
Status of developments in
VecGeom
andrei.gheata@cern.ch

26th Geant4 Collaboration Meeting September 13, 2021

https://indico.cern.ch/event/1052654/

andrei.gheata@cern.ch

Build and integration
● Simplify/unify the use of C++ compiler flags

○ Final goal to export CMake/pkg-config files to clients of libvecgeom so that these are applied
automatically

○ Cleanup duplications, removing unnecessary options
○ Provide C++17 support for Intel compilers using usage requirements
○ More common options supported by Clang/Intel/GNU and some exposed as CMake option
○ Good step towards better CMake target-based compilation options support

● Adopting features of modern CMake
○ In particular for CMake CUDA first class support
○ Adding static/shared support for separable compilation and RDC

■ Including usage requirements/recipes for clients (immediate ones are AdePT/Celeritas)
○ Work in progress

● Added support for CUDA compilation with clang (more pedantic than nvcc)
2

https://gitlab.cern.ch/VecGeom/VecGeom/-/merge_requests/845

andrei.gheata@cern.ch

Persistency: vgdml status
● Several fixes and improvements introduced recently

○ Possible now to validate geometry against Root (and Geant4 in AdePT - WIP)

● Support for changing the internal length unit when reading geometry
○ Avoid unit conversions for every navigation call when client library has different unit

● Reading auxiliary information and storing it in maps
○ New API exposing these maps (ReadMiddlewareData provided as usage example)

● Missing features of the parser:
○ replicavol now skipped, requires functionality in core vecgeom library
○ support for arb8 tag which is the GenTrap in VecGeom
○ No writer available yet, but also no urgent use case for it

3

andrei.gheata@cern.ch

Navigation: BVH acceleration

4

G. Amadio, SFT R&D meeting, 23 Mar 2021

● Acceleration structure for reducing the number of
candidate checks

○ Used natively in RTX hardware, available via Nvidia Optix
○ We had an implementation in vecgeom (HybridNavigator2)

■ SIMD, but not GPU friendly

● New BVH navigator available now for both CPU
and GPU

○ Important performance gain compared to “looper” version
■ Speedups: CPU: ≈38.24x, GPU: ≈58.2x for trackML,

~2x for cms2018 in AdePT GPU examples
○ Only up to 30% slower on CPU compared to the

AVX2-accelerated HybridNavigator

TrackML

https://indico.cern.ch/event/1020971/contributions/4285450/attachments/2214012/3747841/geometry-accel.pdf
https://www.google.com/url?q=https://developer.nvidia.com/optix&sa=D&source=editors&ust=1617960327450000&usg=AFQjCNHIodTvTfGsz8VxwE97fEsEa4emiQ

andrei.gheata@cern.ch

Device memory

CudaManager improvements

5

cxx::GeoManager

cxx::VPlacedVolume*
fWorld

gCompactPlaced
VolumeBuffer

Compacted geometry
data structures

cxx::CudaManager

CPU-GPU addr map
Copy to GPU
Sync hierarchy

CPU-GPU maps

placed_volumes_
logical_volumes_
transformations_
unplaced_volumes_

placed_volumes_
buffer

logical_volumes_
buffer

transformations_
buffer

unplaced_volumes_
buffer

cuda::VPlacedVolume
* world_

CPU GPU

one kernel per
constructor...

now bulk copying all placed
volumes and transformations
gives ~10x

S. Hageboeck

andrei.gheata@cern.ch

● Goal: make VecGeom a single-precision library on-demand and understand
implications on particle transport code (-DSINGLE_PRECISION=ON)

● Tedious work of fixing boundary tolerance algorithm inconsistencies
○ In particular reducing propagation-related rounding errors

■ Propagating from an inaccurate point close to boundary better than propagating from an
accurate point far away -> approach solid first

○ Thorough review of ShapeTester as main tool to detect solid errors + shape fixes
○ Review of global navigation strategy (pushes)

● GSoC work resulting in SP support in v1.1.17
○ See slides from M. Kostelnik
○ Some complex solids not yet single-precision proof

Single-precision VecGeom

P0

Tolerance = 1e-4

v

P = P1 + v∘d2 (d2 << d1)
(accurate on boundary)

6circle radius = round-off error ≈ propagation distance

P1 = P0 + v∘d1
(inaccurate)

andrei.gheata@cern.ch

Performance impact of single-precision geometry
● Tested impact on performance in the AdePT examples

○ After doing several fixes for importing VecGeom precision type and using it in the navigators
■ LoopNavigator (simple looper for daughters), and BVHNavigator

● RaytraceBenchmark example (using BVHNavigator)
○ Reading a GDML file and modeling reflections/refractions and specularity
○ Validated by the output image

■ Very simple geometry: ~ 7.5% speedup
■ Complex geometry (trackML): ~ 44% GPU, ~ 13.6% CPU!

● Physics-enabled GPU examples
○ Exa9 + trackML + LoopNavigator: ~ 2.8x speedup
○ Exa11 + trackML + BVHNavigator: ~ 30% speedup

7

RTX 2080 SUPER

andrei.gheata@cern.ch

GPU - what is missing?
● Not much functionality-wise - we can simulate CMS on GPU using VecGeom!

○ Some solids are not GPU-aware: tessellated, extruded, multi-union solids

● What about performance & portability?
○ Low device occupancy: extreme cases in AdePT using LoopNavigator show as low as 10%
○ Large thread divergence leading to serializing consecutive geometry calls to solids on GPU
○ Virtual function calls preventing compiler optimizations (for simple geometry setups)

■ But makes also VecGeom unfriendly to portability frameworks and non-CUDA compilers

● VecGeom GPU support was prototyped using CUDA exclusively
○ namespaces, compilation procedure, macro annotation
○ Preserving the CPU C++ object model and API rather than specializing for GPU
○ Navigation using layers of specialized helper classes, optimizing for CPU/SIMD but not really

for the GPU use case

8

andrei.gheata@cern.ch

Current placed volume navigation helper layers

PlacedBox

Transformation3D::Transform<transC, rotC, Precision>(point);
Transformation3D::TransformDirection<rotC, Precision>(direction);

// Dispatch scalar interfaces to the implementation kernels
Contains() override
Inside() override
DistanceToIn() override
PlacedDistanceToOut(Vec)() override
SafetyToIn(Vec)() override CommonSpecializedVolImplHelper<BoxImplementation,

transC, rotC>

SIMDSpecializedVolImplHelper<BoxImplementation, transC,
rotC>

 LoopSpecializedVolImplHelper<BoxImplementation, transC,
rotC>

// Implementation kernels aggregating SIMD types from SOA3D vector interfaces
// Dispatch head as SIMD and tail as scalar to the implementation kernels
Contains() override
Inside() override
DistanceToIn()(point,dir) override
SafetyToIn() override

// Implementation kernels dispatching SOA3D vector interfaces as loops
// to implementation kernels not supporting SIMD (e.g. to
BooleanImplementation)
Contains() override
Inside() override
DistanceToIn()(point,dir) override
SafetyToIn() override

SimpleBox

SpecializedBox
“Simple” = Unspecialized
(kGeneric for transC, rotC)

complexity proving useful for CPU, but
not for GPU

andrei.gheata@cern.ch

Virtual dispatching problem...

10

● Virtual calls, function pointers supported by CUDA
○ Not supported by SYCL, HIP, portability libraries -> blocker
○ Much worse for performance for GPU than for CPU

● CSG geometry is about polymorphism (primitive solids)
● Option 1: getting rid of virtual calls

○ Possible: thorough work by Jonas (switch statement dispatch) and investigation by Stephan
(std::variant + std::visitor - limited support in CUDA)

○ Small performance improvement observed for low-complexity setups, degradation otherwise

● Option 2: getting rid of polymorphism
○ Transforming the GPU geometry to a small set of primitives (e.g. triangles, polyhedra)
○ Hard to imagine how this would scale for complex setups like CMS/ATLAS

● The dispatching problem is in general much simpler/specialized for a single
level, but how can we implement this?

andrei.gheata@cern.ch

Towards specialized navigation helpers for GPU
● Solid-level navigation kernels already independent - good!
● VecGeom top-level navigation interfaces gives minimal insight to VecGeom

types
○ The implementation can be specialized (with some care) w/o affecting the user
○ We can imagine different navigation implementation working for CPU/GPU, using the same

underlying solid algorithms
■ Single namespace, different libraries, same user API and navigation state

● Separating the types and data structures used for CPU and GPU
○ And using different navigation data structures (e.g. SIMD optimizers for CPU and BVH on flat

hierarchy on GPU)

● A preliminary step requires creating the GPU-specific navigation helpers
○ Transforming/simplifying the current multi-specialized layers

11

andrei.gheata@cern.ch

Separating CPU and GPU implementations

12

VPlacedVolume

Helpers<BoxImple
mentation>

SimpleBox

BoxImplementation.h

CPUnavigator::Interface(
NavigationState *, ...)

NavigationState.h

struct
GPUPlacedVolume

{fType = kBox;}

GPUnavigator::Interface(
NavigationState *, ...)

libvecgeom
libvecgeom_cuda
libvecgeom_hip
libvecgeom_oneapi

hierarchical flat + BVH

andrei.gheata@cern.ch

Outlook
● Significant progress in several different areas

○ build system and CUDA support, integration, persistency, navigation, single-precision

● Several obstacles on the path of performance & portability on accelerators
○ Reusing C++ types from host, CUDA entanglement, polymorphism
○ Work needed for making more specialized GPU navigation

● Strategy for simplifying the navigation helpers discussed already
○ Work to be done on the new design and implementation

● Integration work for using VecGeom navigation in Geant4 ongoing
○ See next talk

● Re-designing the accelerator support on GPUs is on the critical path for
performance and portability

13

