Depth-of-interaction enabled PET Model (doiPET example) A M Ahmed*, A Chacon^{1,2}, H Rutherford^{1,2}, G Akamatsu³, A Mohammadi³, F Nishikido³, H Tashima³, E Yoshida³, T Yamaya³, D R Franklin⁴, A Rosenfeld², S Guatelli² and M Safavi-Naeini^{1,2} ^{*}Former Postdoc at Australian Nuclear Science and Technology Organization, Sydney, NSW, Australia, now working at Royal North Shore Hospital, Australia ¹Australian Nuclear Science and Technology Organization, Sydney, NSW, Australia ²Centre for Medical Radiation Physics (CMRP), University of Wollongong, NSW, Wollongong, Australia ³National Institute of Radiological Sciences (NIRS), National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan ⁴⁾ University of Technology Sydney, NSW Australia # doiPET example - This example simulates depth-of-interaction (doi) enabled positron emission tomography (PET) scanner and standard NEMA* NU phantoms. - > The example can be executed in a multithreading mode - > Some realistic approaches of identifying crystal ID are presented. - > The default particle beam is ¹⁸F ion at rest defined in the GPS (General particle Source) - → ¹⁸F is the recommended isotope by the NEMA NU protocol Various macro files are provided with the name appended on it for a specific simulation: - ✓ run_imageQualityPhantom_wholeBody.mac - ✓ run_imageQualityPhantom_smallAnimal.mac - ✓ run_NECR.mac - √ run_sensitivity.mac - ✓ run_spatialResolution.mac - ✓ run_normalization.mac (This is not given in the NEMA NU manual, but it is an important part of image reconstruction) # Why DOI PET scanner? > It improves spatial resolution by reducing parallax error With DOI PET, the spatial resolution away from the center of the FOV is preserved # **Geometry of the DOI PET Scanner** # Physical PET scanner, NIRS Japan Test phantom IQP # **Geometry of the DOI PET Scanner** | Scanner Specification | | | | |-------------------------|--|--|--| | Scintillation material | GSO (sim.), GSOZ(phys.) | | | | Size of crystal | $2.8 \times 2.8 \times 7.5 \text{ mm}^3$ | | | | Crystals per detector | 16 × 16 × 4 | | | | Ring diameter | 660 mm | | | | Number of rings | 4 (40 detectors per ring) | | | | Coincidence time window | 10 ns | | | | Timing resolution | 4.4 ns | | | | Energy resolution* | Min: 13% and Max: 17% | | | | Energy window | 400 keV – 600 keV | | | ^{*}Crystal dependent energy resolution was applied # **Reflector Pattern and Position Response** # **DOI** identification Superimpose all the responses to get the 2D position histogram of all the crystals # **Spatial Resolution** \triangleright Point like cylindrical sources ($\emptyset = h = 1 mm$) ### Image reconstruction parameters Rebinning: FORE FBP ✓ Voxel size: $1 \times 1 \times 1$ mm³ ✓ Number of voxel: $500 \times 500 \times 200$ | Dimension | Offset
(mm) | Sim | Phys. | Difference
(%) | |------------|----------------|-----|-------|-------------------| | Radial | 10 | 4.0 | 4.1 | 2.8 | | | 100 | 5.1 | 4.8 | -7.2 | | | 200 | 6.4 | 5.9 | 8.8 | | Tangential | 10 | 4.0 | 4.8 | +16.3 | | | 100 | 4.1 | 4.7 | +13.7 | | | 200 | 4.6 | 4.8 | +4.0 | | Axial | 10 | 5.9 | 6.5 | +9.6 | | | 100 | 5.1 | 5.7 | +9.7 | | | 200 | 5.4 | 5.8 | +6.0 | # Sensitivity ### Sensitivity phantom Five concentric aluminum tubes with 700 mm in length and different thicknesses were simulated ### NEMA PET Sensitivity Phantom™ Model PET/NEMA-SEN/P 6 Concentric aluminum tubes used to detect camera sensitivity in PET ### **Specifications:** 5 internally stacked aluminum tubes all 700 mm in length 1st Tube inside diameter 3.9 mm, outside diameter 6.4 mm 2nd Tube inside diameter 7.0 mm, outside diameter 9.5 mm 3rd Tube inside diameter 10.2 mm, outside diameter 12.7 4th Tube inside diameter 13.4 mm, outside diameter 15.9 5th Tube inside diameter 16.6 mm, outside diameter 19.1 The innermost tube, a fillable polyethylene tubing has an inside diameter of 1 mm, outside diameter 3 mm Close up end of NEMA PET Sensitivity Phantom™ Set of aluminum tubes used in NEMA PET Sensitivity Phantom ™ NEMA Sensitivity PET Phantom ™ # **Sensitivity** | Sen | | | | |---------------------|------------|------------|-----------| | | Experiment | Simulation | Error (%) | | Center of FOV | 5.9 | 6.2 | 5.1 | | At 10 cm off-center | 5.9 | 5.7 | 3.4 | ### **Count Rates** Count rate phantom Cylindrical phantom (PMMA) Length: 700 mm Diameter: 200 mm Line source is place at 45 mm off-center > Except at high activities, a very good agreement was obtained ### **Count Rates** Except at high activities, a very good agreement was obtained | | Expt | Sim | |-------------------------------------|-------|--------| | SF at peak | 48.4% | 47.8 % | | SF at low activity (at 0.04 kBq/ml) | 44% | 42% | Peak NECR at 7.45 kBq/ml Exp: 22.9 kcps Sim: 23.3 kcps (Do not peak at a specific activity) # Image Quality Phantom (IQP): whole body ➤ To precisely create the image quality phantom, the G4UnionSolid from the Constructive Solid Geometry (CSG) has been used. | Image reconstruction parameters | | | | |---------------------------------|-------------------------------------|--|--| | Reconstruction algorithm | 3D OSEM | | | | Voxel size | $3 \times 3 \times 3 \text{ mm}^3$ | | | | Number of voxels | 125× 125 × 150 | | | | Ray tracing method | Simple Gaussian | | | | Corrections | Attenuation, normalisation, scatter | | | IQP for Whole body | ROI Ф
(mm) | | | Background variability (%) | | |---------------|------|-------|----------------------------|-------| | | Sim. | Phys. | Sim. | Phys. | | 10(h) | 16.0 | 20.7 | 5.4 | 9.2 | | 13(h) | 27.2 | 31.1 | 5.1 | 8.9 | | 17(h) | 37.9 | 40.6 | 4.7 | 8.4 | | 22(h) | 46.4 | 43.3 | 4.2 | 7.9 | | 28 (c) | 34.2 | 33.2 | 3.9 | 7.4 | | 37 (c) | 41.4 | 39.9 | 3.6 | 7.0 | # Image Quality Phantom (IQP): Small Animal Detail of the phantom is found: Quality assurance in radiology and medicine (http://www.qrm.de/) ### Reconstructed images ## **Conclusion** - The doiPET Geant4 model was validated against experimental results - All the NEMA NU 2 standard phantoms were included - The results show an excellent agreement between the sim. and expt. - The discrepancies were: - ► 4.3% in sensitivity - ▶ 5.1% in spatial resolution - **▶**1.8% in NECR - ▶8.7% in contrast recover for hot regions, and 3.4% for cold regions Almost all the key metrics showed a very good agreement between the simulation and the experimental results