BSM Chapter for the LHeC CDR

G. Azuelos, E. Perez, editors

Contributions from various authors

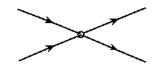
overview of chapter

- Leptoquarks
- contact interactions
- heavy and excited fermions
- diquarks
- Higgs by VBF -> coupling to bbar
- WWH coupling

Introduction

□ LHC is a "discovery machine"

→ new bsm physics will likely be discovered there first


□ LHeC:

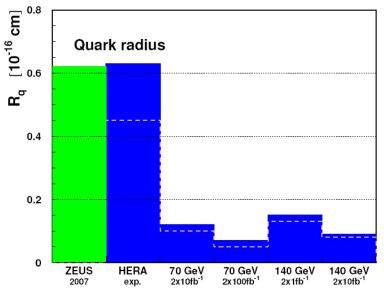
What could be the "added value" of LHeC for BSM physics ?

- o new physics at high scale \rightarrow see talk by E. Perez
 - specificity of LHeC : is there any new unknown lepton-quark interaction beyond EW ?
 - New physics at very high scales: effective theory: contact interactions → deviations from SM
 - Intermediate, accessible scale:
 - new bosons: leptoquarks, leptogluons
 - excited states of fermions (q-e compositeness)
 - diquarks
 - anomalous q and e interactions \rightarrow in particular with γq
 - → higher reach in single production for specific processes
 - → possibility to study properties of new particles & interactions
- Higgs couplings to $bb \rightarrow see talk by U. Klein$
- Probing VVH coupling \rightarrow see talk by R. Godbole
- o cleaner environment, better S/N
- o improved pdfs → higher precision from measurements performed at LHC

Contact Interactions

New physics could be at a higher scale $\Lambda \gg \sqrt{s}$: $\Rightarrow M_{_{eq \rightarrow eq}} \sim \Lambda^{^{-2}}$

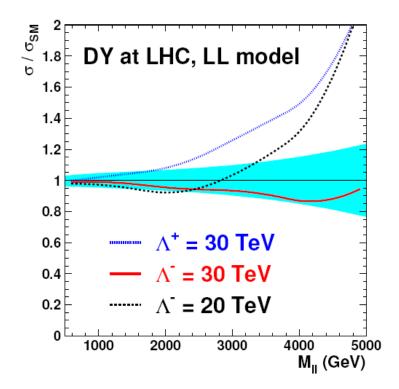
$$\mathcal{L} = \frac{4\pi}{2\Lambda^2} j_{\mu}^{(e)} j^{\mu(q)};$$


$$j_{\mu}^{(f=e,q)} = \eta_{LL} \,\overline{f}_L \gamma_{\mu} f_L + \eta_{RR} \,\overline{f}_R \gamma_{\mu} f_R + h.c.$$

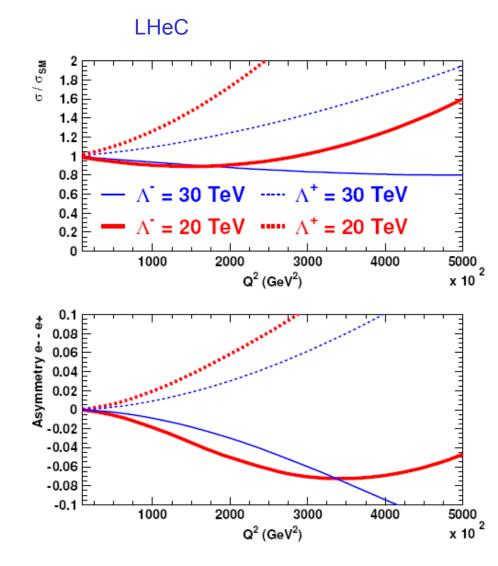
$$\Rightarrow \text{ all combinations of couplings } n = n^{(e)} n^{(q)};$$

 \Rightarrow all combinations of couplings $\eta_{ij} = \eta_i^{(e)} \eta_j^{(q)}; \quad q = u, d$

Quark radius from Q² dependence of DIS cross section


$$\begin{split} f(Q^2) &= 1 - \frac{1}{6} \langle r^2 \rangle Q^2 , \\ \frac{d\sigma}{dQ^2} &= \frac{d\sigma^{SM}}{dQ^2} f_e^2(Q^2) f_q^2(Q^2) \end{split}$$

A. F. Zarnecki, arXiv:0809.2917


G. Azuelos – Chavannes Workshop

resolving ambiguities on scale of compositeness

reach on compositeness scale comparable to LHC reach, but LHeC resolves ambiguities:

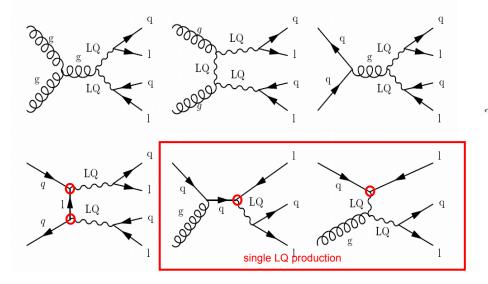
- sign of interference determined from asymmetry e[±]
- chiral nature of the interaction from polarization

E. Perez

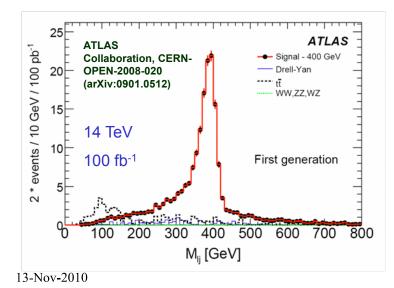
13-Nov-2010

G. Azuelos – Chavannes Workshop

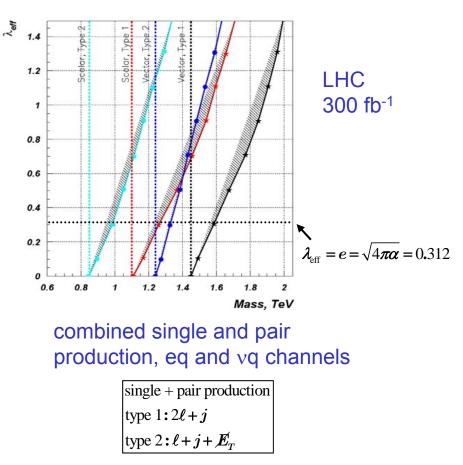
Leptoquarks


Leptoquarks are predicted in extensions of the SM

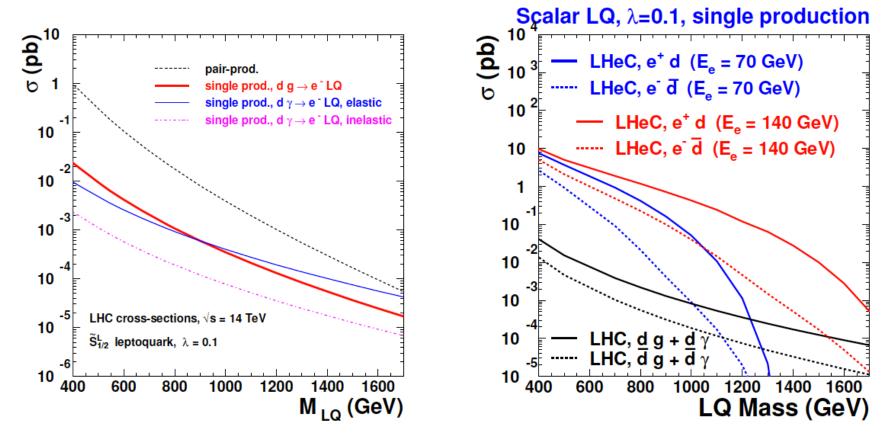
- E₆: new fields possibly having both B and L quantum numbers
- technicolor: bound states of technifermions
- Pati-Salam: lepton is a 4th quark color
- squarks decaying by R-parity violation $\mathcal{W}_{RPV} = \lambda_{ijk} L_i Q_j \overline{D}_k \Rightarrow \begin{cases} e^- + \overline{d} \rightarrow \overline{\tilde{u}} \rightarrow e^- + \overline{d} \\ e^- + u \rightarrow \tilde{d} \rightarrow e^- + u \end{cases}$


LQ's carry baryon and lepton number; can be scalar or vector → Buchmüller classification (many other conventions)

- family mixing \rightarrow FCNC and LFV
- non-chiral ? (couple to L and to R quarks simultaneously) \rightarrow lepton universality


at the LHC

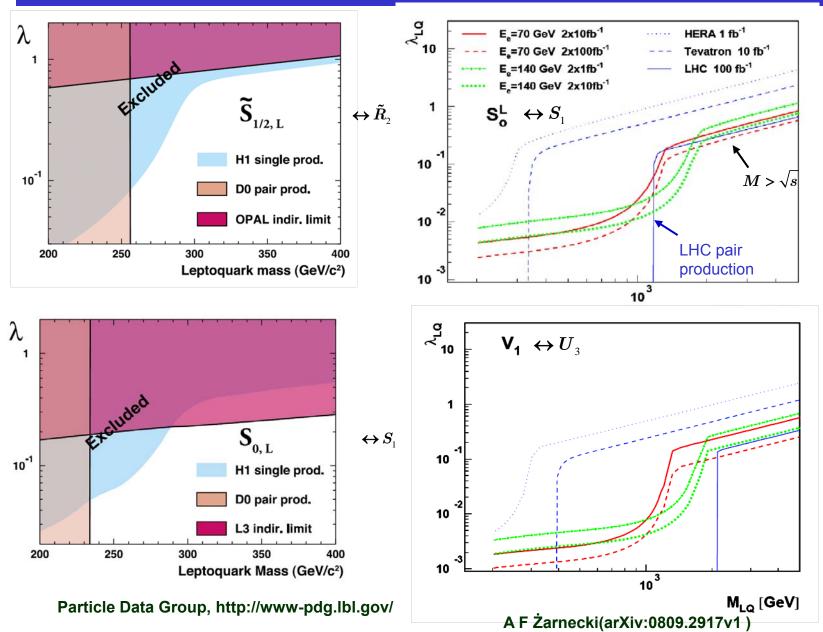
At the LHC, pair production is essentially independent of the LQ-q-e coupling $\lambda \rightarrow$ pair production abundant


single production suppressed by dependence on $\boldsymbol{\lambda}$

A. Belyaev et al., JHEP0509:005,2005 (arXiv:hep-ph/0502067)

G. Azuelos - Chavannes Workshop

Single LQ production

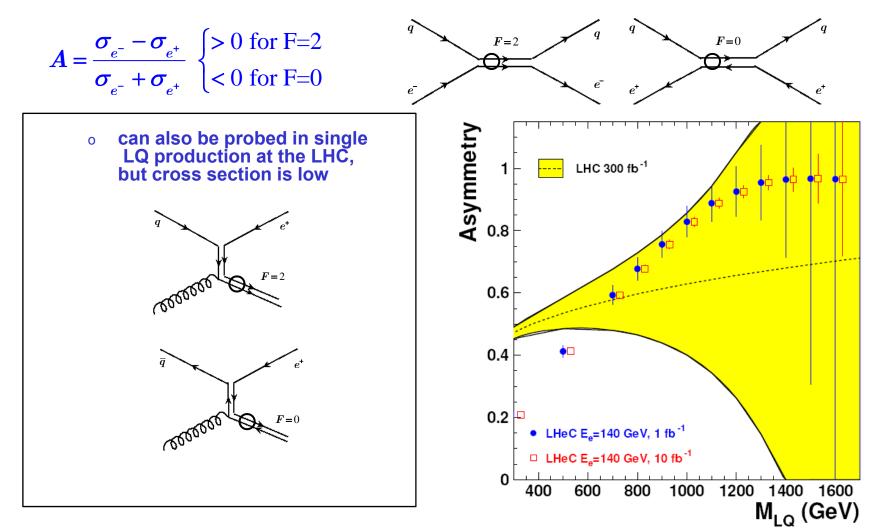


 γq process increases the x-section for single LQ production at the LHC. But it is still much lower (O(100)) than the x-section in ep.

Can we still use single LQ production at the HLC to determine the LQ properties ?

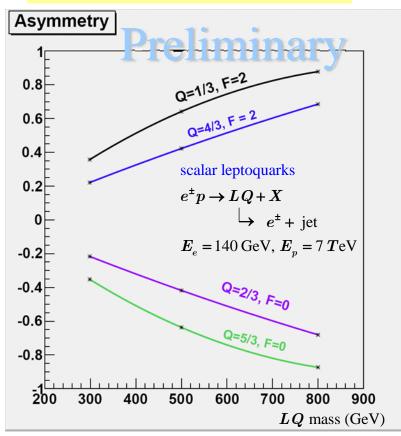
Slide from Emmanuelle

Present and expected bounds or discovery reach


13-Nov-2010

G. Azuelos - Chavannes Workshop

If LQs are discovered, what can we learn at the LHeC?


Quantum numbers and couplings:

• F: fermion number can be obtained from asymmetry in single LQ production, since q have higher x than \overline{q}

If LQs are discovered, what can we learn at the LHeC?

Asymmetry also probes the LQ charge

note: LQs belonging to an isodoublet might be degenerate

Preliminary results obtained with CalcHEP, new LQ model by A. Belyaev and A. Pukhov (private comm.)

Quantum numbers and couplings

spin

- at LHC, pair production of LQ-LQ leads to angular distributions which depend on the g-LQ-LQ coupling
 - → may need to look for spin correlations
- at LHeC, $\cos \theta^*$ distribution is sensitive to the spin
- vector leptoquarks can have anomalous couplings

chiral?

could be probed by measuring sensitivity of cross sections to polarization of the electron beam

BR to neutrino

good S/B in vj channel

e-q-LQ coupling

knowing the charge and spin, λ can be determined

Leptogluons

Leptogluons are color-octet partners of leptons

In certain compositeness models, the lepton may be a bound state of 2 color triplet preons It couples to a lepton and gluon, and the phenomenolgy is similar to that of LQ's

$$L = \frac{1}{2\Lambda} \sum_{I} \left\{ \bar{l}_8^{\alpha} g_s G^{\alpha}_{\mu\nu} \sigma^{\mu\nu} (\eta_L l_L + \eta_R l_R) + h.c. \right\}$$

M_{e8}, GeV	$L_{int} = 1fb^{-1}$	$L_{int} = 10 f b^{-1}$
500	245 (320)	440(570)
750	150 (195)	275 (355)
1000	82(110)	155 (205)
1250	41 (56)	81 (107)
1500	16(23)	34(46)

140 GeV x 7 TeV

Table 2.22: Achievable compositeness scale Λ in TeV units at LHeC2 for 5σ (3σ) statistical significance.

M. Sahin, S. Sultansoy and S. Turkoz

Excited fermions

- Excited fermions could be produced directly if their mass is below compositeness scale Assume spin = ½, L, R doublets
 - gauge interaction Lagrangian

$$\mathcal{L} = \frac{1}{2\Lambda} \overline{f}_{R}^{*} \sigma_{\mu\nu} \left[g f \frac{\tau_{a}}{2} W_{\mu\nu}^{a} + g' f' B_{\mu\nu} + g_{s} f_{s} \frac{\lambda_{a}}{2} G_{\mu\nu}^{a} \right] f_{L} \Rightarrow \sigma \sim \frac{|f|}{\Lambda^{2}}$$

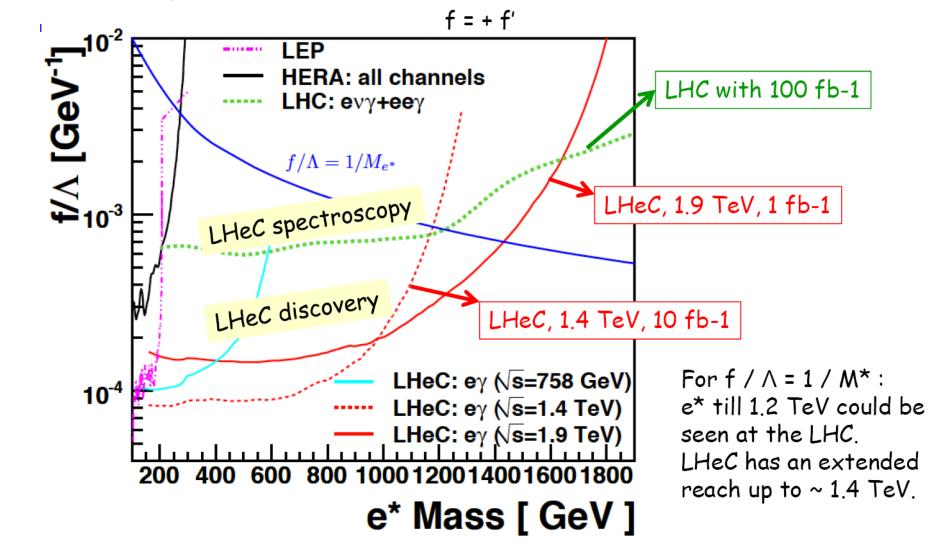
conventional reference point: $\frac{f}{\Lambda} = \frac{1}{m^*}$

similar Lagrangian for 4th family lepton: replace couplings by anomalous couplings

- contact interaction Lagrangian

$$\mathcal{L} = \frac{4\pi}{2\Lambda^2} j_{\mu} j^{\mu}; \quad j_{\mu} = \eta_L \ \overline{f}_L \gamma_{\mu} f_L + \eta'_L \ \overline{f}_L^* \gamma_{\mu} f_L^* + \eta''_L \ \overline{f}_L^* \gamma_{\mu} f_L + h.c. + (L \leftrightarrow R) \quad \Rightarrow \quad \sigma \sim \frac{\widehat{s} |\eta|^2}{\Lambda^4}$$

$$\stackrel{e}{\underset{\Lambda = m^*, \quad \eta_L = +1, \quad \eta_R = 0}{\overset{e}{\underset{\Lambda = m^*, \quad \eta_L = +1, \quad \eta_R = 0}{\overset{e}{\underset{\Lambda = m^*, \quad \eta_L = +1, \quad \eta_R = 0}{\overset{e}{\underset{\Lambda = m^*, \quad \eta_L = +1, \quad \eta_R = 0}{\overset{e}{\underset{\Lambda = m^*, \quad \eta_L = +1, \quad \eta_R = 0}{\overset{e}{\underset{\Lambda = m^*, \quad \eta_L = +1, \quad \eta_R = 0}{\overset{e}{\underset{\Lambda = m^*, \quad \eta_L = +1, \quad \eta_R = 0}{\overset{e}{\underset{\Lambda = m^*, \quad \eta_L = +1, \quad \eta_R = 0}{\overset{e}{\underset{\Lambda = m^*, \quad \eta_L = +1, \quad \eta_R = 0}{\overset{e}{\underset{\Lambda = m^*, \quad \eta_L = +1, \quad \eta_R = 0}{\overset{e}{\underset{\Lambda = m^*, \quad \eta_L = +1, \quad \eta_R = 0}{\overset{e}{\underset{\Lambda = m^*, \quad \eta_L = +1, \quad \eta_R = 0}{\overset{e}{\underset{\Lambda = m^*, \quad \eta_L = +1, \quad \eta_R = 0}{\overset{e}{\underset{\Lambda = m^*, \quad \eta_L = +1, \quad \eta_R = 0}{\overset{e}{\underset{\Lambda = m^*, \quad \eta_L = +1, \quad \eta_R = 0}{\overset{e}{\underset{\Lambda = m^*, \quad \eta_L = +1, \quad \eta_R = 0}{\overset{e}{\underset{\Lambda = m^*, \quad \eta_L = +1, \quad \eta_R = 0}{\overset{e}{\underset{\Lambda = m^*, \quad \eta_L = +1, \quad \eta_R = 0}{\overset{e}{\underset{\Lambda = m^*, \quad \eta_L = +1, \quad \eta_R = 0}{\overset{e}{\underset{\Lambda = m^*, \quad \eta_L = +1, \quad \eta_R = 0}{\overset{e}{\underset{\Lambda = m^*, \quad \eta_L = +1, \quad \eta_R = 0}{\overset{e}{\underset{\Lambda = m^*, \quad \eta_L = +1, \quad \eta_R = 0}{\overset{e}{\underset{\Lambda = m^*, \quad \eta_L = +1, \quad \eta_R = 0}{\overset{e}{\underset{\Lambda = m^*, \quad \eta_L = +1, \quad \eta_R = 0}{\overset{e}{\underset{\Lambda = m^*, \quad \eta_L = +1, \quad \eta_R = 0}{\overset{e}{\underset{\Lambda = m^*, \quad \eta_L = +1, \quad \eta_R = 0}{\overset{e}{\underset{\Lambda = m^*, \quad \eta_L = +1, \quad \eta_R = 0}{\overset{e}{\underset{\Lambda = m^*, \quad \eta_L = +1, \quad \eta_R = 0}{\overset{e}{\underset{\Lambda = m^*, \quad \eta_L = +1, \quad \eta_R = 0}{\overset{e}{\underset{\Lambda = m^*, \quad \eta_L = +1, \quad \eta_R = 0}{\overset{e}{\underset{\Lambda = m^*, \quad \eta_L = +1, \quad \eta_R = 0}{\overset{e}{\underset{\Lambda = m^*, \quad \eta_L = +1, \quad \eta_R = 0}{\overset{e}{\underset{\Lambda = m^*, \quad \eta_L = +1, \quad \eta_R = 0}{\overset{e}{\underset{\Lambda = m^*, \quad \eta_L = +1, \quad \eta_R = 0}{\overset{e}{\underset{\Lambda = m^*, \quad \eta_L = +1, \quad \eta_R = 0}{\overset{e}{\underset{\Lambda = m^*, \quad \eta_L = m^*, \quad \eta_R = 0}{\overset{e}{\underset{\Lambda = m^*, \quad \eta_R = m^*, \quad \eta_R = 0}{\overset{e}{\underset{\Lambda = m^*, \quad \eta_R = m^*, \quad \eta_R = 0}{\overset{e}{\underset{\Lambda = m^*, \quad \eta_R = m^*, \quad \eta_R = 0}{\overset{e}{\underset{\Lambda = m^*, \quad \eta_R = m^*, \quad \eta_R = 0}{\overset{e}{\underset{\Lambda = m^*, \quad \eta_R = m^*, \quad \eta_R = m^*, \quad \eta_R = m^*, \quad \eta_R = 0}{\overset{e}{\underset{\Lambda = m^*, \quad \eta_R = m^*, \quad \eta_$$


LHC could probe up to 1-2 TeV for $f = f' = 1, \Lambda = m_{e^*}$

O. Cakir, A. Yilmaz, S. Sultansoy, PR D70 (2004) 075011,

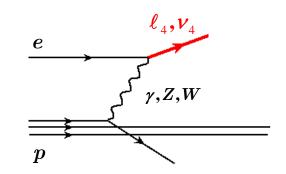
A. Belyaev, C. Leroy, R. Mehdiyev, Eur Phys J C 41, s02, 1-10 (2005)

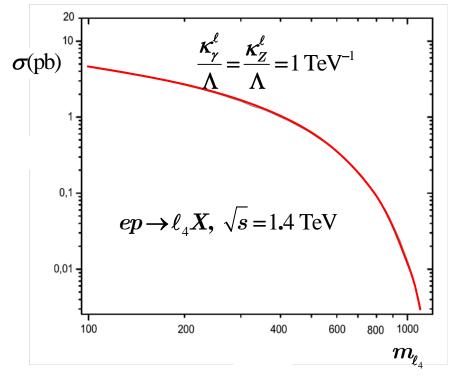
LHeC has higher cross section

Excited leptons

If LHC observes the single-production of e*: its properties could be studied at LHeC (larger single cross-section).

E. Perez


LHeC Workshop, Nov 10


heavy leptons (4th family or other)

Heavy fermions predicted in many BSM theories

will be copiously produced in pair at LHC, but anomalous coupling measurement more difficult

Production at LHeC by anomalous couplings:

A.K. Çiftçi et al., Mod Phys Lett A23 (2008) 1047

Charged leptons:

and

→ can achieve 5 σ discovery up to mass of 800 GeV, for $\sqrt{s} = 1.4$ TeV and 1 fb⁻¹

$$\left(\frac{\kappa_{\gamma}^{\ell}}{\Lambda} = \frac{\kappa_{Z}^{\ell}}{\Lambda} = 1 \text{ TeV}^{-1}\right)$$

heavy quarks: anomalous couplings in yp collisions

t quark – anomalous coupling in γp option K available using Compton back-scattering 95% C.L. 0.025 90% C.L. pulsed superconducting linac + LHC ring 68% C.L. $t \rightarrow \gamma q$ also possible at LHC: 0.02 $L = 10 \text{ fb}^{-1}$ 70 GeV x 7 TeV $BR(t \rightarrow \gamma q) < \sim 2 \times 10^{-4}$ with 100 fb⁻¹ (CMS) 0.015 $< 7 \times 10^{-4}$ with 1 fb⁻¹ (ATLAS) $\Lambda = 1 \text{ TeV}$ $\kappa/\Lambda = 0.01 \Rightarrow BR(t \rightarrow u\gamma) \sim 2 \times 10^{-6}$ note: 0.01 0.005 0.005 0.01 0.015 K" (K/A) (TeV⁻¹) p IT Cakir, O. Cakir and S. Sultansoy, PL B685 (2010) 170 γ p collider, $\mathcal{L}_{m}^{int} = 4.1 \text{ fb}^{-1}$ $q4 \rightarrow q\gamma$ ep collider, L int added value of LHeC if gQq coupling small = 10 fb⁻¹ ep collider, L_{ap}^{int} = 4.1 fb⁻¹ 0.1 200 300 400 500 600 700 800 m_{q₄}(GeV) elos - Chavannes Workshop

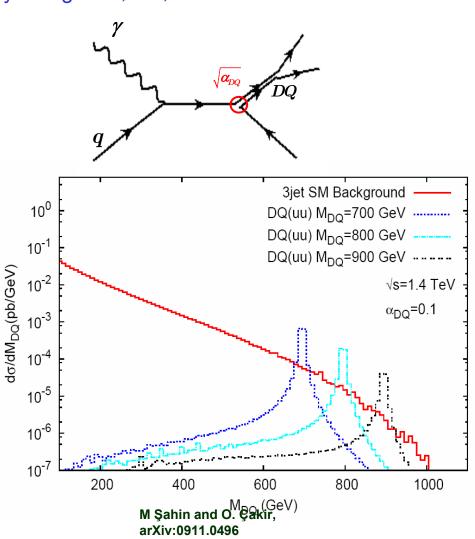
Diquarks

Diquarks predicted in superstring-inspired E6 and composite models

- more generically, diquarks could carry charge 1/3, 2/3, 4/3 and be scalar or vector
- γp production:

 E_6 diquarks excluded by CDF in range 290 < m_{DQ} < 630 GeV Phys.Rev.D79:112002,2009 (2009) LHC can hardly measure the charge

Charge measurement of DQ

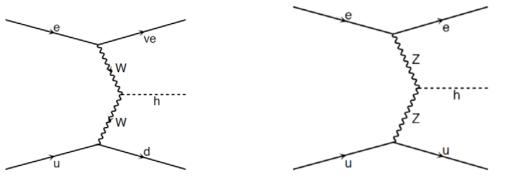

Single DQ production in γp collisions:

$$\sigma = f(M, \alpha, e_{DQ})$$

$$\uparrow / \qquad \rightarrow e_{DQ}$$

$$LHC$$

vector and scalar quarks can be distinguished by the angular distribution of their decays



G. Azuelos - Chavannes Workshop

Higgs coupling to $b\overline{b}$

U. Klein, M. Ishitsuka, K. Kimura, M. Kuze, K. Sampei, C. Hengler

- Higgs mass most likely in range ~115-150 GeV
- In this mass range, the principal decay is to bbhuge QCD background at LHC \rightarrow Hbb coupling difficult to measure
- → LHeC can produce Higgs by Vector Boson scattering :

CC, ~ 200 fb

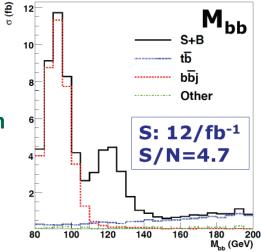
NC, ~ 50 fb for 150 x 7000 GeV $\sqrt{s} = 2.05 TeV$

Challenging measurement, which imposes constraints on the detector: *forward acceptance crucial*

Higgs coupling to $b\overline{b}$

Previous generator-level study gave encouraging results

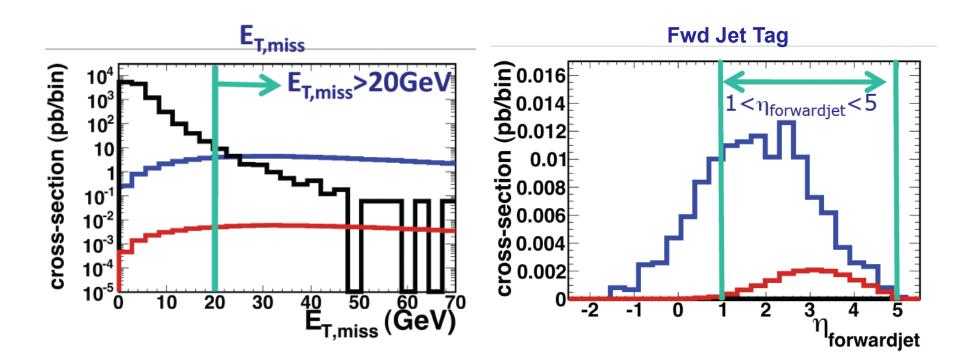
- needs good b-tag efficiency: 60%
- forward jet tagging: $1 < \eta < 5$ and $p_T > 30$ GeV


Need for a more realistic evaluation using detector simulation

- signals and backgrounds generated with MadGraph
 - \rightarrow need to modify pythia-pgs interface to run for DIS
- allow Higgs decay in MadGraph

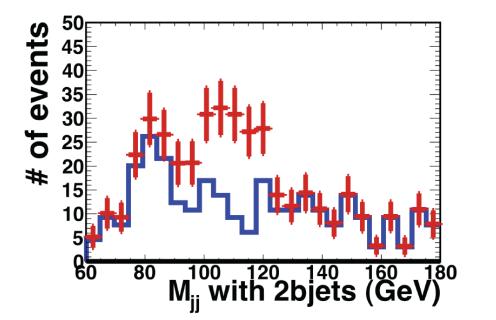
• PGS:

- em calorimeter resolution: $5\% \times \sqrt{E}$
- had. calorimeter resolution: $60\% \times \sqrt{E}$
- jet cone: 0.5
- b-tagging: 60% b, 10% c, 1% usdg flat in range $|\eta| < 3$
- calorimeter coverage up to $|\eta| < 5$

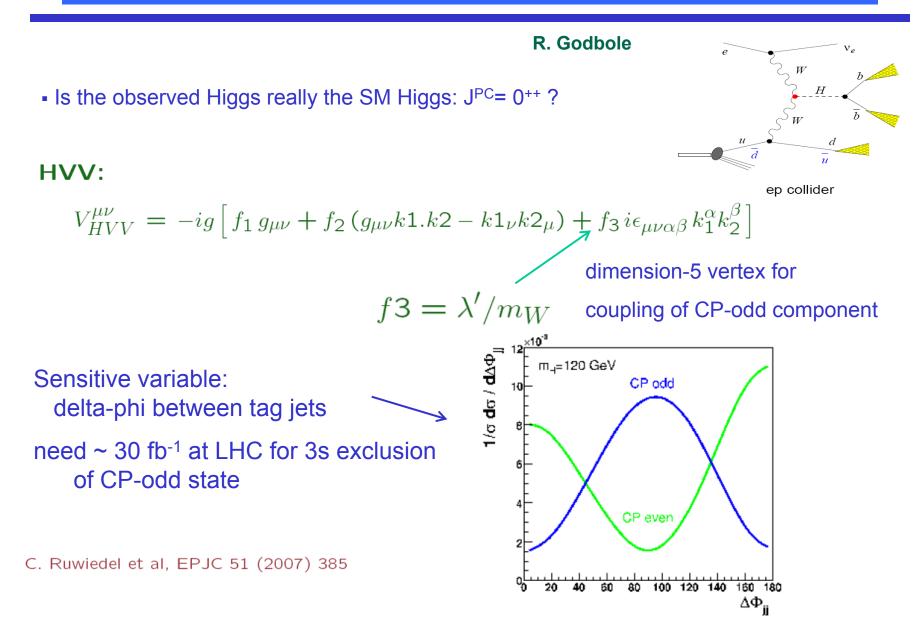


Higgs coupling to $b\overline{b}$

Summary of event selection

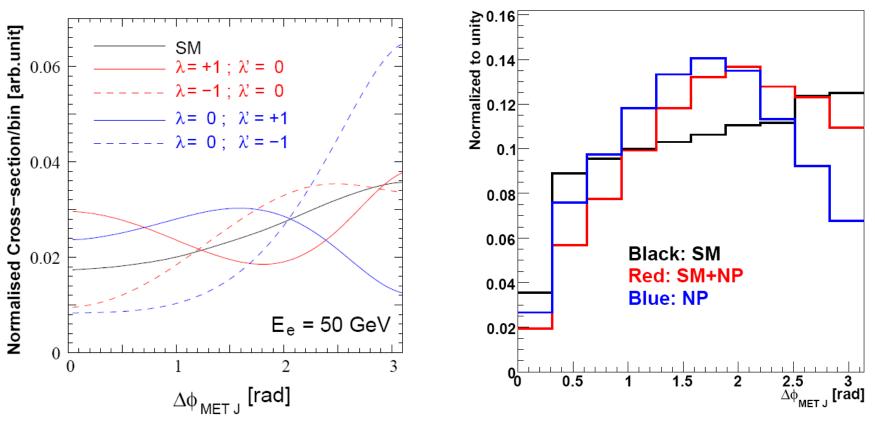

- CC only: Etmiss > 20 GeV, Q² > 400 GeV, y_{JB}<0.9
- 2 b jets
- single top veto
- forward jet tagging

Number of events after ALL cuts.


	Higgs event	CC 3jets bg	NC 3jets bg	S/N	S∕√N
# of events	104	86.4	0	1.2	11

- Efficiency of Higgs event selection is 6.5% (104/1600)
- We could identify $H \rightarrow bb$ events within 11 σ .

E_e = 150 GeV, m_H = 120 GeV 10 fb⁻¹


Probing the HWW vertex

For CP-odd Higgs, $H \rightarrow WW$ has very small BR \rightarrow would like to use bb decay

 \rightarrow proven to be possible at LHeC !

 \rightarrow can also separate HWW and HZZ couplings at LHeC

using parton level results from B. Mellado and T. Han

Summary

LHeC can complement LHC in understanding new physics phenomena

- o contact interactions
- o Leptoquarks:
 - LHeC is ideal machine to study in detail all properties
- excited and/or heavy fermions
- o anomalous couplings

Higgs parameters

- o H-b-b coupling can be measured through VBF, $H \rightarrow bb$
 - needs good detector performance
- HWW coupling:
 - CP-odd component through phi correlations between tag jets