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Goal: To compare different theoretical predictions for F2 and FL in e+p scattering
for LHeC kinematics based on:

 I) Linear QCD evolution: DGLAP and combined DGLAP/BFKL 

 1I) Non-linear QCD evolution: CGC and other saturation approaches
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One of the potential goals (duties) of the LHeC is 
to turn the sketch above into a more quantitative 
picture.

Analyses of HERA data do not provide a clear  
separation between these two QCD regimes. 
All the models presented here provide a good 
description of HERA data



⇒ Linear QCD evolution

 I) DGLAP analysis (NNPDF collaboration. Thanks to J. Rojo)

• NLO DGLAP analysis.
• Neural network approach to avoid bias in the choice of initial conditions
• DGLAP has no predictive power towards small-x: Large uncertainties at small-x:

 II) BFKL/DGLAP analysis (KMS approach. Results by Stasto and Golec-Biernat)

      - Small-x BFKL dynamics + kinematic constraints + DGLAP corrections

xg(x, Q2
0) ≈ xλ(1− x)β . . .

λ > 0

λ < 0

growing gluon

decreasing gluon
{



Dipole cross section. 
Strong interactions and 
x-dependence are here

• The dipole model of DIS is the starting point for (most of) saturation studies in DIS
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Photon wavefunction
Calculable within QED 

⇒ Non-linear QCD evolution and other saturation approaches

Different dynamical input in different approaches

σγ∗ P
T,L (x,Q2) =

∑

flavors

∫ 1

0
dz

∫
d2r

∣∣∣Ψγ∗→qq̄
T,L (z,Q, r,mf )

∣∣∣
2
σdip(x̃, r)



⇒ According to the physical mechanism driving saturation, i.e (x,Q2,r)-dynamics:

(A) classification of  dipole models in the market

• Multiple scatterings + DGLAP evolution 
• Color Glass Condensate: BK or BFKL+saturation
• Phenomenological models: Regge Theory; non-perturbative input.

⇒ According to their impact parameter dependence

⇒ According to phenomenological details: quark masses, inclusion of charm or 
    beauty contributions, inclusion of kinematic constraints, focus on specific 
    kinematic region ...

• Homogeneous in the transverse plane

• Some other non-trivial profile (gaussian)



⇒ Multiple scatterings + DGLAP evolution: Saturation results from eikonalization 
of two-gluon exchange: BGBK (Bartels-Golec-Biernat-Kowalski); IPSat (Kowalski-Teaney):  

dσdip

d2b
∼ π2

2 Nc
r2 xg(x,Q2)Tp(b)

dσdip

d2b
= 1− exp

[
− π2

2 Nc
r2 xg(x,Q2)Tp(b)

]

All the Bjorken-x dependence is encoded in that of the gluon distribution.

Leading lnQ2 terms in each cascade resummed through DGLAP

BGBK:Trivial impact parameter dependence: Tp(b) ∼ Q2
0 θ(bp − b)

Tp(b) ∼ exp (−b2/2 B)/(2π B)IPSat: Gaussian profile 

P P

Leading-twist Glauber-Mueller independent rescatterings



⇒ Color-Glass-Condensate: Running coupling BK equation  

P

∂N (r, x)
∂ ln(x0/x)

=
∫

d2r1 K(r, r1, r2) [N (r1, x) +N (r2, x)−N (r, x)−N (r1, x)N (r2, x)]

• Resums soft gluon emission, including running 
  coupling corrections, to all orders. It also includes 
  non-linear, gluon recombination, terms 

{ {

Linear BFKL dynamics Non-linear terms
gluon recombination

• Global fits to inclusive structure functions in e+p 
  coll. yield a good description of data (JLA, Armesto, 
  Milhano, Salgado and Quiroga)

σdip(r, x) = 2
∫

d2bN (r, b, x)



⇒ Color-Glass-Condensate: rcBK equation + other approaches 

∂N (r, x)
∂ ln(x0/x)

=
∫

d2r1 K(r, r1, r2) [N (r1, x) +N (r2, x)−N (r, x)−N (r1, x)N (r2, x)]

A) Calculations based on numerical solutions of BK eqn with running coupling
      JLA-Armesto-Milhano-Salgado (AAMS), Kuokkanan-Rummukainen-Weigert (KRW). 
       

N (r, x0)
• Trivial impact parameter dependence. Overall normalization fitted to data
• Input: Initial conditions for the evolution,                . x0~10-2 (GBW, MV, scaling)
• KRW: Energy conservation (i.e., large-x) effects implemented through

K −→
(

1− ∂

∂ ln(x0/x)

)
K

B) Models based on analytical solutions of BFKL+ absorptive barrier
      Iancu-Itakura-Munier-Soyez (CGC), Kowalski-Motyka-Watt (b-CGC) 

• Evolution speed λfitted to data
• b-CGC: Impact parameter dependence. 
        Badχ/d.o.f ~ 1.6. Lowest evolution speed of all models: λ ~ 0.16

C) Hybrid BK (large-r)+DGLAP (small-r) + gaussian impact parameter approach 
     Gotsman-Levin-Lublinsky-Maor



⇒ Phenomenological models

• Golec-Biernat-Wusthoff

• ”Strong coupling” dipole from AdS/CFT (Valid for Q2< 2 GeV2) Kovchegov-Lu-Rezaeian 

NGBW (x, r) = θ(Rp − b)
(

1− exp
[
−r2 Q2

s(x)
4

])

Q2
s(x) = Q2

0

(x0

x

)λ{
• Models based on Regge Theory (+DGLAP evolution) 

Forshaw-Shaw FS04: σdip(r, x) =
Ahard r2 x−λhard , for r < r0 (λhard 0.34)

Asoft x−λsoft , for r > r1 (λsoft ∼ 0.66){

• Models tuned to fit also RHIC data.

• Others  (my apologies).

Armesto-Kaidalov-Salgado-Tywoniuk: 
DGLAP evolution for Q2>Q02

Regge model including unitarity effects for Q2<Q02 {



 Extrapolation for F2 in the LHeC kinematic regime: 
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 Extrapolation for FL in the LHeC kinematic regime: 
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Filtering:
- Consider only models with a clear QCD input
- Perform calculations at a higher Q2=10 GeV2

- Include pseudodata
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  DGLAP (NNPDF fit) can fit pseudo-data for F2 at small-x 
              generated by BK with running coupling (AAMS):

⇒ Could DGLAP also fit “CGC data”?



The divergence between linear DGLAP analyses and non-linear small-x dynamics is           
                                     visible in FL already for x~10-4

⇒ Could DGLAP also fit “CGC data”?

  DGLAP (NNPDF fit) fails to fit pseudo-data for F2+FL at small-x 
              generated by BK with running coupling (AAMS):



Conclusions:
• Little spread in LHeC extrapolations for FL and F2 from different dipole models 
including saturation effects: Clear theoretical reference.

• At the level of inclusive observables, FL is a more promising observable than F2 for 
the identification of gluon recombination effects in QCD evolution

• The BK equation (including all recently calculated corrections) provides a solid, 
pQCD based tool for evolution towards small-x

• Extrapolation of DGLAP sets to small-x yields large uncertainty bands 





⇒ DGLAP-based models: Saturation results from eikonalization of two-gluon 

exchange: BGBK (Bartels-Golec-Biernat-Kowalski); IPSat (Kowalski-Teaney):  

• The gluon distribution is fitted to data using the initial parametrization:

xg(x,Q2
0 = 1GeV 2) = Ag x−λg (1− x)5.6

dσdip

d2b
= 1− exp

[
− π2

2 Nc
r2 xg(x, µ2)Tp(b)

]

µ2 =
C

r2
+ µ2

0

• The gluon distribution is poorly constrained by data. Good fits for

−0.41 < λglue < 0.3

• Large uncertainties when extrapolating towards small-x. However, very good description 
  of HERA exclusive and diffractive data (IPSat)

⇒



∂S

∂Y
= R [S]− S [S]

⇒ Running term: R [S] =
∫

d2z K̃(r, r1, r2)
[
S(x, z)S(z, y)− S(x, y)

]

⇒ Subtraction term: S [S] =
∫

d2z1d
2z2 Ksub(x, y, z1, z2)

[
S(x,w)S(w, y)− S(x, z1)S(z2, y)

]

x

x

y

y

z

z

z1

z2

w

w

}
} UV finite. 

UV-divergent  
Contributes to the 
running of the 
coupling 

R[S]

S[S]

Complete in αsNf Evolution  JLA-Kovchegov PRD75 125021 (07).

+ +

+ _

Two different separation schemes: Balitsky’s (BAL) and Kovchegov-Weigert’s (KW)



⇒ They result in two different kernels for the running coupling kernel:

 ⇒ Balitsky’s separation scheme minimizes the role of the subtraction term.

K̃Bal(r, r1, r2) =
Nc αs(r2)

2π2

[
r2

r2
1 r2

2

+
1
r2
1

(
αs(r2

1)
αs(r2

2)
− 1

)
+

1
r2
2

(
αs(r2

2)
αs(r2

1)
− 1

)]

K̃KW (r, r1, r2) =
Nc

2π2

[
αs(r2

1)
r2
1

− 2
αs(r2

1)αs(r2
2)

αs(R2)
+

αs(r2
2)

r2
2

]

⇒ In both cases, running coupling comes in a “triumvirate”

BAL:

KW:

JLA-Kovchegov PRD75 125021 (07).



  Fixed vs Running

⇒ The running of the coupling reduces the speed of the evolution down to values        
     compatible with experimental data (JLA PRL 99 262301 (07)):

∂S

∂Y
= R [S]− S [S]

λ =
d lnQ2

s(Y )
dY

λLL ≈ 4.8 αs

 LL evolution:

 DIS data:

λDIS ≈ 0.288



  Fixed vs Running

⇒ The running of the coupling reduces the speed of the evolution down to values        
     compatible with experimental data (JLA PRL 99 262301 (07)):

∂S

∂Y
= R [S]− S [S]

λ =
d lnQ2

s(Y )
dY

λLL ≈ 4.8 αs

 LL evolution:

 DIS data:

λDIS ≈ 0.288

⇒ The geometric scaling regime (independence on the initial conditions) is reached 
     only at ultra-high energies  

 Geometric scaling 

 Pre-asymptotic 

λ ∼ 1√
Y



⇒ Fits to inclusive DIS structure function                                    

    for x≤ 10-2. 3 active flavors.
F2(x,Q2) =

Q2

4 π2 αem
(σT + σL)

σT,L(x,Q2) = σ0

∫ 1

0
dz

∫
d2r

∣∣∣Ψγ∗→qq̄
T,L (z,Q, r)

∣∣∣
2
N (x, r)

⇒ x-dependence: translational invariant running coupling BK using Balitsky’s 

prescription

KBal(r, r1, r2) =
Nc αs(r2)

2 π2

[
r2

r2
1 r2

2

+
1
r2
1

(
αs(r2

1)
αs(r2

2)
− 1

)
+

1
r2
2

(
αs(r2

2)
αs(r2

1)
− 1

)]

∂N (x, r)
∂ ln(x0/x)

=
∫

d2r1 KBal(r, r1, r2) [N (x, r1) +N (x, r2)−N (x, r)−N (x, r1)N (x, r2)]

⇒ Regularization of the coupling: We freeze to a constant, αfr=0.7 in the IR:

αs(r2) =
12 π

(11 Nc − 2 Nf ) ln
(

4 C2

r2 ΛQCD

)

αs(r2) = αfr = 0.7

for r < rfr, with αs(r2
fr) ≡ αfr = 0.7

for r > rfr ΛQCD = 0.241 GeV



⇒ Initial Conditions. Inspired in the GBW and MV models:

A)

B)

NGBW (r, x0 = 10−2) = 1− exp
[
−

(
r2 Q2

s0

4

)γ ]

NMV (r, x0 = 10−2) = 1− exp
[
−

(
r2 Q2

s0

4

)γ

ln
(

1
r ΛQCD

)]

Free parameters: proton saturation scale at x0=10-2,        ,  and anomalous dimension,   Q2
s0 γ

⇒ Experimental data: ZEUS, H1 (HERA), NMC (CERN-SPS) and E665 (Fermilab) coll.

x ≤ 10−2

847 data points

⇒ 3 (4) free parameters: Normalization,       , initial saturation scale, 

            IR parameter,        (anomalous dimension of the i.c.     )

σ0 Q2
s0

C2 γ

703 data points

Fits are stable when large Q2 data are not included in the fit

0.045 < Q2 < 50 GeV2

0.045 < Q2 < 800 GeV2
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 Lessons from the fits:

⇒ Fits to F2 do not constrain much the shape of the initial condition 

⇒ In our set up, it is impossible to fit F2 data using linear BFKL evolution:

∂N (x, r)
∂ ln(x0/x)

=
∫

d2r1 KBal(r, r1, r2) [N (x, r1) +N (x, r2)−N (x, r)−N (x, r1)N (x, r2)]

⇒ Fits are stable after removing the higher Q2 data (> 50 GeV2)

⇒ Fits are little sensitive to the prescription followed to regularize the coupling in    

     the IR

Qs(x1)

 GBW

perturbative     
       tail

kt

MV

unintegrated gluon distribution



⇒ Good description of the longitudinal structure function:
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FL(x,Q2) =
Q2

4 π2 αem
σL



⇒ Predictions for future colliders EIC, LHeC:
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• Almost insensitive to i.c. Good!!!

• Saturation effects are stronger 
  for FL than for F2

• FL is a very sensitive probe of the   
  gluon d.f. Different calculations yield 
  pretty different predictions in the 
  low-x low-Q2 region 

• Extrapolation to lower-x 
completely driven by non-linear  
pQCD dynamics



⇒ BK vs DGLAP at small-x (thanks to Juan Rojo):

  DGLAP (NNPDF fit) can fit pseudodata for F2 at small-x 
              generated by BK with running coupling:



  However, DGALP fails to reproduce pseudodata for FL at small-x:

The divergence between linear DGLAP analyses and non-linear small-x dynamics is           
                                     visible in FL already for x~10-4

⇒ BK vs DGLAP at small-x (thanks to Juan Rojo):



SUMMARY

• Running coupling corrections to BK equation reconcile phenomenology 
  and theory. 

• Successful fits to inclusive DIS data using BK with running coupling. 

• This is a first step in a bigger project for having non-linear pQCD 
controlled extrapolations to small-x (LHeC, EIC, LHC, cosmic rays) for 
many different observables 

• Things to do next: include charm, impact parameter, nuclei...

http://www-fp.usc.es/phenom/software.html

• Parametrizations of the proton-dipole amplitude available at

http://www-fp.usc.es/phenom/software.html
http://www-fp.usc.es/phenom/software.html


BACK UP SLIDES





⇒ F2 is a too inclusive observable. Unable to doscriminate between very 

different UV behaviour of the dipole amplitude. Need to compare to more 
exclusive observable (inclusive particle spectra in in p-p collisions)

ϕ(x, kt) =
∫

d2r

2 π r2
exp[i kt · r]N (x, r)unintegrated gluon distribution:

Qs(x1)

 GBW

perturbative     
       tail

saturation

kt

MV



Complete in αs Nf BK equation
using MV i.c.

ϕ(x, k)⇒ × (1− x)4

  

x1(2) =
pt√
s

e±y

• kt-factorization ‘a la Kharzeev-Levin-Nardi’

dNAA

dη
∝ 4πNc

N2
c − 1

∫ pm d2pt

p2
t

∫ p

d2kt αs(Q) ϕA

(
x1;

|pt + kt|
2

)
ϕA

(
x2;

|pt − kt|
2

)

• 2→1 kinematics

+
Local Hadron Parton Duality

⇒ Energy and rapidity dependence of hadron multiplicities in 

    Au-Au collsions at RHIC:

+

⇒ 4 free parameters: Overall normalization, initial gold nucleus saturation  

scale (using MV initial condition), starting value of x for the evolution, average hadron mass

∂S

∂Y
= R [S]− S [S]
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• Very good description of data at collision energies 130 and 200 GeV per nucleon:
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• Predictions for Pb-Pb collisions at the LHC are now completely driven by small-x 
evolution
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Saturation scale @ LHC

⇒ Saturation effects may be sizable (detectable) in p-p collisions, 

    specially at forward rapidities 

x ∼ M√
s

e−y with M = 1GeVkinematics:
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N (r = 1/Qs(x), x) = κ = 1− e−0.25



0

0.2

0.4

0.6

0.8

1

1.2

1.4

(Y=0)]MV[NRun
Sub

-410 -310 -210 -110 1
-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

(Y=30)]MV[NRun
Sub

τ

Bal
KW

(Y=0)]AN08[NRun
Sub

-410 -310 -210 -110 1

(Y=30)]AN08[NRun
Sub

τ

(Y=0)]AN06[NRun
Sub

-410 -310 -210 -110 1

(Y=30)]AN06[NRun
Sub

τ

• The dominant contribution to the evolution is given by the running term

S [S]
R [S]

∂S

∂Y
= R [S]− S [S]

• Balitsky’s separation scheme minimizes the role of the subtraction term w.r.t. to 
  KW’s one


