
Coding Patterns for
Better Performance

G. Amadio (EP-SFT), for the Geant4 Collaboration 21 Sep 2021

2

Intel and AMD
Microarchitectures
● Front End
○ Instruction Fetch and Decode
○ Branch Predictor Unit
○ L1 Instruction Cache
○ Instruction TLB

● Back End
○ Execution Engine

■ Register Renaming
■ Move Elimination

○ Memory Subsystem
■ Load/Store Units
■ L1 Data Cache
■ L2 Shared Cache
■ Data TLB

Intel Skylake AMD Zen 2

source: https://en.wikichip.org

https://en.wikichip.org

Microarchitecture Analysis

3

A. Yasin, "A Top-Down method for performance analysis and counters architecture," 2014
IEEE International Symposium on Performance Analysis of Systems and Software (ISPASS),

Monterey, CA, 2014, pp. 35-44, doi: 10.1109/ISPASS.2014.6844459.

https://doi.org/10.1109/ISPASS.2014.6844459

4

Top-Down Analysis
of Microarchitecture
● Front End Bound
○ Code Duplication
○ Code Layout (Locality)
○ Frequent Branching
○ Unnecessary Work

● Back End Bound
○ Core Bound

■ Data Dependencies
■ Divisions and Special Functions

○ Memory Bound
■ False Sharing
■ Frequent DRAM Accesses
■ Scattered Memory Accesses
■ Unnecessary Work

A. Yasin, "A Top-Down method for performance analysis and counters architecture," 2014
IEEE International Symposium on Performance Analysis of Systems and Software (ISPASS),

Monterey, CA, 2014, pp. 35-44, doi: 10.1109/ISPASS.2014.6844459.

https://doi.org/10.1109/ISPASS.2014.6844459

Geant4 Microarchitecture Usage on Haswell

5

Front-End Bound

Memory Bound

Retiring

Bad Speculation

11.9%

53.8%

37.9%

2.8%

Mostly memory bound on Haswell

https://software.intel.com/content/www/us/en/develop/documentation/vtune-cookbook/top/methodologies/top-down-microarchitecture-analysis-method.html

https://software.intel.com/content/www/us/en/develop/documentation/vtune-cookbook/top/methodologies/top-down-microarchitecture-analysis-method.html

Geant4 Microarchitecture Usage on Skylake

6

Front-End Bound

Memory Bound

Retiring

Bad Speculation

21.5%

39.7%

22.8%

9.1%

Mostly frontend and core bound on Skylake, quite different than Haswell

https://software.intel.com/content/www/us/en/develop/documentation/vtune-cookbook/top/methodologies/top-down-microarchitecture-analysis-method.html

Core Bound

7.0%

https://software.intel.com/content/www/us/en/develop/documentation/vtune-cookbook/top/methodologies/top-down-microarchitecture-analysis-method.html

Top 20 classes in Geant4 10.5.1

7

Top 20 classes in Geant4 10.7

8

Top 20 classes in Geant4 10.7 + Optimizations

9

Two Major Optimizations in Geant4 10.6 and 10.7

10

G4PhysicsVector G4Transportation

FullSimLight Performance vs Geant4 Version

11

Optimization Examples

13

Reduce Code Duplication

This was a copy of
G4MuPairProductionModel::ComputeDMicroscopicCrossSection.
We can keep only the copy from the base class.

Example of Bad Speculation

14

Be careful with what you assume the compiler
can optimize for you.

Example of Bad Speculation

15

Be careful with what you assume the compiler
can optimize for you.

16

Branching Efficiently

When a branching condition has several terms, order it
from the most discriminant term to the least. Here, the
energy is different much more frequently than material
or particle type, so this order leads to more early
decisions and better performance.

Probabilities:

mat == currentMaterial ⇒ 98.9%
matParticle == part->GetDefinition ⇒ 71.6%
matKinEnergy == part->GetKineticEnergy() ⇒ 32.1%

Note that these are independent. They are equal
together only about 6.9% of the time.

17

Unnecessary Work: Caching Data

This method is always called with each element of
each material in a loop, so the element is never the
same, and the cache was missed 100% of the time.

18

Unnecessary Work: Return Early If Possible

Moving the early return up reduces unnecessary divisions.
Also a3 <= 0 is harder to understand than the new form.

19

Unnecessary Work: Avoid Expensive Function Calls

We can avoid calling G4Log by replacing the condition
with an equivalent one for the input argument of G4Log.

20

Unnecessary Work: Avoid Distant Data Accesses

Finding the field manager is expensive. It requires accessing
distant pieces of data like the fFieldPropagator class member
to call its method, and the track’s current volume. However,
we can avoid checking the field for neutral and/or massless
particles, as the field has no effect on them.

21

Data Access Patterns: Group Nearby Reads & Writes

If a class member needs to be accessed multiple times
inside a function or method, prefer keeping these accesses
close together to avoid unnecessary cache misses.

22

Data Access Patterns: Avoid Indirections

Chained accessors via pointers require several memory
accesses to retrieve a single piece of data, with similar cost
to traversing a linked list. Here we can avoid 3 access
indirections by reusing the value of fCurrentVolume.

23

Data Access Patterns: Avoid Indirections

Not good! Traverses pointer
chains multiple times, and
G4TouchableHandle is actually
reference counted, so this has
branches and is incrementing
and decrementing counters
multiple times too!

These actually return fDynamicParticle->Get...()!

24

Data Access Patterns: Avoid Indirections

25

Arithmetics: Avoid Data Dependencies

Data dependencies between arithmetic operations can
create execution latency even without cache misses.

Breaking up long loops into smaller parts makes it
possible to hide some of the latency from divisions and
math function calls with instruction level parallelism.

26

Arithmetics: Avoid Data Dependencies

Data dependencies between arithmetic operations can
create execution latency even without cache misses.

Breaking up long loops into smaller parts makes it
possible to hide some of the latency from divisions and
math function calls with instruction level parallelism.

G4PhysicsVector::Interpolation()

27

28

Arithmetics: Instruction Level Parallelism

Refactoring terms saves some multiplications, but note also
the parenthesis. Floating point arithmetics is not associative.
Parenthesizing ensures that each of the independent
multiplications can be performed in parallel. This alone
reduces estimated execution from 60 to 51 cycles (llvm-mca).

Without parenthesis With parenthesis

same register ⇒ sequential different registers ⇒ parallel

29

Arithmetics: Instruction Level Parallelism
Legend

30

Arithmetics: Instruction Level Parallelism
Legend

Summary

31

Frontend Optimizations

● Reduce code size, code duplication

● Check for excessive inlining

● Avoid unnecessary functions calls

● Avoid frequent calls to distant code
○ Merge libraries that call each other frequently
○ Place functions that call each other nearby

● Optimize conditionals
○ Order by true/false probability
○ Replace conditions by arithmetics

● Use SIMD vectorization (less instructions)

Backend Optimizations

● Group nearby data accesses

● Prefer regular data members to pointers

● Avoid indirections from accessor chains

● Break up long for loops into smaller ones

● Avoid data dependencies in arithmetics

● Check cache performance, hit/miss rates

● Be conservative with your assumptions
about what the compiler can optimize

32

