

ERL-based LHeC BNL's version

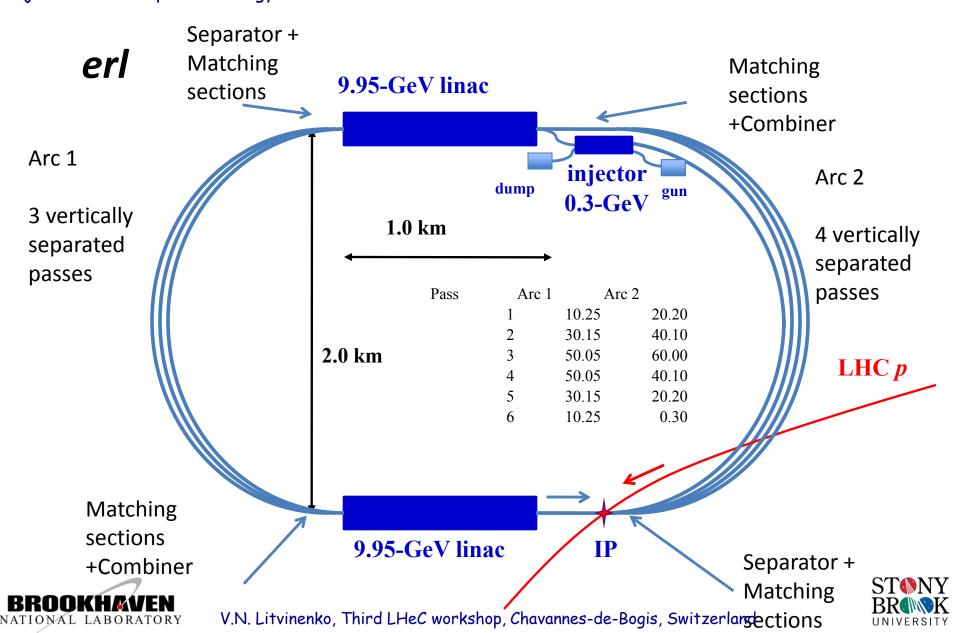
I. Ben-Zvi, Y. Hao, D. Kayran, <u>V.N. Litvinenko</u>, V.Ptitsyn, D. Trbojevic, N. Tsoupas

Stony Brook University, Stony Brook, NY, USA Brookhaven National Laboratory, Upton, NY, USA Center for Accelerator Science and Education

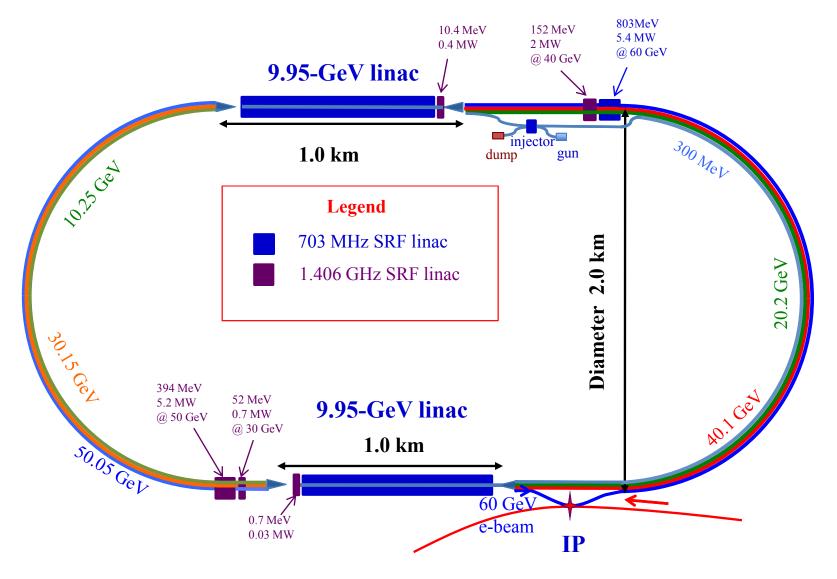
F. Zimmerman, R. Thomas, O. Bruening CERN

V.N. Litvinenko, Third LHeC workshop, Chavannes-de-Bogis, Switzerland

ERL-based LHeC


We use racetrack configuration for the system with the beam parameters specified in IPAC'10 paper: Designs for a Linac-Ring LHeC, F. Zimmermann et al., Proceedings of First International Particle Accelerator Conference, IPAC'10, Kyoto, Japan from Sunday to Friday, May 23-28, 2010, pp. 1611-1613, http://accelconf.web.cern.ch/AccelConf/IPAC10/papers/tupeb039.pdf

NATIONAL LABORATORY


Beam current is assumed to	e– energy at IP [GeV]	60
be 6.6 mA CW	Luminosity $[10^{32} \text{ cm}^{-2} \text{s}^{-1}]$	10.1
DE U.U MACVV	Polarization (%)	90
Radius of the arc's tunnel is	Bunch population [10 ⁹]	2.0
1 km, i.e. bending magnet	e– bunch length [µm]	300
ield is > 0.2 T at 60 GeV arc	Bunch interval [ns]	50
Race-track with two 9.95	Transv. emit. $\gamma \epsilon_{x,y}$ [µm]	50
GeV linacs, 3 passes	Rms IP beam size [µm]	7
•	Hourglass reduction H_{hg}	0.91
Injection energy - 0.3 GeV	Crossing angle θc	0
TBBU limitation are	Repetition rate [Hz]	CW
reasonable, but further	Average current [mA]	6.6
improvements are possible	ER efficiency η	94

Polarized electrons from the electron gun are accelerated to 300 MeV in the injector linacs and are injected into the racetrack ERL with two 9.95 GeV linacs. Electrons are accelerated to 60 GeV in 3 passes and then decelerated back to 300 MeV before being ejected into the injector. They are further decelerated in the injector and damped at energy ~ 10 MeV.

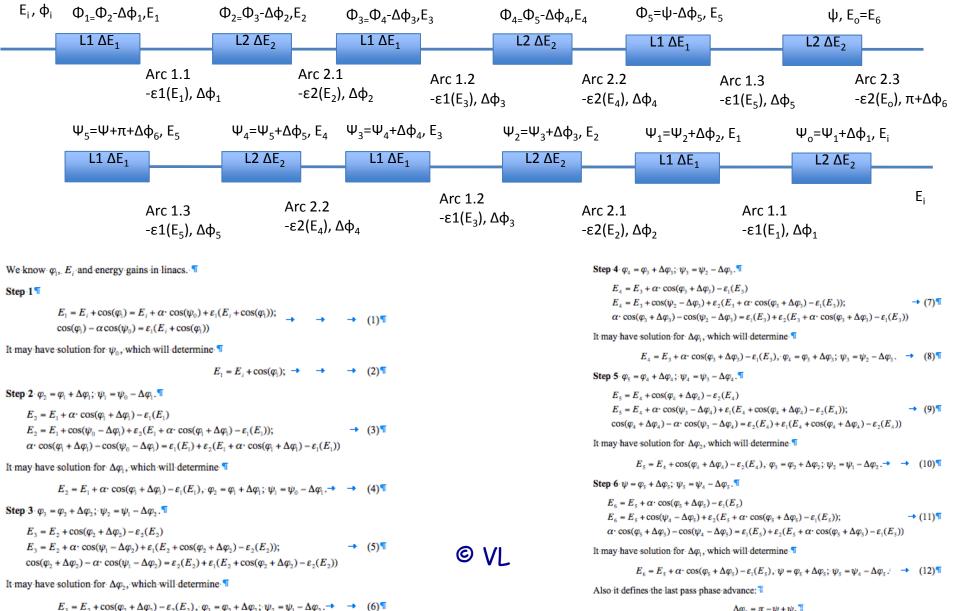
Compensation scheme for 2.05 GeV SR losses with additional RF system

Additional 1.412 GeV RF linacs, need to by-pass these linacs Using second harmonic RF is the key

V.N. Litvinenko, Third LHeC workshop, Chavannes-de-Bogis, Switzerland

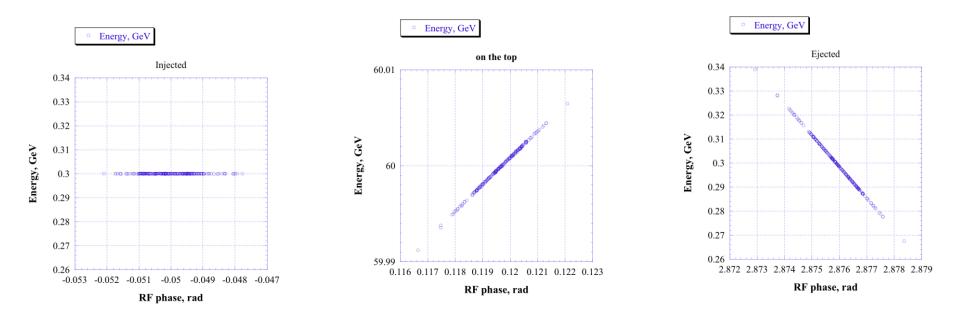
NATIONAL LABORATORY

New compensation scheme for SR losses with main linacs (VL) Additional 0.4 GeV of the main RF linac (i.e. ~20 m)


The electron bunch passes through the main linacs twelve times in the following sequence of phases: -0.05, -0.261966, -0.0305519, -0.197309, 0.125467, 0.119667, 3.08786, 2.85644, 3.0232, 2.70042, 2.70622, 2.87589. Finally, linac 1 will compensate for 0.922 GeV of the energy loss, while the linac 2 will compensate for the remaining 1.144 GeV.

NATIONAL LABORATORY

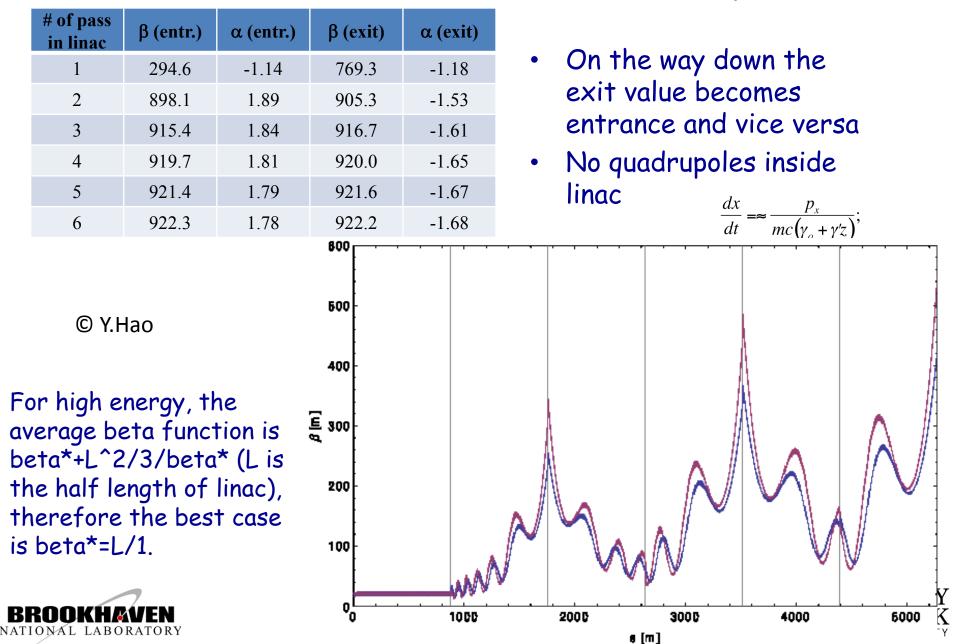
V.N. Litvinenko, Third LHeC workshop, Chavannes-de-Bogis, Switzerland


There are enough variables and even two parameters can vary Mathematica was used to find some reasonable solutions

$$+\cos(\varphi_2 + \Delta\varphi_2) - \varepsilon_2(E_2), \quad \varphi_3 = \varphi_2 + \Delta\varphi_2; \quad \psi_2 = \psi_1 - \Delta\varphi_2 \implies (6)$$

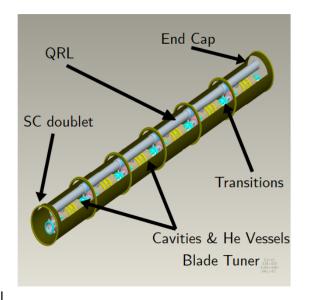
 $\Delta \varphi_{c} = \pi - \psi + \psi_{c}$

Longitudinal beam dynamics



Nothing pathological

Linac without and with quads

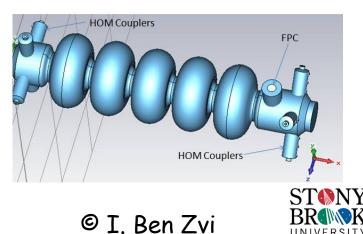

Linac: case #1

injection energy - 0.3GeV, top energy - 60GeV, energy gain per linac - 9.95GeV. Each linac contains 80 eRHIC Cryomodules, each with 6 Cavities and 0.2m overhead length. Length of the linac is 800m with 20.73 MeV per cavity. More realistic is 83 modules (830 m) with 20 MeV per cavity.

Additional 1.4 GeV (90 m) of RF linacs at 700 MHz and 1.4 GHz to compensate for SRF

Linac: case #2 injection energy - 0.3GeV , top energy - 60GeV, max energy gain: linac1 - 10 GeV, 84 modules, 840 m, 19.84 MeV per linac linac2 - 10.35 GeV, 87 modules, 870 m, 19.83 MeV per linac

PRELIMINARY CRYOMODULE



NATIONAL LABORATORY

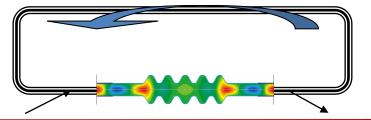
String assembly of multiple cavities. Heat shielding and top covers removed for clarity.

Breakdown of the eRHIC Cryomodule N cavities = 6 (but can 4-8) Module length = 9.6 m L period = 10.6 m $E_{acc} = 18.0 \text{ MV/m}$ dE/ds = 10.2 MeV/m New design of 704 MHz cavity (BNL III):

- -reduced peak surface magnet field
- -reduced cryogenic load

Expected cryogenic load

- Assume Q vs. E as measured for BNL I.
- Assume 18 MV/m operation.
- Assume losses scale with surface magnetic field.
- For comparison with measured results, scale field by the magnetic field ratio of BNL III to BNL I, giving 13.3 MV/m.
- The measured Q for BNL I at this field is 4E10.
- Assume losses scale down by the geometry factor, that leads to a Q of 5E10.
- With this Q at 18 MV/m the cryogenic load is 13 W/cavity.
- For 280 cavities the dynamic load is 3.6 kW: Less than MeRHIC estimate (which was based on older cavities).
- © I. Ben Zvi



TBBU - Preliminary (©D. Kayran)

• HOMs based on R. Calaga's simulations/measurements

• 70 dipole HOM's to 2.7 GHz in each cavity

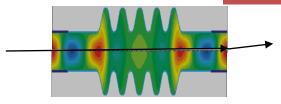
• No focusing in the linac

Excitation process of transverse HOM

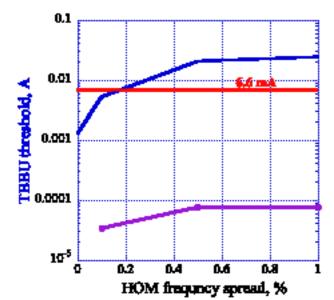
*m*11

*m*21

=


*m*12

m 22


0

 \boldsymbol{x}

nut phase advance
1.1x phase advance

F (GHz)	R/Q (Ω)	Q	(R/Q)Q
0.8892	57.2	600	3.4e4
0.8916	57.2	750	4.3e4
1.7773	3.4	7084	2.4e4
1.7774	3.4	7167	2.4e4
1.7827	1.7	9899	1.7e4
1.7828	1.7	8967	1.5e4
1.7847	5.1	4200	2.1e4
1.7848	5.1	4200	2.1e4

hreshold 10M read.

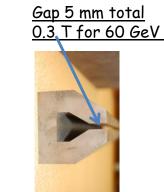
Threshold exceeds the required peam current, Potential for increasing TBBU threshold further exists

LHeC Isochronous arc cell

Each 180-degree arc is comprised of 113 cells

Note that arcs must be isochronous to avoid using 3rd harmonic cavities

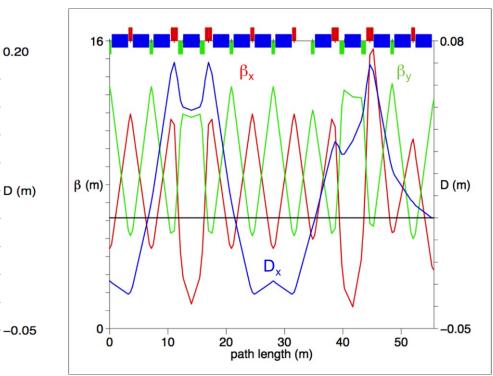
Name	Length (m)	Gradient (T/m)
QF0	0.665	84.975
QD0	0.600	-88.970
QF3	1.200	107.75
QD3	0.800	-103/89
QF3S	1.200	107.220
QD3S	0.800	-101.095

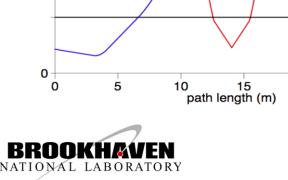

© D.Trbojevic

H function ~7E-5 m this arc Filling factor 60% Dipole field is ~ 0.28 T @ 60 GeV pass

Small magnets for eRHIC should be fine for LHeC ERL © VL

Arc's lattice


© D.Trbojevic

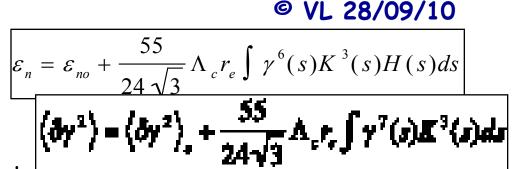

 Regular isochronous lattice of ERL's arcs. Length of cell is 27.8017 m. Red line – horizontal β-function, green – vertical βfunction, blue – dispersion.

25

20

• The regular and the end of the arc cell lattice.

15


β (m)

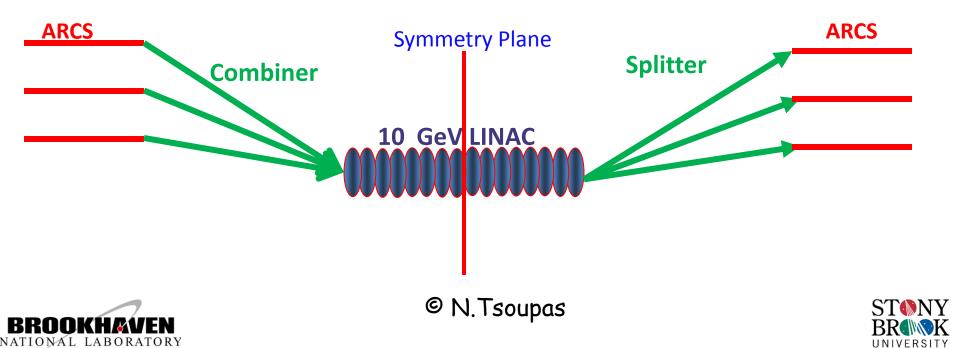
ERL-based LHeC with achromatic arcs

Up to the c	ollision point		
	δε _{norm}	8.59	mm mrad
	σ,	31.27	
	σ _E	15.98	MeV
Accu	multed		
	δε _{norm}	36.53	mm mrad
	σ,	68.96	
	σ	35.24	MeV

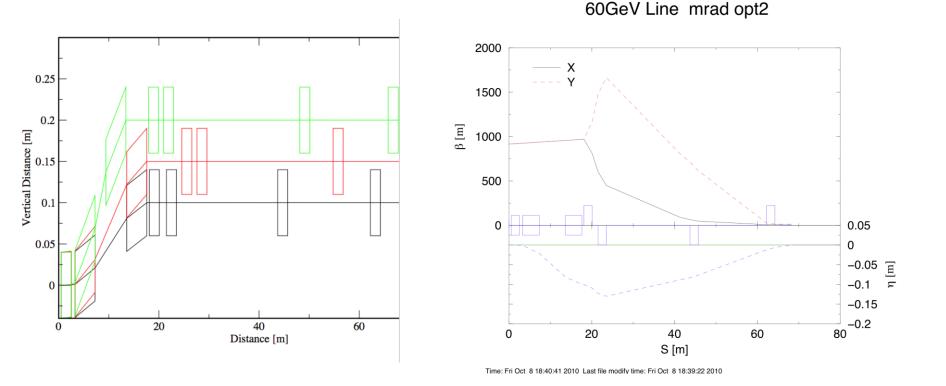
Formulae can be derived from equations (5.16) and (5.6) in Kolomensky/Lebedev book

Normalized em	ittance growth		per 180° arc!		2443		
Arc	E, GeV	γ	δE, SR, GeV	δεn, m rad	$\delta\gamma^2$	total	$\sigma \gamma / \gamma$
1	10.25	2.01E+04	6.93E-04	4.811615E-10	1.19E-02	1.19E-02	5.44E-06
2	20.2	3.95E+04	1.04E-02	2.818746E-08	1.37E+00	1.38E+00	2.98E-05
3	30.15	5.90E+04	5.18E-02	3.116532E-07	2.27E+01	2.40E+01	8.31E-05
4	40.1	7.85E+04	1.62E-01	1.725099E-06	1.67E+02	1.91E+02	1.76E-04
5	50.05	9.79E+04	3.94E-01	6.521871E-06	7.87E+02	<i>9.78E+02</i>	<i>3.19E-04</i>
6	60	1.17E+05	8.13E-01	1.935776E-05	2.80E+03	3.78E+03	5.23E-04
5	50.05	9.79E+04	3.94E-01	6.521871E-06	7.87E+02	<i>4.56E+03</i>	6.90E-04
4	40.1	7.85E+04	1.62E-01	1.725099E-06	1.67E+02	<i>4.73E+03</i>	8.77E-04
3	30.15	5.90E+04	5.18E-02	3.116532E-07	2.27E+01	<i>4.75E+03</i>	1.17E-03
2	20.2	3.95E+04	1.04E-02	2.818746E-08	1.37E+00	<i>4.76E+03</i>	1.74E-03
1	10.25	2.01E+04	6.93E-04	4.811615E-10	1.19E-02	<i>4.76E+03</i>	<i>3.44E-03</i>
Total			2.05E+00	3.65E-05	4.76E+03		

The bottom line – the quality of the beam is not spoiled neither in the collision point nor on the way back to the injection energy



Classical radius of electron	r _e	cm	2.817938E-13	m	2.81794E-15
Compton wavelength of electron	Λ_{e}	cm	3.861591E-11	m	3.86159E-13

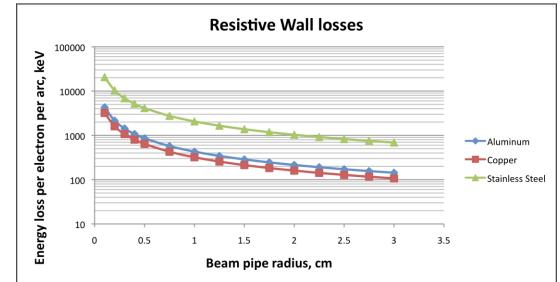


Splitters/combiners

"Beam" is nearly mirror symmetric with respect to a plane passing by the center of LINAC, Therefore "Beam Optics" of **Combiner** is the near mirror image of that of the **Splitter**

Splitters/combiners + matching

Optics functions of splitter for 20, 40 and 60 GeV beams and matching with the arc.


- 13.54 MW of the SR losses radiated power with 6.6 mA CW current
- Max power density ~ 2 kW/m, which is well within the demonstrated 8kW/m in B-factories

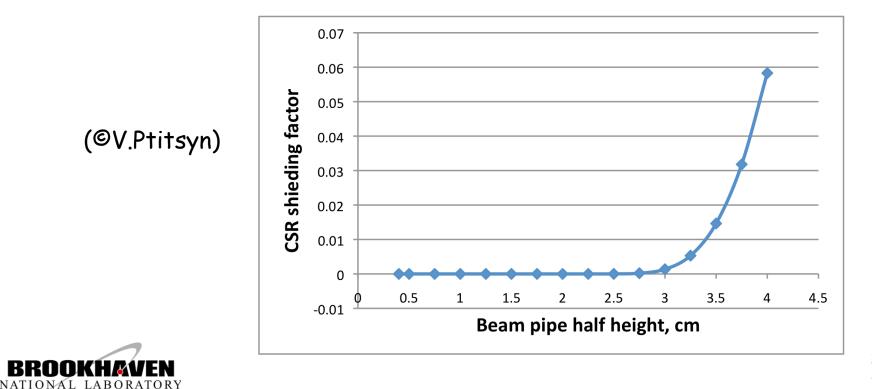
Other losses

- HOM loss
- CSR power loss
- Resistive wall losses

(©V.Ptitsyn)

Bunch length	0.3mm
Number of electrons per bunch	2 10 ⁹
Average arc radius	1000 m
Bending radius	697 m

With the effective Al pipe radius ~ 2 mm there will be additional 24 MeV energy loss and similar level of the energy spread due to the resistive wall. While 24 MeV energy loss is very small compared with 2.05 GeV SR loss, the induced correlated energy spread is comparable with the 35 MeV RMS uncorrelated spread induced by SR



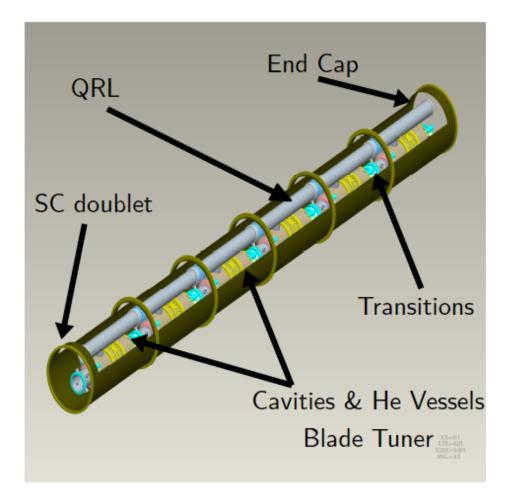
CSR power loss

Bunch length	0.3mm
Number of electrons per bunch	2 10 ⁹
Average arc radius	1000 m
Bending radius	697 m

Without shielding, the beam will loose 1.4 MeV per arc due to Coherent Synchrotron Radiation (CSR). Again, it is dwarfed by the incoherent SR losses. The total induced correlated energy spread will be about 12 MeV. In any case, the CSR will be strongly suppressed by the walls of the vacuum chamber

Conclusions

- High luminosity ERL-based LHeC looks feasible
- Linacs with and without focusing elements can be used
- Important feature is full (100%) spin transparency from the gun to the IP
- Design has no obvious showstoppers
- Beam-beam effects weaker that we had simulated for eRHIC, i.e. no unexpected surprises here
- Details should be studied further
- The BBU threshold should be further increased 3-4 fold by optimizing the arcs and linac lattice



Back up

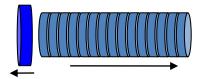
Preliminary Cryomodule

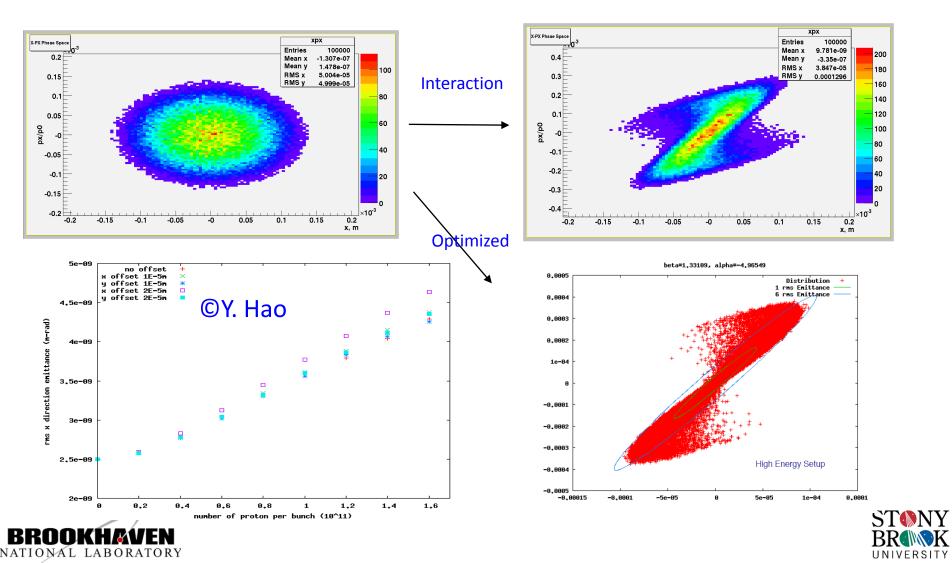
String assembly of multiple cavities. Heat shielding and top covers removed for clarity.

Breakdown of the eRHIC Cryomodule N cavities = 6 (but can 4-8) Module length = 9.6 m L period = 10.6 m $E_{acc} = 18.0 \text{ MV/m}$ dE/ds = 10.2 MeV/m

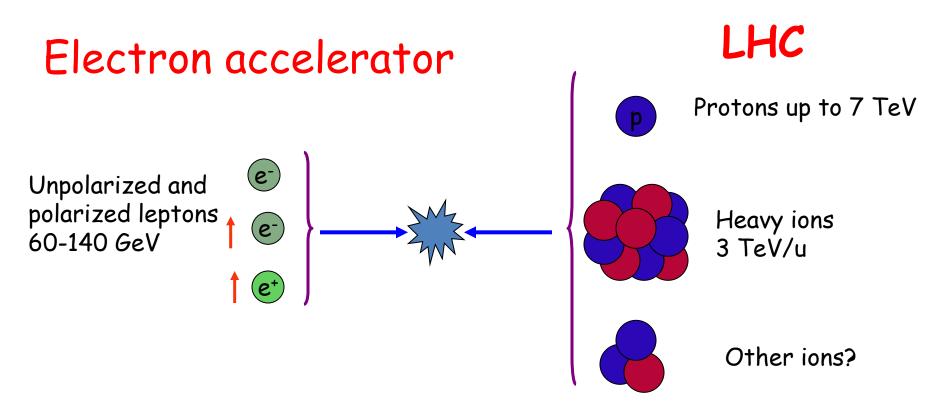
New design of 704 MHz cavity (BNL III) with reduced peak surface magnet field should have similar cryogenic losses at 20 MeV per cavity



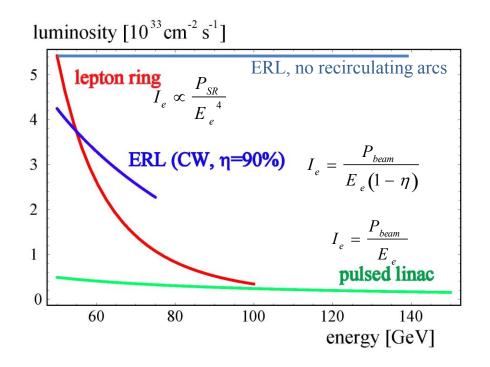



© I. Ben Zvi

Beam Disruption



Center mass energy range: 0.5-2 TeV

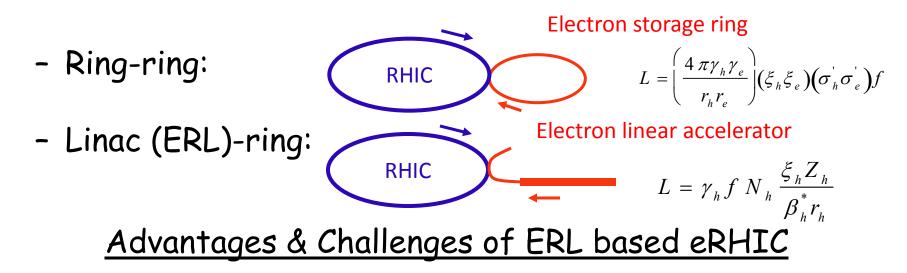


Luminosity vs e-beam energy

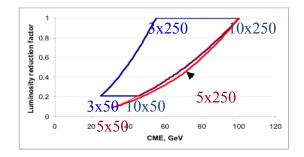
for AC-plug power consumption set at 100 MW

Advantages & Challenges of ERL based eRHIC

$$L = \left(\frac{4\pi\gamma_{i}\gamma_{e}}{r_{i}r_{e}}\right)(\xi_{i}\xi_{e})(\sigma_{i}'\sigma_{e}')f \qquad \qquad L = \gamma_{i}f N_{i}\frac{\xi_{i}Z_{i}}{\beta_{i}^{*}r_{i}}$$


- Allows use of RHIC tunnel for the return passes and thus allow much higher (2-3 fold) energy of electrons compared with the storage ring.
- High luminosity up to 10^{34} cm⁻² sec⁻¹
- Allows multiple IPs
- Allows higher range of CM-energies with high luminosities
- Full spin transparency at all energies
- No machine elements inside detector(s)
- No significant limitation on the lengths of detectors
- Energy of ERL is simply upgradeable
- Novel technology
- Need R&D on polarized gun
- May need a dedicated ring positrons (if ever required?)

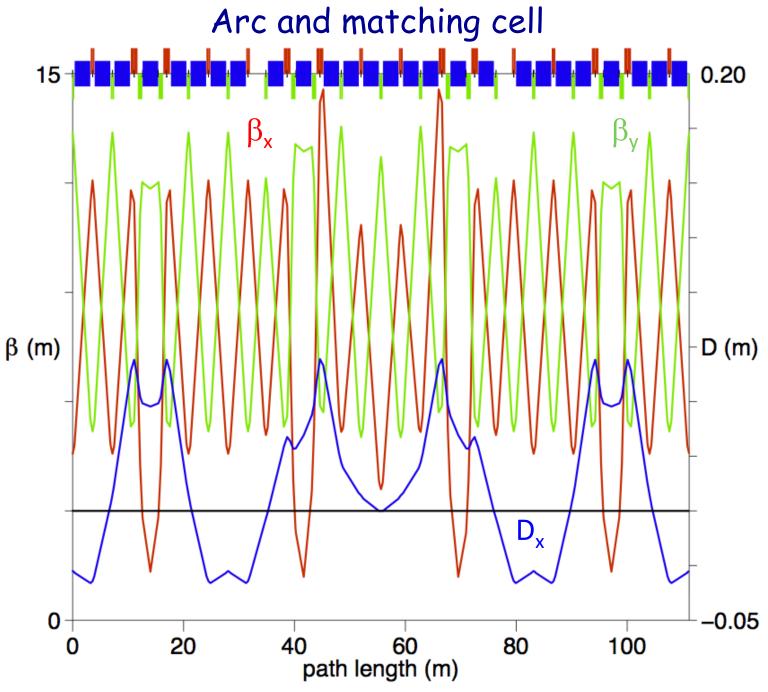
View from 2004: How eRHIC can be realized?



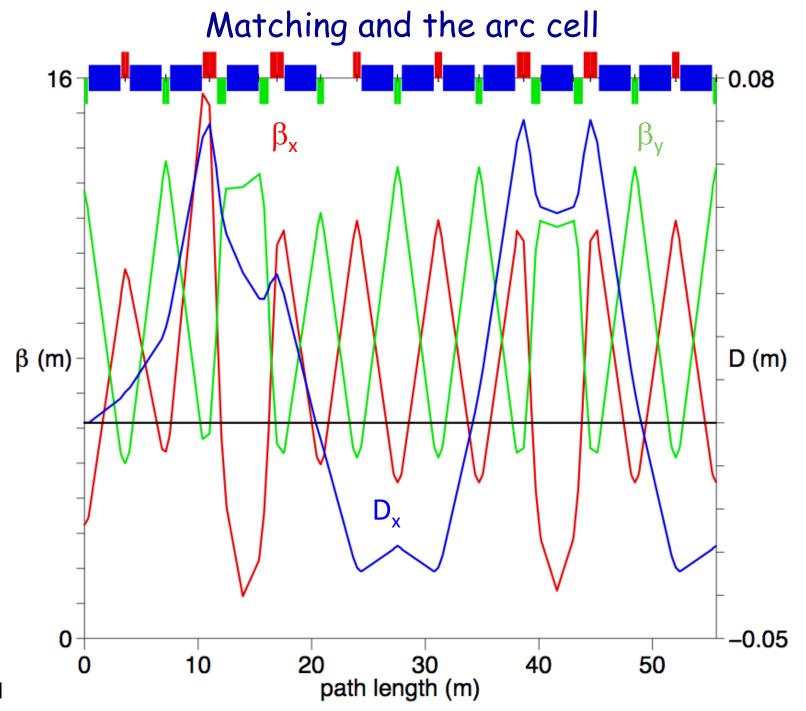
- Allows use of RHIC tunnel
- 2-3 fold higher energy of electrons
- Higher luminosity up to 10³⁴ cm⁻² sec⁻¹
- Multiple IPs

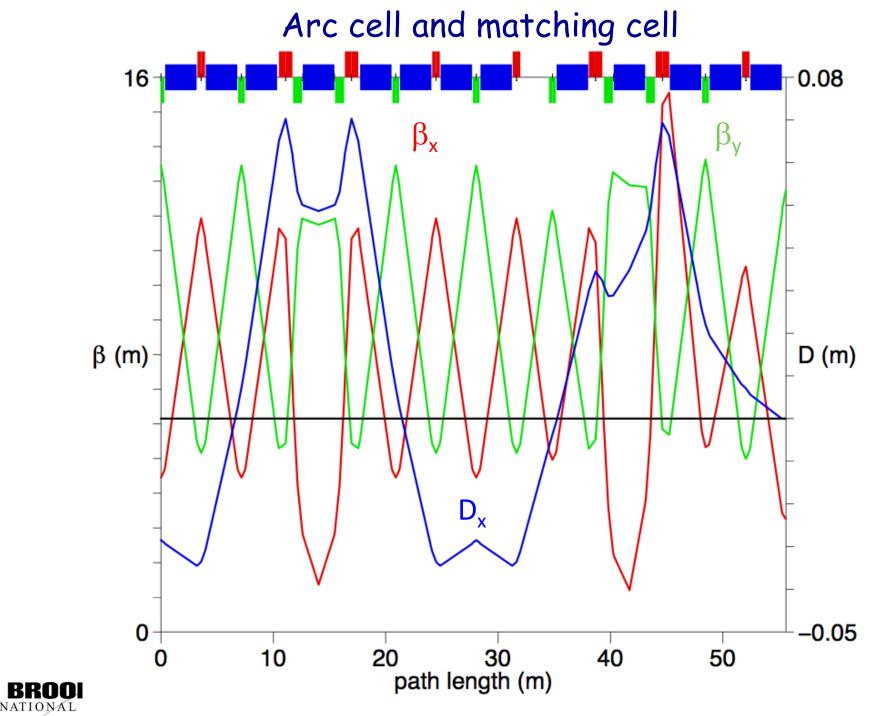
NATIONAL LABORATORY

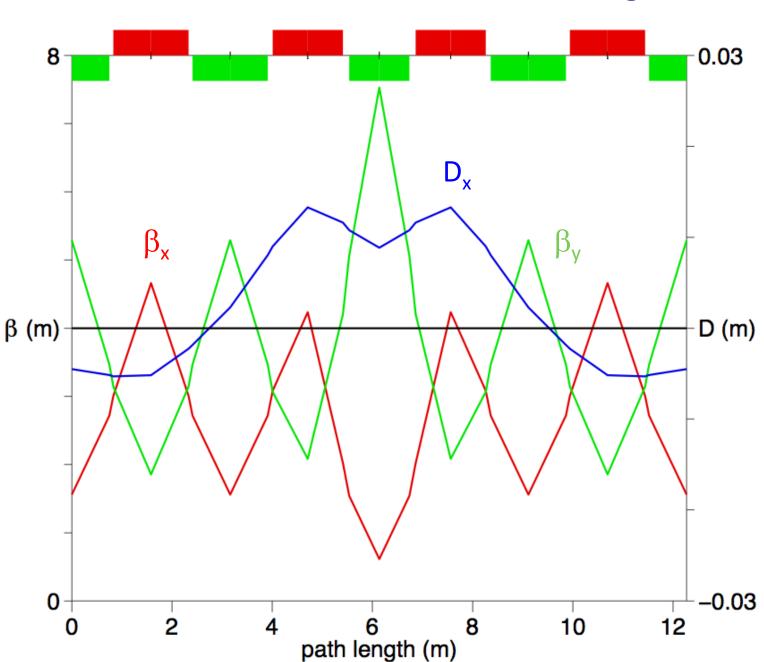
- Higher range of CM-energies + high luminosities
- Full spin transparency at all energies
- No machine elements inside detector(s)
- No significant limitation on the lengths of detectors
- ERL is simply upgradeable
- eRHIC can be staged


- Novel technology
- Need R&D on polarized gun
- May need a dedicated ring positrons

In Ring-ring luminosity reduces 10-fold for 30 GeV CME. Required norm.emittance (for 50 GeV protons) ~3 mm*mrad


http://www.agsrhichome.bnl.gov/eRHIC/




BR

EMAX (GeV) 60.00000000	Arc PC (GeV/c) 59.999999998	В	RHO (Tm) 00.138457112
DIPOLES: ANG 0.004017382	BL (m) 2.80	N _{DIP} 1564	R _{DIP} (m) 696.971326788
GF0 = 84.975 T/m GD0 = -88.97 T/m	QLF = 0.6 QLD = 0.6		
GF3 = 107.75 T/m GD3 = -103.89 T/m OFFW = 0.152722 O1 = 0.065049 O2 = 0.071114	QLD3 64 m 881 m	8 = 1.20 m 3 = 0.80 m	
	T/m QLF3 T/m QLD3		

BROO NATIONAL

Arc cell with combined function magnets

Combined function magnet Properties

EMAX	PC	BRHO
60.00000000	59.999999998	200.138457112
BL = 1.5 m		
QLF3 = 1.4 m		
QLD3 = 1.2 m		
RDIP (m)	Field BY2 (T)	Length BL (m)
937.104304925	0.213571164	1.50000000
NCELL	ANG	NDIP
NCELL 512.000000000	ANG 0.001600676	NDIP 3925.333333333
	-	
	-	
512.000000000	0.001600676	

