LHeC Ring-Ring Option
 Summary

Bernhard Holzer

contributons from ...
Ed Ciapala
Louis Rinolfi
Luke Thompson
Nathan Bernard
Stephan Russenschuck
Helmut Burkhardt
Tatiana Pieloni
Uli Wienands
Karl-Hubert Mess
Miriam Fitterer
Chiara Bracco
Oliver Bruening
Davide Tomassini
Bernhard Holzer

Electron / Positron Injection

ELFE@CERN design,

 to some extend based on CEBAF$\mathrm{f}_{\mathrm{rf}}=352 \mathrm{MHz}$, gradient $8 \mathrm{MV} / \mathrm{m}$
$\mathbf{V}_{\mathrm{rf}}=\mathbf{3 . 5} \mathbf{~ G V}, 72 \mathbf{r f}-$ modules
7 passes (last at 21.5 GeV)
$\mathrm{L}=3924 \mathrm{~m}$ of which Linac 1081 m
$\varrho=56.9 \mathrm{~m}$

LHeC injector

$\mathrm{f}_{\mathrm{rf}} \sim 1.3 \mathrm{GHz}, 20 \mathrm{MV} / \mathrm{m}$ all inclusive as ILC
Linac $\mathbf{L}=\mathbf{1 5 6} \mathbf{m} 7 \times$ shorter
0.6 GeV e+/e- EPA LEP pre-injector/ accumulator
$\mathbf{V}_{\mathrm{rf}}=\mathbf{3 . 1 3 ~ G V}, 3$ passes ; last 6.9-10 GeV
energy loss scaling \mathbf{E}^{4}
allows for much shorter bends
$6.9 \mathrm{GeV}, \varrho=2 \mathrm{~m}$
gives 1% energy loss
and 10^{-3} energy spread

Pre-injector Accumulator

Accumulator needed for $\mathrm{e}+$ also helps to get 2×10^{10} for ethe old LEP-EPA would do :
from Vol.I LEP design report:
$\mathbf{E}=0.6 \mathbf{G e V}$, Circumference $=125.665 \mathrm{~m}$ 8 bunches, total 2.ell

or 2.5e10 / bunch

1.14 s cycle length
would all $<\mathrm{w}$ to fill the e-ring in $\mathbf{7}$ minutes

Helmut Burkhardt

The LPI* as an e^{-}and e^{+}sources

(*) LPI = LEP Pre-Injector
$L I L=L E P$ Injector Linac EPA $=$ Electron Positron Accumulator

LIL Beam Characteristics

Energy : 200 to 700 MeV
Intensity : $\quad 5 \times 10^{8}$ to $2 \times 10^{10} \mathrm{e}^{-} /$pulse Pulse length 10 to 35 ns
(FWHM)
Frequency: $\quad 1$ to 100 Hz
Beam sizes: $\quad \sigma_{x}=\sigma_{y}=3 \mathrm{~mm}$

Overall Layout

Bypass Point 5:

Lattice Design dominated by geometry:

+ forbidden space (usually DFBMs) induces an asymmetric lattice
+ asymmetric lattice needs to be matched to the symmetric LHC lattice
- most choices for the LHeC lattice structure are made due to integration

Bypass Design:

+ Bypasses increase the circumference of the ring
- Compensation of the increase in circumference by placing the electron ring 0.61 cm to the inside of the LHC (Idealized Ring)

Miriam Fitterer

Arc Module

23 arc cells, $L_{\text {Cell }}=106.881 \mathrm{~m}$

Optics:

Beam Energy	60 GeV
Phase Advance per FODO Cell	$\approx 90^{\circ} / 60^{\circ}$
Cell length	106.881 m
Dipole Fill factor	0.75
Damping Partition $J_{x} / J_{y} / J_{e}$	$1.5 / 1 / 1.5$
Coupling constant κ	0.5
Horizontal Emittance (no coupling)	4.70 nm
Horizontal Emittance $(\kappa=0.5)$	3.52 nm
Vertical Emittance $(\kappa=0.5)$	1.76 nm

Geometry:
To meet the LHC geometry the dipoles must be shortened
\Rightarrow trade off between synchrotron radiation loss and geometry

Miriam Fitterer

RR: Ring Bending

Parameters for Bending	
Beam Energy [GeV]	60
Magnetic Length [m]	5.35
Magnetic field [Gauss]	763
Number of magnets	3080
Weight [kg]	
Vertical aperture [mm]	40
Pole width [mm]	150
Number of coils	2
Number of turns/coil	1
Current [A]	1300
Conductor material	aluminum
Magnet Inductance [mH]	0.15
Magnet Resistance [m $]$	0.20
Power per magnet [W]	340
Cooling	air

RR: Ring Quadrupoles

Parameters for Quadrupoles

Number of magnets 736
Aperture radius [mm] 30
Field gradient [T/m] 10.5
Magnetic Length [mm] 1000
Yoke length [mm] 980
Total length [mm] 1200
Weight [kg] 500
Number of turns/pole 1
Current [A] 3850
Conductor material copper
Current density $\left[\mathrm{A} / \mathrm{mm}^{2}\right] \quad 2.5$
Resistance [m ${ }^{2} 0.12$
Power [kW] 1.8
Inductance [mH] 0.05
Cooling
water/air

made with one-piece laminations
Davide Tommassini

RF Layout for Ring-Ring Option

Energy $=60 \mathrm{GeV}, 400 \mathrm{MHz}$ RF, $500 \mathrm{MV}, 60 \mathrm{MW}$.

Simplest option:

Install only in the IR bypass sections 208 m available
$15 \times 12 \mathrm{~m}$ Cryomodules Total
9 at CMS bypass $=108 \mathrm{~m}$
2×3 at ATLAS bypass $=2$ * 36m
Total 180 m

This layout forces the 60 klystron option

LHeC Ring-Ring Option IR-Optics

10° Optics:
Luminosity limited by $\beta_{\text {max }}$ at first proton quadrupole
\rightarrow determines the quadrupole design
\rightarrow determines the separation scheme
\rightarrow determines the crossing angle (parasitic encounters)

Goal: "somehow in the range of $L=1033$ "

$$
\begin{array}{lll}
\sigma_{x}=30 \mu \mathrm{~m} & \beta_{x p}=1.8 \mathrm{~m} & \beta_{x e}=18 \mathrm{~cm} \\
\sigma_{y}=15.8 \mu \mathrm{~m} & \beta_{y p}=0.5 \mathrm{~m} & \beta_{y e}=10 \mathrm{~cm}
\end{array}
$$

Luke Thomson

LHeC Ring-Ring Option IR-Optics

10 Optics:
Luminosity limited by $\beta_{\text {max }}$ at first proton quadrupole
... but more by (late) separation scheme \rightarrow determines the synchrotron radiation power

Goal: "as close as possible to the 10° option"

$$
\begin{array}{lll}
\sigma_{x}=44.7 \mu \mathrm{~m} & \beta_{x p}=3.9 \mathrm{~m} & \beta_{x e}=40 \mathrm{~cm} \\
\sigma_{y}=22.4 \mu \mathrm{~m} & \beta_{y p}=1.0 \mathrm{~m} & \beta_{y e}=20 \mathrm{~cm}
\end{array}
$$

Synchrotron Radiation in the IR

10 degree Option

10 Degree RR Option: Parameters	
Characteristic	Value
E $[\mathrm{GeV}]$	60
$\mathrm{I}[\mathrm{mA}]$	100
$\mathrm{~B}[\mathrm{~T}]$	0.025
$\theta_{c}[\mathrm{mrad}]$	1
Separation** $[\mathrm{mm}]$	50.1
γ / s	4.76×10^{18}

10 Degree RR Option: Power and Critical Energy		
Element	Power $[\mathrm{kW}]$	Critical Energy $[\mathrm{keV}]$
DL	4.5	60
QL3	5.1	307
QL2	4.3	216
QL1	0.5	87
QR1	0.5	88
QR2	4.3	216
QR3	5.2	304
DR	4.5	60
Total/Avg	28.9	124

10 Degree RR Option: Comparison				
	Power [kW]		Critical Energy [keV]	
	Geatuta	IRSYN	Geant4	IRSYN
Total/ vg	28.9	31.4	124	132

Nathan Bernard

RR Option 1 degree*

Degree RR Option: Parameters	
Characteristic	Value
$\mathrm{E}[\mathrm{GeV}]$	60
$\mathrm{I}[\mathrm{mA}]$	100
B $[\mathrm{T}]$	0.0435
$\theta_{c}[\mathrm{mrad}]$	1
Separation	
$\gamma / \mathrm{mm}]$	51.3
γ / s	5.73×10^{18}

Degree RR Option: Power and Critical Energy		
Element	Power $[\mathrm{kW}]$	Critical Energy [keV]
DL	10.8	104
QL2	6.1	316
QL1	5.2	283
QR1	5.2	288
QR2	6.1	313
DR	10.8	104
Total/Avg	44.2	156

1 Degree RR Option: Comparison				
	Power [kW]		Critical Energy [keV]	
	Comnt1	IRSYN	Geant4	IRSYN
Total/A/g	44.2	4	156	153

*Simulations use optics created by L. Thompson
**Separation refers to the separation between the interacting beams at the face of the proton triplet

Photon Number Density Growth in Z

- The focusing and bending of the beam determines the photon distribution as it
 traverses in Z.
- Quadrupole fields add more significant Y component, and change density in X.

Nathan Bernard

Power on Absorber

10 degree Option

- 14.61 kW or 50.38% will hit the absorber surface.
- Backscattering hasn't been taken into account.
- 14.39 kW will continue into the proton triplet.

Power on Absorber

1 degree Option

- 33.3 kW or 75.34% will hit the absorber surface.
- Backscattering hasn't been taken into account.
- 11 kW will continue into the proton triplet.

1 Degree RR Option: Power on Absorber Surface

Nathan Bernard

Four Remaining Options for Ring-Ring

Ring-Ring option. Single apeeture magnet tor two rroton beams, $127 \mathrm{~T} / \mathrm{m}, 4600 \mathrm{~A}$, MQY cable

Double aperture (vertical)	Double aperture (horizontal)	Single aperture (for pp) (Q2)	Mirror (Q1)
7400 A	7400 A	4600 A	4900 A
MQY cable	MQY cable	MQY cables	MQY cables
95 mm	100 mm	107 mm	65 mm
Septum			
0.2 E-3 T	0.2 E-3 T	0.016 T	0.03 T
Fringe field in e-pipe			Stephan

Russenschuck

Polarization us Energy

Integration and machine protection issues

- Modifications of the existing installations will be necessary
- No show stopper
- Activation of Tunnel and Hardware

Production time:

-Ring-Ring: ca. 4000 magnets (3000 dipole \& 1000 quadrupoles)
-Linac-Ring: ca. the same number of magnets for ER option!
\rightarrow LHC transfer lines (ca. 6km); 350 warm magnets in 3 years (10/month)
\rightarrow LHeC magnet production requires industrial production
\rightarrow requires several contractors and production lines: pre-series and QA!
\rightarrow 1-2 years of pre-series production.
\rightarrow assume 80 magnets / month $(8 * T L) \Rightarrow 5$ years of production Total of ca. 10 years for magnet production time?

Requirements:
\rightarrow The above work can not be done with the current arrangement and requires a focused team and sufficient resources

Conclusion:
\rightarrow Decision on LHeC option should be taken by 2012

LHeC Ring-Ring Option
 Main Parameters

	Electrons	Protons		
Energy	60 GeV	7 TeV		
Current	100 mA	860 mA		
Part. per Bunch	$2^{*} 10^{10}$	$1.7 * 10^{11}$		
ε_{X}	$5^{*} 10^{-9} \mathrm{~m}$	$5^{*} 10^{-10} \mathrm{~m}$		
ε_{2}	$2.5 * 10^{-9} \mathrm{~m}$	$5^{*} 10^{-10} \mathrm{~m}$		
P_{γ}	43.5 MW			
		gree		gree
	Electrons	Protons	Electrons	Protons
β_{x}	40 cm	4.05 m	18 cm	1.8 m
β_{x}	20 cm	0.97 m	10 cm	0.5 m
σ_{x}	$45 \mu \mathrm{~m}$		$30 \mu \mathrm{~m}$	
σ_{x}	$22 \mu \mathrm{~m}$		$15.8 \mu \mathrm{~m}$	
L_{0}	8.5*1032		$1.8{ }^{*} 10^{33}$	
crossing angle	0.7 mrad		1 mrad	
loss factor	92 \%		75\%	
P_{γ}	44 kW		28 kW	
$\mathrm{L}_{\text {eff }}$	7.9*10 ${ }^{32}$		$1.34 * 10^{33}$	

LHeC Ring-Ring Option
 Summary

Bernhard Holzer

highly motivated and talented team excellent work
... from the seniors
as well as
... from the new comers
a lot of progress and encouraging results

Than'x to all of you !!!

