MANCHEsTER 1824

The University of Manchester

CHOORing-Ring Interaction Regions

Luke Thompson
Rob Appleby
University of Manchester/CERN/Cockcroft Inst.
$12^{\text {th }}$ November 2010

Overview

- Design Requirements
- Separation Scheme
- 10° Solution
- 1° Solution

Ring-Ring Interaction Regions
Luke Thompson

Design Requirements

- Luminosity
- ~1033
- Machine acceptance
- 1° : Low Q^{2}, x
- 10° : High luminosity
- Separation
- Beam-beam
- Parasitic crossings every 3.75 m
- $5 \sigma_{e}+5 \sigma_{p}$ min. separation at each parasitic crossing
- Proton quad
- ~50 mm separation

Design Requirements

- Synchrotron radiation
- Minimise total power and E_{c}
- Depends on separation scheme
- Matching to latest ring lattice
- Matching quads in LSS
- ‘Smooth' solution

IR Separation Scheme

- Fundamentals shared by 1° and 10° layouts
- Horizontal S-shaped scheme
- IP crossing angle
- Dipole bends
- Offset quads
- Constant bend radius

Lattice Solutions

- Matched to M. Fitterer's current ring lattice
- Matched to arcs using matching region in LSS
- Space between IR optics and LSS quads for proton optics

1° Files available at: /afs/cern.ch/eng/Ihc/optics/LHeC/IR1_Lattice1/
10° Files available at:/afs/cern.ch/eng//hc/optics/LHeC/IR10_Lattice1/
Ring-Ring Interaction Regions
Luke Thompson

Lattice Solutions

- Space for complete LSS separation scheme
- IR separation only does not give real lattice geometry
- Full IR-matched ring lattice files on AFS have zero IR bend strength by default
- Design dispersion-free bending to return to electron arcs
- Full separation scheme depends on geometry

1° Files available at: /afis/cern.ch/eng/lhc/optics/LHeC/IR1_Lattice1/ 10° Files available at: /afs/cern.ch/eng/lhc/optics/LHeC/IR10_Lattice1/

Ring-Ring Interaction Regions
Luke Thompson

Lattice Solutions

- Zero-order solutions
- Do not include
- Complete separation scheme
- Dispersion matching
- Phase advance matching
- Orbit correction
- Solutions not quite symmetric
- Dispersion suppressor geometry
1° Files available at: /afis/cern.ch/eng/lhc/optics/LHeC/IR1_Lattice1/
10° Files available at: /afs/cern.ch/eng//hc/optics/LHeC/IR10_Lattice1/

Ring-Ring Interaction Regions
Luke Thompson

1° Solution

Ring-Ring Interaction Regions
Luke Thompson

1° Solution - Plots

1° Solution - Plots

1° Solution - Plots

1° Solution - Separation

- FD quad doublet
- β_{x} stays low
- Peak in β_{y}
- $\mathrm{B}_{\mathrm{y}}=735 \mathrm{~m}$
- $\mathrm{S}_{\mathrm{IP}}=8.5 \mathrm{~m}$
- First parasitic interaction before ${ }^{*}$
- Minimum crossing angle largely dependent upon β^{*} - $\sim 0.7 \mathrm{mrad}$
- Choose 1 mrad for this layout
- $\|^{*}=6.2 \mathrm{~m}$
- Less room for dipoles
- Dipole strength increased to achieve $\sim 50 \mathrm{~mm}$ by proton triplet

1° Solution - Separation

LHeC 1 Degree IR, 3sigma envelope

_ X beam envelope
_- Y beam envelope

Ring-Ring Interaction Regions
Luke Thompson

1° Solution - Parameters

$L(\mathbf{0})$	$8.54 \times 1 \mathbf{1 0}^{32}$
θ_{IP}	1 mrad
$S(\theta)$	0.858
$L(\theta)$	7.33×10^{32}
$\beta^{*}{ }_{x}$	0.4 m
$\beta^{*}{ }_{y}$	0.2 m
μ^{*}	6.2 m
ρ	4.6 km
SR Power	44 kW
SR E_{c}	156 keV

Note: $\theta_{\text {min }}$ for this layout from beam-beam considerations is ~ 0.7 mrad.
0.7 mrad requires increased bend strength to attain 50 mm separation at $\mathrm{s}=22.96 \mathrm{~m}$, raising SR power to 56 kW .1 mrad has been chosen as a trade-off between SR power and luminosity, and also as a direct comparison to the 10° layout.
$L(0.7 \mathrm{mrad})=7.88 \times 10^{32}$

Ring-Ring Interaction Regions
Luke Thompson

10° Solution

Ring-Ring Interaction Regions
Luke Thompson

10° Solution - Plots

10° Solution - Plots

10° Solution - Plots

10° Solution - Separation

- FDF quad triplet
- Peak in β_{x}
- $\beta_{x}=285 \mathrm{~m}$
- $\mathrm{S}_{\mathrm{IP}}=5.4 \mathrm{~m}$
- Due to initial F quad, peak is later than in a DFD triplet
- Separation does not suffer
- Peak is between parasitic crossings
- First parasitic interaction after l^{*}
- Minimum crossing angle dependent upon offset quadrupoles
- No 'absolute' minimum angle
- Some flexibility - 1 mrad chosen for reasonable SR

10° Solution - Separation

LHeC 10 Degree IR, 3sigma envelope

__ Y beam envelope

Ring-Ring Interaction Regions
Luke Thompson

10° Solution - Parameters

$L(\mathbf{0})$	1.80×10^{33}
θ_{IP}	1 mrad
$S(\theta)$	0.746
$L(\theta)$	1.34×10^{33}
$\beta^{*}{ }_{x}$	0.18 m
$\beta^{*}{ }_{y}$	0.1 m
μ^{*}	1.2 m
ρ	8.0 km
SR Power	29 kW
SR E_{c}	124 keV

Note: 1 mrad is not the minimum $\theta_{\text {IP }}$ for this layout since this depends upon bend strength.

For this bend strength, $\theta_{\text {min }} \sim 0.9$ mrad; however this would require increased bend strength to attain $\sim 50 \mathrm{~mm}$ separation at $\mathrm{s}=22.96 \mathrm{~m}$.

With sufficient bend strength, $\theta_{\text {min }}=0$. However this would be infeasible in terms of SR.

Parameter Comparison

	$\mathbf{1}^{\circ}$ IR Layout	$\mathbf{1 0}$ $\mathbf{I R}$ Layout	Comments
$L(0)$	8.54×10^{32}	1.80×10^{33}	Factor of ~ 2.1
θ_{ip}	1 mrad	1 mrad	Not minimum angles
$S(\theta)$	0.858	0.746	Lower for smaller beam spot
$L(\theta)$	7.33×10^{32}	1.34×10^{33}	Factor of ~ 1.8
$\beta^{*}{ }_{x}$	0.4 m	0.18 m	
$\beta^{*}{ }_{y}$	0.2 m	0.1 m	
μ^{*}	6.2 m	1.2 m	
ρ	4.6 km	8.0 km	More dipole length in 10°
SR Power	44 kW	29 kW	Without detector dipoles

1° Files available at: /afs/cern.ch/eng/lhc/optics/LHeC/IR1_Lattice1/
10° Files available at: /afs/cern.ch/eng//hc/optics/LHeC/IR10_Lattice1/
Ring-Ring Interaction Regions
Luke Thompson

