

Storage performance issues

Charles G Waldman
University of Chicago

USATLAS Facility Workshop, Oct 12-13 2010

Storage implementation choices

• Storage on worker nodes, or dedicated
storage hardware?

– T1 and T2 started with the “shared” model but
have mostly moved to dedicated

• Typical: Dell 2950 (8-core) host with 8 MD1000
disk shelves (~20TB/shelf)

– T3s will probably use shared model, with
xrootd

• How much to take advantage of non-local
data? (storage federation)

Stage-in, without caching

 Files copied to WN /scratch and cleaned up
after job completion (no reuse)

 Files may be read multiple times, for
checksum calculation after transfer

 Entire file read, even if only a fraction
needed

 Creates lots of local disk I/O
– this gets worse as #cores/#spindles increases

 Some robustness against svc. interruptions

Stage-in, with pcache

 lsm-get or other wrapper intercepts copy
requests

 Files copied to /scratch/pcache/... and hard-
linked to work dir

 Cache managed automatically (LRU)
 Callbacks to Panda server for file locality

(GUID/LFN)
 Reduces copy-in by up to 50%

Direct-access

 Lustre/Hadoop/Xroot/...
 Xrootd: known to work well @SLAC
 Proposed solution for T3's

– Will servers be capable of handling shared
storage/compute load? Can node-aware job
brokering help?

 Downsides: less data-integrity checking,
possibly more brittle

Direct-access 2

 Good for jobs with sparse data access
patterns, or files which are not expected to be
reused (analysis jobs, skims)

 Currently testing at MWT2/AGLT2 (dCache)
 Same amount of data (or less!) moved, but

latency is a consideration since job is waiting

Node-level job brokering (for T3s)

 Proposal: reuse mechanism implemented by
Tadashi for pcache

 Memcache-based DB on Panda server tracks
files on WNs, via http POST requests:

addFilesToCacheDB

removeFilesFromCacheDB

checkFilesWithCacheDB

flushCacheDB

Node-level job brokering, 2

 Need to integrate this with xrootd

 Possibility of using 'inotify'- or 'dnotify-' based
daemon to handle HTTP callbacks (inotify is
fairly new,not supported in all kernels)

 Or else, some development with XRD
required...

dcap direct-access test at MWT2

 Many jobs hanging when direct-access was
first enabled...

 dcap direct access is a less-tested code path
 Invalid inputs causing hangups due to

brittleness in dcap protocol (buffer overflows,
unintentional \n in file name)

 All job failures turned out to be due to such
issues (sframe, prun...)

 dcap library patch submitted to dcache.org

dCache tuning

 Movers must not queue at pools!
 set max_active_movers to 1000

 Setting correct ioscheduler is crucial
 cfq = total meltdown (throughput, not fairness!)
 noop is best – let RAID controller handle it

 Hot pools must be avoided
 spread datasets on arrival (space cost=0), and/or

use p2p. “Manual” spreading so far not needed
 HOTDISK files are replicated to multiple servers

dcap++ (LCB: Local Cache Buffer)

 Gunter Duckeck, Munich (link)
 100 RAM buffers, 500 KB each

 Hardcoded, needs to be tuneable
 Sensitive to layout of ATLAS data files
 Tuned for earlier release, 500KB is too big

 In use in .de cloud (and mwt2) w/ good results
 Awaiting upstream merge (6 months pending)

http://www.dcache.org/manuals/20100419-hepix-dcache.pdf

Read-ahead in general

 Needs to be flexible so parameters can be
tuned for different ATLAS releases or user
jobs (advanced user may want to control
these values themselves)

 No “one-size-fits-all” answer

Some results

 CPU/Walltime efficiency (rough #'s):

Local I/O Remote I/O

 stage-in ~40% ~40%

dcap 65% ~35%

dcap++ 78% ~55%

xroot 78% 40%

Recommendations

Direct-access does not handle all file types, only
ROOT files … other files are still staged.

DBRelease files are most likely to be reused, hence,

 pcache is still applicable, even with direct-access.

Use stage-in/pcache for production, direct-access
for analysis.

Pursue enhanced caching for xrootd remote I/O.

Encourage storage federation.

References

stage-in vs direct-access studies
pcache notes (pdf)

http://www.usatlas.bnl.gov/twiki/bin/view/Admins/rsrc/Admins/MinutesAug4/dcache-access.2010.08.04.pptx.pdf
http://www.mwt2.org/~cgw/talks/pcache

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15

