Precision QCD and electroweak physics at the LHeC

3rd LHeC workshop, 13 Nov 2010, Chavannes-De-Bogis

Paolo Gambino (Torino), Olaf Behnke (DESY), Thomas Gehrmann (Zurich)

What kind of QCD/EW physics can be done with a (20-150 GeV) x 7 TeV ep collider with integrated L~1-100 fb-1?

- 1. DIS
- 2. Jets
- 3. Heavy flavors
- 4. Electroweak physics

Most work completed, writing in progress

LHeC QCE Group CDR preparation status 12 nov 2010

Торіс	Authors	# Pages	Study status	CDR subarticle status	Chavanne talk
1. Inclusive ep cross sections and structure functions	Max Klein, Enrico Tassi	10	Finished	Ongoing writing	yes
2. QCD fits (PDF & α _s)	Claire Gwenlan, Alberto Guffanti, Max Klein Thomas Kluge, Voica Radescu	7+4	Mostly finished	Ongoing writing	yes
3. Electroweak physics	Paolo Gambino, Claire Gwenlan, Nandi Soumitra, Voica Radescu	5	Mos	Ongoing writing	yes
4. Single top production	Vacant	4	Generator level studies, Sherpa plus Det. simulation??		
5. Charm and beauty production	Gustav Kramer, Hubert Spiesberger, Gokhan Unel, O. B.	11	Finished	Delivered 1 st draft	yes
6 High pt jets	Thomas Gehrmann, Claudia Glasman, Juan Terron, Thomas Schoerner, Joerg Behr	8	Finished	Delivered 1 st draft	yes

1. DIS at LHeC

Pseudodata: Neutral Current Event Rates

e

Photon and Z exchanges are 1:1

Charge Asymmetry xF₃^{γZ}

Charged Currents

$$\sigma_{r,CC} = \frac{2\pi x}{Y_+ G_F^2} \left[\frac{M_W^2 + Q^2}{M_W^2} \right]^2 \frac{\mathrm{d}^2 \sigma_{CC}}{\mathrm{d}x \mathrm{d}Q^2}$$

$$\sigma_{r,CC}^{\pm} = \frac{1 \pm P}{2} \left(W_2^{\pm} \mp \frac{Y_-}{Y_+} x W_3^{\pm} - \frac{y^2}{Y_+} W_L^{\pm} \right)$$

$$W_2^{\pm} = x(\overline{U} + D), x W_3^{\pm} = x(D - \overline{U}), W_2^{-} = x(U + \overline{D}), x W_3^{-} = x(U - \overline{D})$$

$$U = u + c \qquad \overline{U} = \overline{u} + \overline{c} \qquad D = d + s \qquad \overline{D} = \overline{d} + \overline{s}$$

$$\sigma_{r,CC}^{+} \sim x \overline{U} + (1 - y)^2 x D,$$

$$\sigma_{r,CC}^{-} \sim x U + (1 - y)^2 x \overline{D},$$

$$\sigma_{r,NC}^{\pm} \simeq [c_u(U + \overline{U}) + c_d(D + \overline{D})] + \kappa_Z [d_u(U - \overline{U}) + d_d(D - \overline{D})]$$
with $c_{u,d} = e_{u,d}^2 + \kappa_Z (-v_e \mp Pa_e) e_{u,d} v_{u,d} \text{ and } d_{u,d} = \pm a_e a_{u,d} e_{u,d},$

Complete unfolding of all parton distributions to unprecedented accuracy

Pseudodata: Charged Current Event Rates **Electron-Proton Scattering - Rates 10**⁹ **B: 50 GeV 50 fb⁻¹ D: 100 GeV 10 fb⁻¹** W **10⁸** E: 150 GeV 6 fb⁻¹ q **10**⁷ HERA 1 fb⁻¹ **10⁶** р **10⁵ 10**⁴ LHeC: expect ~ **10³** two orders of magnitude 10^2 more events + better **10**¹ coverage for Ψ. x>0.5 **10**⁰ 3 5 6 2 4 Max Klein - Scenarios and Measurements $logQ^2/GeV^2$ LHeC 10

CC - events

Strong Coupling Constant

Simulation of $\alpha_{\!s}$ measurement at LHeC

 α_s least known of coupling constants Grand Unification predictions suffer from $\delta \alpha_s$

DIS tends to be lower than world average

LHeC: per mille accuracy indep. of BCDMS. Challenge to experiment and to h.o. QCD

T.Kluge/M.Klein Divonne 09

J.Bluemlein and H. Boettcher, arXiv 1005.3013 (2010)

Strange (=? anti-strange) Quark

$$W^{+}s \rightarrow c$$

$$1 fb^{-1}$$

$$\varepsilon_{c} = 0.1$$

$$\varepsilon_{q} = 0.01$$

$$\delta_{syst} = 0.1$$

$$^{\circ} - \mathcal{G}_{h} \ge 1^{o}$$

$$\bullet - \mathcal{G}_{h} \ge 10^{o}$$

Some dimuon and K data never properly measured

Neutron Structure (ed \rightarrow eX)

d/u at low x from deuterons

(13) There are five color-singlet combinations of the deuteron wavefunction in QCD, only one of which is the standard proton-neutron state. The "hidden color" [13] components will lead to high multiplicity final states in deep inelastic electron-deuteron scattering.

crucial constraint on evolution (S-NS), improved

Plenary ECFA, LHeC, Max α_s Klein, CERN 30.11.2007

In eA at the collider, test Gribovs relation between shadowing and diffraction, control nuclear effects at low Bjorken x to high accuracy

Studied scenarios (produced by Max Klein)

•	config.	E(e)	E(N)	N	∫L(e ⁺)	∫L(e ⁻)	Pol I	L/10 ³² P/	MW	yea	rs type
-	А	20	7	р	1	1	-	1	10	1	SPL
\square	В	50	7	р	50	50	0.4	25	30	2	RR
	С	50	7	p	1	1	0.4	1	30	1	RR lo x
	D	100	7	р	5	10	0.9	2.5	40	2	LR
	Е	150	7	p	3	6	0.9	1.8	40	2	LR
	F	50	3.5	D	1	1		0.5	30	1	eD
	G	50	2.7	Pb	0.1	0.1	0.4	0.1	30	1	ePb
	Н	50	1	р		1		25	30	1	lowEp

- Scenario B:
 - E(e[±]) = 50 GeV
 - o E(p) = 7 TeV
 - Pol = ± 0.4
 - o Lumi e⁺p = 50 fb⁻¹
 - o Lumi e⁻p = 50 fb⁻¹

• Scenario H:

- o E(e⁻) = 50 GeV
- o E(p) = 1 TeV
- o Pol=0
- o Lumi e⁻p = 1 fb⁻¹
- The central values of the cross sections are based on the HERAPDF1.0 settings
- The uncertainties are taken from the simulated tables (Max Klein)

Same settings as for HERAPDF1.0 has been

used

Voica Radescu

- Impressive impact of the LHeC simulated data on PDFs:
 - o At high x (see linear plot) and at very low x (see log x plot)!

* All uncertainties are shown at the starting scale $Q^2=1.9$ GeV²

- Impressive impact of the LHeC simulated data on PDFs:
 - o At very low x (see log x plot) and at high x (see linear plot) too!

Similarly for u valence (linear and log plots are shown)

Similar but a bit less precise for d valence

 Beautiful reduction of the uncertainties given the precision and kinematic span of the LHeC simulation.

Accurate high x sea is important to study production of heavy particles at the LHC, e.g. Z'

- Usual assumptions for light quark decomposition at low x may not necessary hold.
- Relaxing the assumption at low x u=d, we observe that uncertainties escalate, this has been shown that would impact considerably the size of uncertainties which could propagate further to Ws at the LHC up to 5% in the plateau region!
 - One can see that for HERA data, if we relax the low x constraint on u and d, the errors are increased tremendously!
 - However, when adding the LHeC simulated data, we observe that uncertainties are visbly improved even without this assumption.

Proton PDFs

Claire Gwenlan

$Q^2 = 100 \text{ GeV}^2$

» <u>only</u> PDF parameters free (LHeC NC and CC e[±]p included)

scenarios: A, B, C, D and E

	E _e (GeV)	Ρ	L (e-:e+)
А	20	0	2 (1:1)
В	50	0.4	200 (1:1)
С	50	0.4	4 (1:1)
D	100	0.9	30 (2:1)
E	150	0.9	18 (2:1)

(examples with several different Q² values are shown in backups)

* acceptance for scenario B has been taken to be: $10 < \theta < 170^{\circ}$

Discussion on pdfs

- LHeC is clearly a wonderful toy for such physics
- Comparisons here with Hera only, better to compare with fits including present non-DIS data as well
- More flexible parameterization shown by Voica, may need further investigation
- NNPDF might cover the last two topics to give us even more confidence (a last effort, please!)
- LHC will have important effects on pdfs, but depth and uniqueness of LHeC are undisputable

2. Jets

$O(\alpha_s)$ processes: Jets

Reach scales up to $2m_{top}$ where change of $1/\alpha_s$ slope is expected

NNLO THEORY (T. Gehrmann et al.)

- NNLO calculations are ongoing. Matrix elements are either
 - already derived (NLO corrections to 3-jet production in DIS, Z. Nagy, NLOJET++) or
 - Contained in work by Gehrmann/Glover (for the two-loop 2-parton final state).
- Required: subtraction method!
 - Gehrmann et al.: antenna subtraction method (for DIS).

PLB676(2009)146

JHEP0704*2007)016 JEHP1001(2010)118

Currently implementing method into program for DIS jet production.

Thomas Schoerner-Sadenius | Jets @ LHeC | 12/13 November 2010 | Seite 38

3. Heavy flavors

$O(\alpha_s)$ processes: charm & beauty

Also for **charm**: F_2^{cc} will become precision testing ground for QCD and proton structure

Z

sensitive to b(x,Q2)

Test of applicability of different mass schemes for charm production

4. Electroweak physics

Electroweak physics @ HERA

Polarized CC cross section

In the SM the charged current is purely LH

 $P_e = \frac{N_R - N_L}{N_R + N_L}$ $\sigma_{CC}^{\pm}(P_e) = (1 \pm P_e)\sigma_{CC}^{\pm}(P_e = 0)$

linear dependence on P_e

Limits on W_R

 $M_{W_R} > 208 @ 95 \%$ C.L.

These constraints on RH currents will become much stronger at LHeC, and start competing with low energy ones. They are independent of PDFs

LHeC scenario D

comparison with ZEUS fit (base to which LHeC pseudo-data added) » still to come: HERA-II NC e⁺p data in ZEUS fit; H1+ZEUS combined HERA-II results

LHeC scenario D

comparison with other experiments

By itself, a better determination of quark NC couplings will constrain some exotic scenarios that modify *only* light quark couplings (non-universal Z', R-parity violating susy) After LHC?

Summary

DIS: great opportunities for higher precision in gluon, flavor decomposition, s/sbar, α_s

- Jets: very interesting pQCD tests, theoretical developments (NNLO closer) will allow precise α_{s}
- Electroweak physics: NC couplings of the quarks can be measured to ~1%.