

Beam-Beam effects for the LHeC Ring-Ring option

T.Pieloni and W.Herr

LHeC Parameters

Parameters	Proton Beam	Electron Beam
Number of bunches	2808	2808
Number of Particles per bunch	$Np = 1.7*10^{11}$	Ne = $1.96*10^{10}$
Energy	Ep = 7 TeV	Ee = 60 GeV
Emittance Horizontal	$\varepsilon_{x,p} = 0.5 \text{ nm}$	$\varepsilon_{\rm x,e}$ = 5 nm
Emittance Vertical	$\varepsilon_{y,p} = 0.5 \text{ nm}$	$\varepsilon_{\rm y,e}$ = 2.5 nm
${eta_{x}}^*$	180 cm	18 - 40 cm
${eta_{y}}^*$	50 cm	10 – 20 cm
Bunch Length	7.7 cm	6.6 mm
Crossing angle	+/- 485 mrad	

Beam-beam Interactions

- Crossing angle needed with 2808 bunches
- One head-on interaction at IP
- long range encounters every 3.75 m in IR
- and...

... all LHC pp collisions effects from IP1 and IP5

THE WAS THE WAS THE

Beam-Beam issues in general:

Hadron Colliders:

- Beam Losses (dynamic aperture)
- Beam Lifetime
- External noise very important
- •

Lepton Colliders:

- Emittance growth (bb limit)
- Backgroup in experiment regions
- •

In the LHeC RR option one has to expect all these issues and ...

THE STREET STREET

LHeC Beam-beam complications:

- Large Number of bunches in both beams (2808)
- Simultaneous collisions of ep and pp of one proton beam
 - pp collisions in IR1 and IR5
 - ep collisions at another IR

Different beam-beam properties

Stability both proton beams: dominated by non linear effects

DANS TO MAN TO MAN TO THE PARTY OF THE PARTY

Stability of lepton beam: dominated by damping

Known performance issues:

Optical matching (SPS, Hera and Tevatron experience)

$$\Leftrightarrow \alpha^{x}_{e} = \alpha^{x}_{b}$$

$$\Leftrightarrow \sigma_{\mathsf{v}}^{\mathsf{v}} = \sigma_{\mathsf{v}}^{\mathsf{v}}$$

 Since different emittances for p and e then the beta functions at IP have to be different for the two beams

STATE STATE OF THE STATE OF THE

- \diamondsuit Restricts choice on β_e
- Electron emittance must be controlled (coupling H/V)
- Hadrons beam-beam effects different for two planes

Beam-beam Tune Shifts:

For the LHeC case beam-beam parameter (approx tune shift):

$$\xi_{x,y}^{e,p} = \frac{r_{e,p}}{2\pi} \frac{N^{p,e} \beta_{x,y}^{*e,p}}{\gamma_{e,p} \sigma_{x,y}^{p,e} (\sigma_x^{p,e} + \sigma_y^{p,e})}$$

LHeC	Proton Beam	Electron Beam (2 IR options)
ξ _x	6.4 10-4	0.065 -0.144
ξ_{y}	1.7 10-4	0.036 - 0.072

Linear Tune Shifts:

Head-on Linear Tune Shifts achieved so far:

From Experience	LHC pp collisions	LEP (50 GeV) electron
ΔQx,y	6 10 ⁻³ /IP	0.03 - 0.04 /IP

- Protons ep collisions tune shift small compared to pp collisions
- For electrons tune shift similar to what achieved in LEP but for option 2 tune shift very big

Parasitic Encounters Separation

Long range encounters:

- Every 3.5m in IR
- How many? Depends on the IR layout
- At which distance? Depends on α and ...

$$d(s) = \alpha \frac{s}{\sqrt{\epsilon \beta(s)}}$$

$$\alpha = 930 \mu rad$$

LHeC	Proton Beam (normalized to $\sigma_{\rm e}$)	Electron Beam (normalized to σ_{p})
d _x	5.58 8.3	55.8
d _y	5.8 - 8.32	29,4

Beam-beam issues to be addressed

For any reliable study we need:

Interaction region layout with crossing schemes matched in thin lens version.

Need to know the collision schemes

- Long Range Tune shifts
- pp and ep collisions to be studied self consistently
- Dynamic aperture tracking studies
- Multiple bunch effects (colliding with same bunches?)

A STORES OF THE PARTY OF THE PA

Increase d or crab cavities?

Crab Crossing for the LHeC

R. Calaga, R. Tomás, Y. Sun, F. Zimmermann June 4, 2010

Scenario	$\Delta L/L_0$ [%]	
	$400~\mathrm{MHz}$	$800 \mathrm{\ MHz}$
Head-On (with CCs)	88	48
Uncross only e^-	0.7	
Uncross only p^+	88	48
X-Angle (1 mrad)	1.0	

- Increase further the crossing angle and crab cross
- Crab cavities an option study effects on p beams