The fastAerosol Advanced Example

N. J. L. MacFadden¹ A. N. Knaian¹

¹NK Labs, LLC

26th Geant4 Collaboration Meeting, September 2021

Outline

- Motivation
- 2 Aerosol Generation
- Oistance Calculation
- 4 Results
- Conclusion

High Level Introduction

A. N. Knaian

Aerosols

Atmospheric Cloud

Dust storm, Texas, 1935

Carina Nebula

Droplet spray

Pebble Bed Nuclear Reactor

Bag of wooden pellets

Raindrops in the Atmosphere

FastAerosol is Easy To Use

Motivation, Details, Results, and Conclusion

N. J. L. MacFadden

Need for Granularity

fastAerosol is modelled droplet-by-droplet ('granular') - **why**?

Consider shooting protons through an aerosol:

(figure from our associated preprint: arxiv 2008.01236)

Need for Granularity (pt. 2)

fastAerosol is modelled droplet-by-droplet ('granular') - why?

Ignoring granularity leads to different transport for some droplet radii:

(figure from our associated preprint: arxiv 2008.01236)

Aerosol Generation

"Aerosol" = 3D grid of voxels containing droplets in some bulk shape

Preparation for aerosol with average droplet number density $\langle n_d \rangle$:

- voxelize bounding box with pitch $p_{\rm grid} = \left(\frac{N_{\rm droplets/voxel}}{\langle n_d \rangle}\right)^{1/3}$,
- assign expected droplet count per volume as $\mu = \langle n_d \rangle V$, ¹
- assign each voxel a unique seed $s_{\text{vox}} = \text{index}_{\text{vox}} + s_{\text{global}} N_{\text{voxels}}$.

Voxels are then populated on-demand by:

- ullet selecting $N_{
 m vox}$ from Poisson dist. with mean μ and seed $s_{
 m vox}$ and then
- \bullet placing N_{vox} uniformly in voxel (retrying placement if droplet overlap)

Distance Calculation

Distance functions in fastAerosol operate by

- finding the relevant droplet for the query and then
- delegating the distance calculation to this droplet.

To find the relevant droplet for distance to the inside of the aerosol:

- find distance to bulk in units of grid pitch $R_{\text{voxel}} = \lfloor R_{\text{bulk}}/p_{\text{grid}} \rfloor$,
- collect (in $\mathscr C$) all droplets found in voxelized spheres¹ with radius $R_{\text{voxel}} \leq R$ $\leq \lceil \frac{1}{4} + \frac{R_0}{p_{\text{grid}}} \rceil$ for R_0 the closest found droplet center,² and then
- ullet return min distance among \mathscr{C} .

¹generated by modified mid-point algorithm defined by (Roget, Sitaraman '13)

 $^{^2}$ non-spherical droplets introduce factor and $\sigma = r_{
m out} - r_{
m in}$ to upper R limit

fastAerosol is Efficient for Dense Aerosols

(figure from our associated preprint: arxiv 2008.01236)

Conclusion

fastAerosol

- allows speedups in dense granular aerosols
- only depends on macroscopic properties, simplifying implementation:

- allows complicated aerosols with
 - any shape bulk/droplet,
 - any droplet number density distributions, and
 - any droplet rotation distributions.

