LHeC Ring-Ring Option
 Introduction and Main Parameters

Bernhard Holzer
1.) The Logo

2.) The Problem

The Real Problem

LHeC Ring-Ring Option Arc Lattice

Proton Ring: Ultimate LHC Parameter

$$
\begin{aligned}
& E=7 \mathrm{TeV} \\
& N_{p}=1.7 * 10^{11} \text { Protons } / \text { Bunch } \\
& \varepsilon=5 * 10^{-10} \text { mrad }
\end{aligned}
$$

determined by performance of dipole magnets

Electron Ring: Miriam Parameter
$E=60 \mathrm{GeV}$
$N_{p}=2 * 10^{10}$ Electrons/Bunch
... determined by available of power
$\varepsilon_{x}=5 * 10^{-9} \mathrm{mrad}, \varepsilon_{y}=2.5 * 10^{-9} \mathrm{mrad}$... determined by arc lattice

Miriam Fitterer

LHeC Ring-Ring Option IR-Optics

10° Optics:
Luminosity limited by $\beta_{\text {max }}$ at first proton quadrupole
\rightarrow determines the quadrupole design
\rightarrow determines the separation scheme

\rightarrow determines the crossing angle (parasitic encounters)

Goal: "somehow in the range of $L=1033$ "

$$
\begin{array}{lll}
\sigma_{x}=30 \mu \mathrm{~m} & \beta_{x p}=1.8 \mathrm{~m} & \beta_{x e}=18 \mathrm{~cm} \\
\sigma_{y}=15.8 \mu \mathrm{~m} & \beta_{y p}=0.5 \mathrm{~m} & \beta_{y e}=10 \mathrm{~cm}
\end{array}
$$

LHeC Ring-Ring Option IR-Optics

10 Optics:
Luminosity limited by $\boldsymbol{\beta}_{\text {max }}$ at first proton quadrupole
... but more by (late) separation scheme
\rightarrow determines the synchrotron radiation power

Goal: "as close as possible to the 10° option"

$$
\begin{array}{lll}
\sigma_{x}=44.7 \mu \mathrm{~m} & \beta_{x p}=3.9 \mathrm{~m} & \beta_{x e}=40 \mathrm{~cm} \\
\sigma_{y}=22.4 \mu \mathrm{~m} & \beta_{y p}=1.0 \mathrm{~m} & \beta_{y e}=20 \mathrm{~cm}
\end{array}
$$

Luke Thomson

LHeC Ring-Ring Option

Separation Scheme and Synchrotron Radiation

Separation Scheme:
10° Option: $s=1.2 \mathrm{~m}$
Separation starts as early as the focusing

$$
\rho=8 \mathrm{~km}=\text { const } \quad \text { from } s=1.2 \mathrm{~m} \ldots s=21 \mathrm{~m}
$$

Goal: "keep it low ...

$$
\begin{aligned}
& P_{\gamma} \approx 29 \mathrm{~kW} \quad \text { for } \quad I_{e}=100 \mathrm{~mA} \\
& E_{\text {crit }}=124 \mathrm{keV}
\end{aligned}
$$

Nathan Bernard

LHeC Ring-Ring Option

Separation Scheme and Synchrotron Radiation

Separation Scheme:
$1{ }^{\circ}$ Option: $s=6.2 \mathrm{~m}$
Separation starts late

$$
\rho=4.6 \mathrm{~km}=\text { const }
$$

$P_{\gamma} \approx 44 \mathrm{~kW} \quad$ for $\quad I_{e}=100 \mathrm{~mA}$
$E_{c r i t}=156 \mathrm{keV}$
Separation Scheme: crossing angle (1mrad) could be reduced but it is needed to support the overall separation at $s=21 \mathrm{~m}$

Nathan Bernard

LHeC Ring-Ring Option
 Magnet Design

Electron Triplet:

1^{0} Option: Quadrupoles outside the detector -> null problemo

$$
g=90 \mathrm{~T} / \mathrm{m}
$$

$$
B_{0}=3.2 \mathrm{~T}
$$

10° Option: Quadrupoles inside the detector compact design needed

$$
\begin{aligned}
& g=102 \mathrm{~T} / \mathrm{m} \\
& B_{0}=2.0 \mathrm{~T}
\end{aligned}
$$

Proton Triplet:
beam separation needed $\approx 55 \mathrm{~mm}$

Stephan Russenschuck

LHeC Ring-Ring Option
 Main Parameters

	Electrons	Protons		
Energy	60 GeV	7 TeV		
Current	100 mA	860 mA		
Part. per Bunch	2*10 ${ }^{10}$	$1.7 * 10^{11}$		
ε_{x}	$5^{*} 10^{-9} \mathrm{~m}$	$5^{*} 10^{-10} \mathrm{~m}$		
ε_{y}	$2.5 * 10^{-9} \mathrm{~m}$	$5^{*} 10^{-10} \mathrm{~m}$		
P_{γ}	43.5 MW			
		gree		gree
	Electrons	Protons	Electrons	Protons
β_{x}	40 cm	4.05 m	18 cm	1.8 m
β_{2}	20 cm	0.97 m	10 cm	0.5 m
σ_{x}	$45 \mu \mathrm{~m}$		$30 \mu \mathrm{~m}$	
σ_{x}	$22 \mu \mathrm{~m}$		$15.8 \mu \mathrm{~m}$	
L_{0}	8.5*10 ${ }^{32}$		$1.8{ }^{*} 10^{33}$	
crossing angle	0.7 mrad		1 mrad	
loss factor	92 \%		75\%	
P_{γ}	44 kW		28 kW	
$\mathrm{L}_{\text {eff }}$	$7.9 * 10^{32}$		$1.34 * 10^{33}$	

