

Simulations results Overview of results collected at ELI-NP and POLITO

Progress meeting for P219 Experiment in PHELIX

Lorenzo Peroni Martina Scapin and Alberto Morena

Summary

- ELI-NP simulations (HELIOS)
- POLITO methodology
- Benchmark and calibration
- GSI experiments predictions
- Conclusions and outcomes

HELIOS code

• The high-power lasers produce a surface plasma condition which acts as high-pressure loading source condition for the material in the rear portion of the sample.

HELIOS is a 1-D radiation-hydrodynamics code designed to study the hydrodynamic evolution of radiating plasmas. It can be used to study the evolution of **planar**, cylindrical, or spherical plasmas heated by laser beams.

The code updates energy and momentum conservation equations in a **Lagrangian** reference frame (i.e., grid moves with fluid).

Target \rightarrow SESAME equation of state, thermal conductivity, and electrical resistivity data. Laser \rightarrow Irradiance (W/m²); pulse time history

ELI-NP preliminary results

ELI-NP preliminary results

The experiment methodology

Dynamic fragmentation of graphite under laser-driven shocks: Identification of four damage regimes

Benchmark

Photonic Doppler

velocimetry PDV

Pulsed-laser

illumination 532 nm $\tau = 10$ ns

VISAR

interferometry 532 nm

CCD cameras for

 $\tau = \tau$ of illumination

pulsed-laser

photography

Velocimetry by laser

1550 nm

PDV1

ACAM

ACAM

High

vacuum

Continuous

lighting

527 nm

Target

plified

or laser

graphy $\tau = 5 \text{ ns}$

Experiment

Incident South and North

Experimental setup

laser beams

532 nm

35-715 J

NR

5 ns SB

11°

chamber

G. Seisson ^{a,*}, G. Prudhomme ^a, P.-A. Frugier ^a, D. Hébert ^b, E. Lescoute ^a, A. Sollier ^a, L. Videau ^a, P. Mercier ^a, M. Boustie ^c, L. Berthe ^d

^a CEA DIF, Bruyères-le-Châtel, 91297 Arpajon Cedex, France

^b CEA CESTA, 15 avenue des Sablières CS60001, 33116 Le Barp Cedex, France

^c Institut P' – UPR3346 CNRS-ENSMA-Université de Poitiers, 1 avenue Clément Ader, 86961 Futuroscope Cedex, France

^d Laboratoire PIMM – UPR8006 CNRS-Arts et Métiers ParisTech, 151 boulevard de l'Hôpital, 75013 Paris, France

Validation and tuning of FE simulations based on CEA experiments

Target \rightarrow material: graphite (ρ_0 =1.754 g/cm³) Laser \rightarrow spot diameter: 4 mm; pulse duration: 5 ns

Shot number	05	06	07	08	09	10	11	12	13	14	15*	16	17	18	26*	27*
Laser beam	S	Ν	S	Ν	Ν	S	Ν	S	Ν	S	S	Ν	S	Ν	Ν	S
Thickness (mm)	2.5	2.5	0.75	0.75	1	1	1.5	1.5	2	0.75	0.75	0.75	0.75	1	1	1
U_m (m/s)	51	77	169	511	332	201	163	78	99	97	272	162	564	194	190	320
P_m (MPa)	99	149	327	991	644	390	316	151	192	188	528	314	1094	376	369	621
I_m (TW/cm ²)	1.57	3.94	0.89	3.59	3.50	1.72	3.35	1.38	3.11	0.26	1.89	0.92	4.00	1.88	2.29	3.42
P_{ab} (GPa)	43.5	90.6	27.4	84.2	82.5	46.7	79.6	39.2	74.9	10.2	50.4	28.3	91.7	50.2	58.6	80.8

Shot conditions

50 µm

LS-DYNA material model

SHOT 7 @ CEA Target \rightarrow material: porous graphite; thickness: 0.75 mm Laser \rightarrow energy: 121 J; pulse duration: 5 ns

SHOT 7 @ CEA Target \rightarrow material: porous graphite; thickness: 0.75 mm Laser \rightarrow energy: 121 J; pulse duration: 5 ns

Comparison with experimental results

Results analysis: back surface velocity

LS-DYNA GSI Prediction 5 ns

LS-DYNA GSI Prediction 5 ns

LS-DYNA GSI Prediction 1 ns

Conclusions and outcomes

- Following the preliminary ELI-NP results the laser deposition phase could be simulated with 1D code HELIOS
- The obtained velocity at the plasma-solid interface could be used as boundary condition for the LS-DYNA model in order to assess the conditions at the back surface tacking into account the strength and failure model of the material
- Different modelling techniques were tested (2D FE, 3D FE, SPH, FE-SPH) and 2D axisymmetric model results as the much effective solution (fast and enough accurate)
- The results are strongly dependent from the adopted damping and failure model
- Velocity measurements on the back surface could strongly vary in function of the portion of the sample considered and the dimensions of the measuring spot

Thank you for your attention!