Discussion Session: toward cross section with cuts and more

Chiara, Giampiero, Reisaburo, Stefan

Discussion Session

2h for exclusive Higgs XS calculations

- Common cuts: with pre-selection cuts or quasi-final cuts?
- Which feedback can be achieved when using NLO/LO MC?
- MC reweighting via Higgs p_τ, η, etc? Develop common tools?
- How should we define TH errors in exclusive Higgs XS?
- Common recipe for extrapolation from control to signal regions (e.g. QCD scale, PDF error)?
- Parton level vs PS-MC study?

- Common cuts: with pre-selection cuts or quasi-final cuts?
- Depends if the K factor depends on the variable on which you cut.
- Carefully check all the cut
- Minimize the number of "common cuts" after which one will compute the "acceptance" and thus the cross section.

Cross Section(with cuts) = inclusive cross section * acceptance

Which feedback can be achieved when using NLO/LO MC?

 Make a list of differential distributions to compare between NNLO programs w.r.t. to NLO MC. Th+Exp join in running job and preparing these plots. MC reweighting via Higgs p_τ, η, etc? Develop common tools?

- NLO Monte Carlo
 - Differential distributions may have non-constant
 K-factor
 - Develop reweighting scheme for NLO(LO) MC based on NNLO?
- Higgs pT correct distribution?

• How should we define TH errors in exclusive Higgs XS?

- Take MH=120, 200 GeV
- QCD, PDF+alpha_s error ?

- Common recipe for extrapolation from control to signal regions (e.g. QCD scale, PDF error)?
- Depends very much on the process and on the experimental error
 - → example on blackboard

2h for exclusive Higgs XS calculations

- For which Higgs decay channel should we use PS-MC?
- How to define jets, b-jet/\(\tau\), isolation, jet-veto etc?
- How to use these results in exps whith different exp details?
- Prepare tools? Parametrisation? Which distributions are most relevant for which channel(reweightings)?
- How to include signal and background interference effects?
 With LO MC? Then, how to extrapolate to higher order?
 (e.g., qq/gg → γγ, qq/gg → WW/ZZ → IνIν etc.
- How to organize future work and milestones with a careful planning of the interaction production groups

 decay groups?

How to define cuts at parton level?

- Jets pt, DeltaR -- parton direction
 jets in experiments are usually defined as
 DeltaR = 0.3-0.5 (forward --0.5-0.7)
- Jet veto
- Missing ET
- Isolation

Proposal on how to compare σ_{exp} (ϕ /Z+b) with σ_{th} (ϕ /Z+b)

- Cuts used in analysis:
 - Exp. cut: $p_T^b > p_{T exp}^{cut}$
 - Gen cut at LO ME+PS : p_T^b > p_{T qen} cut
 - Th. cut for σ_{th} at NLO : $p_T^b > p_{T th}^{cut}$
- The way could be:
 - use Gen cut = Th.cuts $(p_{T \text{ gen}}^{\text{ cut}} = p_{T \text{ th}}^{\text{ cut}})$
 - use Exp.cut > Th. Cuts
 - $p_{T exp}^{cut} > p_{T th}^{cut} + \sim 2 \times \sigma_{jet resolution}$
 - go from p_{Texp} to p_{Tth} cuts using MC; correct difference in acceptance (p_T, η) between NLO and ME+PS using factor:
 - R = $[\sigma_{th}^{\text{exp.cuts}}/\sigma_{th}^{\text{th.cuts}}] / [\sigma_{LO+PS}^{\text{exp.cuts}}/\sigma_{LO+PS}^{\text{th.cuts}}],$
 - for LO ME+PS apply p_T/η cuts on parton b-jets

H->ZZ

- Differential K factor:
 - Signal: "Grazzini" vs powheg
 Partially already done at NLO by Grazzini/Nason/Maltoni
 Complete the study:
 - a) NNLO vs NLO as a function of the variables on which we cut.
 - b) NLO Grazzini vs Powheg/MC@NLO
 - c) Powheg vs mc@nlo differences
 - Background :
 - Zbb studies done by Reina → hopefully soon in Powheg
 - good definition of control region we should define
 the TH precision that we need on Zbb in the control region

H->ZZ(2)

ZZ(*): Madgraph + k factor (that has a M(4l) dep.) (generation qq->l+l-l+l-)

M(Z(*)) down to 20 GeV.

$H \rightarrow ZZ(3)$

ZZ(*) rate controlled with single Z rate?

• ZZ control region:

ZZ / Z ratio: which precision do we need?

• Try to control it with Zgamma

• gg->ZZ

H->WW

- Common cuts defined
- Differential K factor under study (different group) agree well on the jet-veto definition at parton level and define a TH and EXP error

BACKGROUND:

- qq->WW only at LO?
 - Tools to reweight MC events for acceptance calculations
 - Tools to provide K-factors
 - Tools to obtain differential cross-sections
 - Tools to get theoretical uncertainties

H->WW(2)

 Comparing cross section between HNNLO/ Pythia or HNNLO/MC@nlo has no sense!

- HNNLO (NNLO/NLO) comparison should be done for cross sections and differential distributions
- Comparison of differential distribution between HNNLO vs NLO-MC

H->tautau

- No cuts on Higgs decay possible (ok for the XS calculator)
- gg->H implementation of full massive top/bottom loops esp. for SUSY in LO event generator or PWHEG and not only effective ggH vertex
- "gg->bbH" implementation in POWHEG
- implementation of Higgs decays in cross section calculators
- differential NNLO calculation in 5flavor scheme for bb→H

H to tautau

bbH gb->bh ?????
 I have not understood anything

H->gammagamma

- 1.- A robust procedure for the estimation of systematic errors on differential cross-section predictions (in particular on qT)
 - 2.- A procedure for the estimation of error on fragmentation
- 3.- Is an NLO version of SHERPA on the horizon? Can we use SHERPA as it is with a simple k-factor?
 - 4.- Definition of parton-level pseudo-isolation cuts and the best scales to use
 - * Joey wish ...?

H->bb

Differential XS

Wish List for Theorists

- $VH \to Vb\bar{b}$: fully differential parton-level predictions @ NLO (QCD + EW), Zbbbar and Wbbbar backgrounds @ NLO implemented in a parton shower program, fully differential parton-level predictions @ NNLO (QCD)
- tar tH o tar tbar b: NLO signal and background MC, LO-NLO shape comparison for signal and background

H+->taunu

- Full implementation of t → bH+ in MC@NLO and/or Powheg, keeping spin correlations
 - Highest priority is H+ in ttbar decays (i.e. light H+)
- Theoretical uncertainty on BR(t->bH+)

Other items:

VBF

Add a group with VBF decays:
 cuts on the tag jets + the decay of the Higgs

-----MORE GENERAL -----

Think on a possible new structure of the group Or simply organized structured meeting...

Give us idea and feedback.

2. Higgs decays: theory uncertainties

However: there are theoretical uncertainties....

 $igl| oldsymbol{\circ}$ Input quark masses in ${f H}
ightarrow {f b} ar{f b}, {f c} ar{f c}$

$$\mathbf{M}_{\mathbf{Q}}^{\mathbf{pole}}
ightarrow \overline{\mathbf{m}}_{\mathbf{Q}}(\mu = \mathbf{M}_{\mathbf{H}})$$

$$-\overline{m}_{b}(M_{b}) = 4.19^{+.0.036}_{-0.012}~\text{GeV}$$

–
$$\overline{m}_c(M_c) = 1.27^{+.0.014}_{-0.018}~\text{GeV}$$

• Theory+experimental error on $\alpha_{\rm s}$:

$$lpha_s(M_Z^2) = 0.1171 \pm 0.0028$$
 @NNLO

Scale error: measure of higher orders

$$\frac{1}{2}\mathbf{M_H} \le \mu \le 2\mathbf{M_H}$$

ullet Scale and $lpha_{f s}$ errors in ${f H} o {f g}{f g}$

$$\Gamma(H \to gg) \propto \alpha_s^2 + large \mathcal{O}(\alpha_s^3)$$

Baglio, AD

Include all items ⇒ large uncertainties!

esp. for $M_h \approx$ 120–150 GeV: 10–30% for $H \to b \bar{b}$ and $H \to WW^*$

The TH error on the "exclusion plot"

 Assuming the Th error negligible w.r.t. to the experimental error, we move the TH error to the "SM prediction==line at 1"

s Physics: theory – A. Djouadi – p.17/21