140 GeV	60 GeV
e⁺/ bunch at IP	40 x 10 ⁹	3.72x10 ⁹	1.6x10 ⁹	2 x 10 ⁹
e ⁺ / bunch after capture	50 x 10 ⁹	7.6x10 ⁹	1.8 x 10 ⁹	2.2 x 10 ⁹
Bunches / macropulse	1	312	10 ⁵	NA
Macropulse repet. rate	120	50	10	CW
Bunches / second	120	15600	10 ⁶	20x10 ⁶
e ⁺ / second	0.06 x 10 ¹⁴	1.1 x 10 ¹⁴	18 x 10 ¹⁴	440 x 10 ¹⁴

LHeC-LR beam structure for p-140 GeV

3rd LHeC workshop - Chavannes-de-Bogis


Concept of 2 parallel target stations


3rd LHeC workshop - Chavannes-de-Bogis

12th November 2010

A possibility for unpolarized e⁺ at LHeC

Issues for e⁺ targets

For each e⁺ target:

- Peak Energy Deposition Density (PEDD) is ok => below the breakdown limit of 35 J/g
- Relaxation time in the target (shock wave) is ok => below the expected limit of 10 µs
- Total beam power deposition is the main issue (5.6 kW / target) = need tests

Summary for LHeC e⁺ Injector (p-140 GeV)

1) A conventional linac, with its injector, is required to accelerate e⁻ beam up to 10 GeV

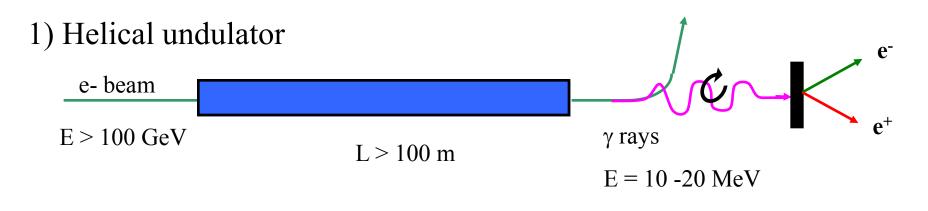
2) Two RF deflectors are required to split e⁻ beam and recombine e⁺ beams:

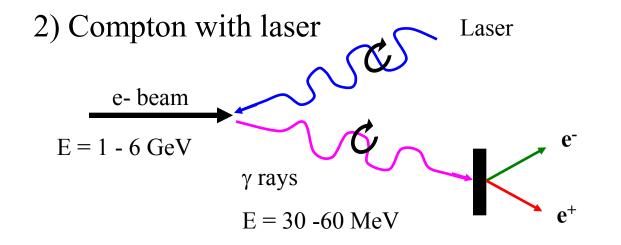
- Experience exits for 3 GHz and 2 lines in parallel
- Design and tests are necessary for 2 MHz, and10 lines in parallel

3) Ten e⁺ target stations in parallel (radiation issues, shielding, etc...):

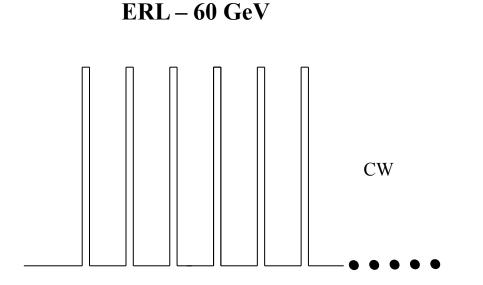
- See previous slides

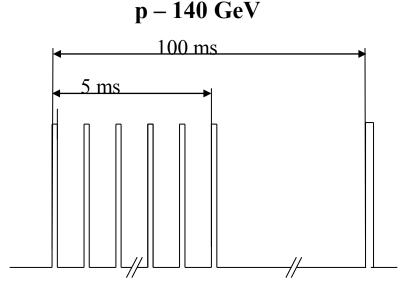
4) Pre-Injector Linacs (200 MeV):


- Bunch length (20 to 100 ps) => bunch compressor
- Normalized rms emittances (6000 to 10000 mm.mrad) => Damping Ring

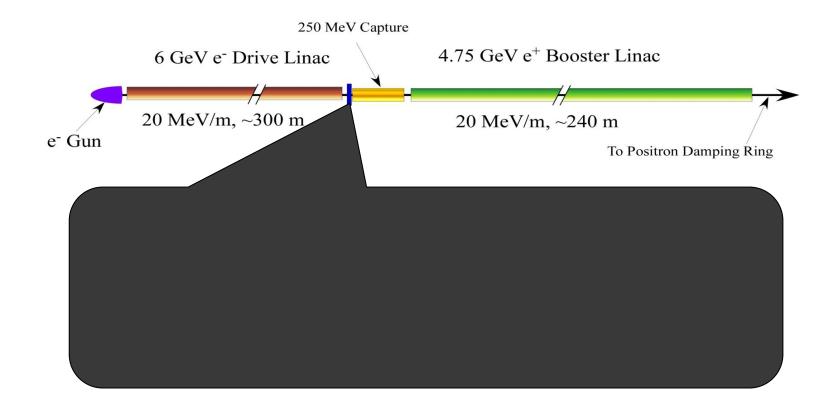

5) Linac and Damping Ring:

- Optimal energy needs to be defined
- Issues related to the long train (5 ms)


Linac – Ring option Polarized (e⁺)


Two methods to produce polarized e⁺

Possible investigations to produce polarized e⁺



1) Compton Linac

- 1) Undulator using spent beam
- 2) Compton Linac
- 3) Compton Ring

Polarized Positrons from Compton Linac

V. Yakimenko

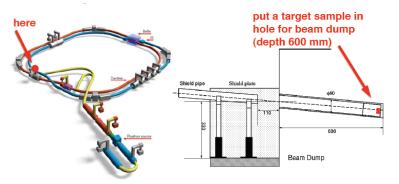
Polarized γ -ray beam is generated in the Compton back scattering inside optical cavity of CO2 laser beam and 6 GeV e-beam produced by linac.

Simple estimations for Compton Linac

- $N_{\gamma} / N_{e-} = 1$ (demonstrated at BNL)
- $N_{e^+} / N_{\gamma} = 0.02$ (expected)
- i.e. ≈ 50 gammas to generate 1 e⁺

Data for CLIC:

$$\begin{split} N_{e^+} &= 6.4 \ x \ 10^9 \ / \ bunch \sim 1 \ nC \\ N_{e^-} &= 0.32 \ x \ 10^{12} \ / \ bunch \sim 50 \ nC \end{split} \label{eq:Ne}$$
 Therefore with 5 nC / e⁻ bunch and 10 Compton IP's => 1 nC / e⁺ bunch

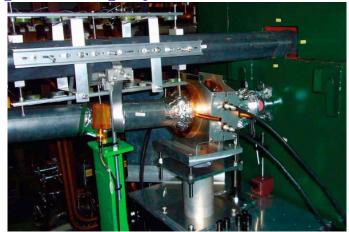

Data for LHeC:

- N_{e^+} = 2.2 x 10^9 / bunch ~ 0.35 nC
- $N_{e\text{-}}$ = 0.11 x 10^{12} / bunch \sim 18 nC
- Therefore with 1.8 nC / e^- bunch and 10 Compton IP's => 0.35 nC / e^+ bunch

BUT many issues:

Laser cavities need strong R&D, emittances, huge power on the target, liquid targets ?, etc,

Shock wave tests on BN window



- KEKB-HER: 8GeV, 10nC (Max), 1600 bunches (1600mA)
- The beam is deflected by the abort kicker as shown when it is dumped.

Experiment performed at KEKB

Total Energy of the Beam 8 GeV, 5 nC/bunch (= 800 mA), 1600 bunches --> 64 kJ

Energy deposit of the target (~12 % of Energy of the beam) \sim 7.7 kJ

Target Destruction

Plan of New Experiment

- 1. We will use material (metal) which melting point is higher than that of lead.
- 2. We consider several metals. Ti, Fe, Cu, W

T. Omori

Summary

<u>Ring-Ring option</u>

- e⁻ and e⁺ injectors:
- 1) No need of polarized beams (polarization obtained in the ring)
- 2) Former and existing machines have already demonstrated the requested performance
- 3) Detailed design would improve the results.

Linac-Ring option

Polarized e⁻ beam injector

The injector, with expected performance, is feasible but requires an important R&D.

Unpolarized e⁺ beam injector

A preliminary design has been proposed (for p-140 GeV). It is challenging, needs further studies and requires a strong R&D.

Polarized e⁺ beam injector

The design is extremely demanding and requires more studies and investigations with a very strong R&D.