### LHeC Ring-Ring Option Summary Bernhard Holzer



contributons from ... Ed Ciapala Louis Rinolfi Luke Thompson Nathan Bernard Stephan Russenschuck Helmut Burkhardt Tatiana Pieloni Uli Wienands Karl-Hubert Mess Miriam Fitterer Chiara Bracco **Oliver Bruening** Davide Tomassini **Bernhard Holzer** 

et al in discussions

### **Electron / Positron Injection**

ELFE@CERN design, to some extend based on CEBAF

 $f_{rf} = 352 \text{ MHz}, \text{ gradient } 8 \text{ MV} / \text{m}$ 

 $V_{rf} = 3.5 \text{ GV}, 72 \text{ rf-modules}$ 

7 passes (last at 21.5 GeV)

L = 3924 m of which Linac 1081 m

q = 56.9 m



#### LHeC injector

f<sub>rf</sub> ~ 1.3 GHz, 20 MV/m all inclusive as ILC Linac L = 156 m 7× shorter 0.6 GeV e+/e- EPA LEP pre-injector/ accumulator  $V_{rf} = 3.13$  GV, 3 passes ; last 6.9-10 GeV energy loss scaling E<sup>4</sup> allows for much shorter bends 6.9 GeV,  $\varrho = 2$  m gives 1% energy loss and 10<sup>-3</sup> energy spread

Helmut Burkhardt



### **Pre-injector Accumulator**





Helmut Burkhardt

### The LPI<sup>\*</sup> as an $e^-$ and $e^+$ sources



### LIL Beam Characteristics

| Energy :    | 200 to 700 MeV                                                             |
|-------------|----------------------------------------------------------------------------|
| Intensity : | $5x10^8$ to $2x10^{10}$ e <sup>-</sup> / pulse<br>Pulse length 10 to 35 ns |
| (FWHM)      | <b>j</b>                                                                   |
| Frequency:  | 1 to 100 Hz                                                                |
| Beam sizes: | $\sigma_{\rm x}$ = $\sigma_{\rm y}$ = 3 mm                                 |



Louis Rinolfi



## **Overall Layout**



#### Lattice Design dominated by geometry:

- + forbidden space (usually DFBMs) induces an asymmetric lattice
- + asymmetric lattice needs to be matched to the symmetric LHC lattice
- ➡ most choices for the LHeC lattice structure are made due to integration

#### **Bypass Design:**

- + Bypasses increase the circumference of the ring
- Compensation of the increase in circumference by placing the electron ring 0.61 cm to the inside of the LHC (Idealized Ring)



#### **Bypass Point 5:**

LHeC Workshop, 12.11.2010, Chavannes-de-Bogis

Miriam Fitterer



# Arc Module

#### 23 arc cells, L<sub>Cell</sub>=106.881 m

#### **Optics:**

| Beam Energy                             | $60  \mathrm{GeV}$              |
|-----------------------------------------|---------------------------------|
| Phase Advance per FODO Cell             | $\approx 90^{\circ}/60^{\circ}$ |
| Cell length                             | 106.881 m                       |
| Dipole Fill factor                      | 0.75                            |
| Damping Partition $J_x/J_y/J_e$         | 1.5/1/1.5                       |
| Coupling constant $\kappa$              | 0.5                             |
| Horizontal Emittance (no coupling)      | 4.70 nm                         |
| Horizontal Emittance ( $\kappa = 0.5$ ) | 3.52 nm                         |
| Vertical Emittance ( $\kappa = 0.5$ )   | 1.76 nm                         |

#### Geometry:

To meet the LHC geometry the dipoles must be shortened

➡ trade off between synchrotron radiation loss and geometry





Miriam Fitterer

### **RR: Ring Bending**

### **Parameters for Bending**

| Beam Energy [GeV]             | 60       |
|-------------------------------|----------|
| Magnetic Length [m]           | 5.35     |
| Magnetic field [Gauss]        | 763      |
| Number of magnets             | 3080     |
| Weight [kg]                   |          |
| Vertical aperture [mm]        | 40       |
| Pole width [mm]               | 150      |
| Number of coils               | 2        |
| Number of turns/coil          | 1        |
| Current [A]                   | 1300     |
| Conductor material            | aluminum |
| Magnet Inductance [mH]        | 0.15     |
| Magnet Resistance $[m\Omega]$ | 0.20     |
| Power per magnet [W]          | 340      |
| Cooling                       | air      |
|                               |          |



Davide Tommassini

### **RR: Ring Quadrupoles**

### **Parameters for Quadrupoles**

| Number of magnets                    | 736       |
|--------------------------------------|-----------|
| Aperture radius [mm]                 | 30        |
| Field gradient [T/m]                 | 10.5      |
| Magnetic Length [mm]                 | 1000      |
| Yoke length [mm]                     | 980       |
| Total length [mm]                    | 1200      |
| Weight [kg]                          | 500       |
| Number of turns/pole                 | 1         |
| Current [A]                          | 3850      |
| Conductor material                   | copper    |
| Current density [A/mm <sup>2</sup> ] | 2.5       |
| Resistance [m $\Omega$ ]             | 0.12      |
| Power [kW]                           | 1.8       |
| Inductance [mH]                      | 0.05      |
| Cooling                              | water/air |
|                                      |           |



### **RF Layout for Ring-Ring Option**



Energy = 60 GeV, 400 MHz RF, 500 MV, 60 MW.

Like 400 MHz LHC RF (3 MV/cavity) 168 cavities, 3MV/cavity => 42 LHC style 4-cav SC modules (8m long) => 168 m + 20% • 350 kW/cavity, within existing LHC

variable power coupler ratings
 => RF Config: 168 klystrons, or 84 700 kW
 klystrons, each driving 2 cavities

Simplest option: Install only in the IR bypass sections 208 m available 15 x 12m Cryomodules Total 9 at CMS bypass = 108m 2 x 3 at ATLAS bypass = 2 \* 36m Total 180 m

This layout forces the 60 klystron option

Ed Ciapala

### **LHeC Ring-Ring Option IR-Optics**



Luke Thomson

### LHeC Ring-Ring Option IR-Optics

### 1° Optics:

Luminosity limited by  $\beta_{max}$  at first proton quadrupole

... but more by (late) separation scheme
 → determines the synchrotron radiation power



### Goal: "as close as possible to the 10<sup>o</sup>option"

$$\sigma_x = 44.7 \ \mu m$$
  $\beta_{xp} = 3.9 \ m$   $\beta_{xe} = 40 \ cm$   
 $\sigma_y = 22.4 \ \mu m$   $\beta_{yp} = 1.0 \ m$   $\beta_{ye} = 20 \ cm$ 



## Synchrotron Radiation in the IR

### 10 degree Option

| 10 Degree RR Optic            | on: Parameters        |
|-------------------------------|-----------------------|
| Characteristic                | Value                 |
| E [GeV]                       | 60                    |
| I [mA]                        | 100                   |
| B [T]                         | 0.025                 |
| $\theta_c \; [\mathrm{mrad}]$ | 1                     |
| Separation <sup>**</sup> [mm] | 50.1                  |
| $\gamma/s$                    | $4.76 \times 10^{18}$ |

| 10 Degree F | RR Option: Por | wer and Critical Energy |
|-------------|----------------|-------------------------|
| Element     | Power [kW]     | Critical Energy [keV]   |
| DL          | 4.5            | 60                      |
| QL3         | 5.1            | 307                     |
| QL2         | 4.3            | 216                     |
| QL1         | 0.5            | 87                      |
| QR1         | 0.5            | 88                      |
| QR2         | 4.3            | 216                     |
| QR3         | 5.2            | 304                     |
| DR          | 4.5            | 60                      |
| Total/Avg   | 28.9           | 124                     |

| 10 Degree RR Option: Comparison |                                  |       |        |       |
|---------------------------------|----------------------------------|-------|--------|-------|
|                                 | Power [kW] Critical Energy [keV] |       |        |       |
|                                 | Geant4                           | IRSYN | Geant4 | IRSYN |
| Total/Avg                       | 28.9                             | 31.4  | 124    | 132   |
|                                 |                                  |       |        |       |

Nathan Bernard

### **RR** Option 1 degree\*

| 1 Degree RR Option: Parameters |                     |  |
|--------------------------------|---------------------|--|
| Characteristic                 | Value               |  |
| E [GeV]                        | 60                  |  |
| I [mA]                         | 100                 |  |
| B [T]                          | 0.0435              |  |
| $\theta_c \; [\mathrm{mrad}]$  | 1                   |  |
| Separation <sup>**</sup> [mm]  | 51.3                |  |
| $\gamma/s$                     | $5.73\times10^{18}$ |  |

| 1 Degree RI | R Option: Pow | er and Critical Energy |
|-------------|---------------|------------------------|
| Element     | Power [kW]    | Critical Energy [keV]  |
| DL          | 10.8          | 104                    |
| QL2         | 6.1           | 316                    |
| QL1         | 5.2           | 283                    |
| QR1         | 5.2           | 288                    |
| QR2         | 6.1           | 313                    |
| DR          | 10.8          | 104                    |
| Total/Avg   | 44.2          | 156                    |

| 1 Degree RR Option: Comparison |                                          |       |        |       |
|--------------------------------|------------------------------------------|-------|--------|-------|
|                                | Power [kW]         Critical Energy [keV] |       |        |       |
|                                | Geant4                                   | IRSYN | Geant4 | IRSYN |
| Total/Avg                      | 44.2                                     | 44    | 156    | 153   |
|                                |                                          |       |        |       |

\*Simulations use optics created by L. Thompson \*\*Separation refers to the separation between the interacting beams at the face of the proton triplet

## Photon Number Density Growth in Z

• The focusing and bending of the beam determines the photon distribution as it traverses in Z.

• Quadrupole fields add more significant Y component, and change density in X.





Nathan Bernard



### **Power on Absorber**

#### 10 degree Option

- 14.61 kW or 50.38% will hit the absorber surface.
  - Backscattering hasn't been taken into account.
  - 14.39 kW will continue into the proton triplet.



### **Power on Absorber**

1 degree Option

- 33.3 kW or 75.34% will hit the absorber surface.
- Backscattering hasn't been taken into account.
  11 kW will continue into the proton triplet.



Nathan Bernard

### Four Remaining Options for Ring-Ring



| Double aperture<br>(vertical) | Double aperture<br>(horizontal) | Single aperture (for pp) | Mirror                  |
|-------------------------------|---------------------------------|--------------------------|-------------------------|
| (vention)                     | (nonzontar)                     | (Q2)                     | (Q1)                    |
| 7400 A                        | 7400 A                          | 4600 A                   | 4900 A                  |
| MQY cable                     | MQY cable                       | MQY cables               | MQY cables              |
| 95 mm                         | 100 mm                          | 107 mm                   | 65 mm                   |
| Septum                        |                                 |                          |                         |
| 0.2 E -3 T                    | 0.2 E -3 T                      | 0.016 T                  | 0.03 T                  |
| Fringe field in e-pipe        |                                 |                          | Stephan<br>Pussonschuck |

Russenschuck



### Integration and machine protection issues



- Installation of an e ring is challenging
- Modifications of the existing installations will be necessary
- No show stopper
- Activation of Tunnel and Hardware

Karl-Hubert Mess

### **Production time:**

-Ring-Ring: ca. 4000 magnets (3000 dipole & 1000 quadrupoles) -Linac-Ring: ca. the same number of magnets for ER option!

- → LHC transfer lines (ca. 6km); 350 warm magnets in 3 years (10/month)
- → LHeC magnet production requires industrial production
- → requires several contractors and production lines: pre-series and QA!
- → 1-2 years of pre-series production.
- → assume 80 magnets / month (8 \* TL) → 5 years of production Total of ca. 10 years for magnet production time?

#### **Requirements:**

→ The above work can not be done with the current arrangement and requires a focused team and sufficient resources

#### **Conclusion:**

→ Decision on LHeC option should be taken by 2012

### LHeC Ring-Ring Option Main Parameters

|                        | Electrons              | Protons               |           |                      |  |
|------------------------|------------------------|-----------------------|-----------|----------------------|--|
| Energy                 | 60 <u>GeV</u>          | 7 <u>TeV</u>          |           |                      |  |
| Current                | 100mA                  | 860mA                 |           |                      |  |
| Part. <u>per</u> Bunch | 2*1010                 | 1.7*1011              |           |                      |  |
| Ş <sub>X</sub>         | 5*10 <sup>-9</sup> m   | 5*10 <sup>-10</sup> m |           |                      |  |
| ξ <sub>X</sub>         | 2.5*10 <sup>-9</sup> m | 5*10 <sup>-10</sup> m |           |                      |  |
| Pγ                     | 43.5 MW                |                       |           |                      |  |
|                        |                        |                       |           |                      |  |
|                        | 1 degree               |                       | 10        | 10 degree            |  |
|                        | Electrons              | Protons               | Electrons | Protons              |  |
| βx                     | 40cm                   | 4.05 m                | 18 cm     | 1.8 m                |  |
| β <sub>x</sub>         | 20cm                   | 0.97 m                | 10 cm     | 0.5 m                |  |
| σx                     | 45µm                   |                       | 30µm      |                      |  |
| σx                     | 22µm                   |                       | 15.8μm    |                      |  |
|                        |                        |                       |           |                      |  |
| L <sub>0</sub>         | 8.5                    | 8.5*10 <sup>32</sup>  |           | 1.8*10 <sup>33</sup> |  |
| crossing angle         | 0.7mrad                |                       | 1mrad     |                      |  |
| loss factor            | 92 %                   |                       | 75%       |                      |  |
| Pγ                     | 44kW                   |                       | 2         | 28kW                 |  |
| Leff                   | 7.9*10 <sup>32</sup>   |                       | 1.34*1033 |                      |  |

### LHeC Ring-Ring Option Summary Bernhard Holzer



highly motivated and talented team excellent work ... from the seniors as well as ... from the new comers

a lot of progress and encouraging results

Than'x to all of you !!!