

Geant4 Annual Collaboration Meeting

Ngoc Hoang Tran, CENBG

G4DNA chemistry example for Water radiolysis with Scavengers

in collaboration with Laurent Desorgher, Flore Chappuis and Sébastien Incerti

Water radiolysis with Scavengers

Many applications of water radiolysis using scavengers

- Calculate initial G-values (G°) of radio-induced species
- Study biological materials

Simulation of Scavengers

The implementation of scavenger effect in the Monte Carlo model introduces some problems:

- Due to large number of scavenger particles in the system, the particlebased representation cannot be used
- In an approximation, the scavenging molecules are modeled as a continuum which is presented in standard deterministic treatments:

$$\frac{dX}{dt} = -kC_S X$$

 C_s : is oxygen concentration, X: is the survival probability of the species

k: is the reaction rate

Electronic state	Decay channel	Fraction
All ionization states	$H_2O^+ + H_2O \rightarrow H_3O^+ + {}^{\bullet}OH$ (through proton transfer)	100 %
Excitation state A1B1: (1b1) → (4a1/3s)	$H_2O^* \rightarrow ^{\bullet}OH + H^{\bullet}$ $H_2O^* \rightarrow H_2O + \Delta E$	65 % 35 %
Excitation state B1A1: (3a1) → (4a1/3s)	$H_2O^* \rightarrow HO^+ + {}^{\bullet}OH + e^{-}_{aq}$ $H_2O^* \rightarrow {}^{\bullet}OH + {}^{\bullet}OH + H_2$ $H_2O^* \rightarrow H_2O + \Delta E$	55 % 15 % 30 %
Excitation state : Rydberg, diffusion bands	$H_2O^* \rightarrow HO^+ + {}^{\bullet}OH + e^{-}_{aq}$ $H_2O^* \rightarrow H_2O + \Delta E$	50 % 50 %

Geant4-DNA: Step by Step (SBS) and Independent Reaction Time (IRT) methods

- Using the dynamic time step model
- Describing the diffusion process corresponding to the Brownian motion (SBS)
- Simplifying the multiple particle problem to the two-particle problem in an approximation (IRT)

Independent Reaction Time Model

#	reactions	time
1	c + d	t ₁
2	a + b	t ₂

Thanks Wook-Geun and collaborators for this work!

Independent Reaction Time Model

Scavenger: S

#	reactions	time
1	c + d	t ₁
2	a + b	t ₂
3	a + S	t ₃
4	b + S	t ₄
•••		

For 1 MeV electrons

Partial Pressure of Oxygen pO₂ [%]

Reaction	(1e ¹⁰ M-1s-1)
$e^{-}_{aq} + O_2 \rightarrow O_2^{-}$	1.74
$H^{\bullet}+ O_2 \rightarrow HO_2$	2.10

0.9 1 mM 0.6 G values of $H_2 O_2 \ [\# \ molecules \ / \ 100 \ eV]$ 10 mM 50 mM Linear Regression: 0.4 y = -0.91x + 0.810.2 В 10-9 10^{-11} 10^{-7} 10-Linear Regression: y = -0.78x + 0.76Time [s] Measurement Geant4-DNA (IRT): 10 μ s 0.1 0.2 0.3 0.0 0.4 $(NO_2^-)^{1/3}$ [(mol/l)^{1/3}]

H₂O₂ G value: Scavengers NO₂⁻/NO₃⁻

$OH + NO_2^> NO_2 + OH $ 0.8	
$e_{-aq} + NO_2^> NO_2^-$ 0.35	
eanks Flore for this work! $e_{-aq} + NO_3^> NO_3^-$ 0.97	

Tha

Step-By-Step Model

Synchronize in time the steps of all tracks

- Define a minimum step time: ts_{min}
- 2. For all tracks, compute the minimum interaction time: *ti_{min}*

Step-By-Step Model

Scavenger: S

Synchronize in time the steps of all tracks

- Define a minimum step time: ts_{min}
- 2. For all tracks, compute the minimum interaction time: *ti_{min}*

New G4DNAScavengerProcess is implemented:

- ➤ G4DNAScavengerProcessState : public G4ProcessState
- Added to G4EmDNAChemistry constructors by G4PhysicsListHelper
- SetProcessSubType(65)

G4DNAScavengerProcess:: PostStepGetPhysicalInteractionLength

- ➤ Multi-Scavengers are randomly chosen by propensity functions
- > A scavenger table is used to count the change of scavenger concentration in time
- ➤ Compatible with the new **mesoscopic model** for simulations beyond 1 us (please, see : Parallel EM: EM 2)

Initial G-value as function of scavengering capacity

- $[NO_2^-]$ from [0.125 uM > 1.25 M]
- $[NO_3^-] = 5x10-4 M$

<u>User interface</u>: No need to change reactions from G4EmDNAChemistry_OptionX

Read from a file

```
1#
3# Definition of Reservoir Molecules
5 reservoir molecule: NO2-
                        10.00e-3
                                 concentration in [mol/l]
6 reservoir molecule: NO3-
                        1.00e-3
9# Reactions Implemented in Geant4-DNA
11 reaction_III: e_aq + e_aq + [H20] + [H20] -> H2 + OH- + OH-
                                                   6.36e9
                                                   2.95e10
12 reaction II: e ag + OH -> OH- ,
13 reaction I: e ag + H + [H20] -> H2 + OH- ,
                                                   2.50e10
14 reaction IV: e ag + H30+ -> H + [H20] .
                                                   2.11e10
15 reaction II: e ag + H2O2 -> OH- + OH ,
                                                   1.10e10
16 reaction II: OH + OH -> H2O2 ,
                                  second order reaction
                                                   5.50e9
17 reaction II: OH + H -> [H20] ,
                                                   1.55e10
                                  rate in [l/(s mol)]
18 reaction I: H + H -> H2 ,
                                                   5.03e9
19 reaction III: H30+ + OH- -> [H20] + [H20] .
                                                    1.13e11
20#
22 # Reactions with Medium NO2-/NO3-
24 reaction VI: OH + [NO2-] -> NO2 + OH-
                                 ,/8.e9
25 reaction VI: e ag + [NO2-] -> NO2-- ,
                                  3.5e9
                                        rate in [l/(s mol)]
26 reaction VI: e ag + [NO3-] -> NO3--
                                  9.7e9
27#
```

Full macro file

```
#second order reaction
#/chem/reaction/add e_ag + OH -> OHm
#/chem/reaction/add H + H -> H2
#/chem/reaction/add e_aq + H -> H2 + OHm
#/chem/reaction/add e_ag + e_ag -> H2 + OHm + OHm
#/chem/reaction/add H30p + OHm ->
#/chem/reaction/add OH + H ->
#/chem/reaction/add OH + OH -> H2O2
#/chem/reaction/add e_ag + H2O2 -> OHm + OH
#/chem/reaction/add e_aq + H30p -> H + H20
# pH and Scavenger in environment (env)
/chem/env/pH 1
/chem/env/Scavenger 02 19 %
#/chem/env/Scavenger NO2m 1 mM
/chem/reaction/print
/run/verbose 1
#/primaryKiller/setSize 3 3 3 um
/tracking/verbose 0
/scheduler/verbose 1
/scheduler/endTime 1000 s
#/scheduler/maxNullTimeSteps 50
/scheduler/ResetScavengerForEachBeamOn true
```


Conclusion

- ➤ New chemistry example of Geant4-DNA for scavengers
- ➤ The example may be released from version Geant4 11 and feedback is welcome

Thank you very much