
Guy Barrand, CNRS/IN2P3/IJCLab

WebAssembly

G4 virtual workshop 2021

1

Guy Barrand, CNRS/IN2P3/IJCLab

WebAssembly

An interesting technology to have on the web a C++
application, that does WebGL for its graphics, and this
without having to deploy a specific web server.

2

Guy Barrand, CNRS/IN2P3/IJCLab

The secret

In your web browsers, there is a virtual machine
(some kind of)! (yes, yes):

the wasm

(Some « portable virtual stack machine », dixit Wikipedia)

3

Guy Barrand, CNRS/IN2P3/IJCLab

How it works?

• In your web browsers, there is a virtual machine!
• You install on your beloved mac, or your preferred Linux, or your

forever-upsetting Windows, the « emsdk » toolkit. (em is for
« emscripten ». (No idea of what it means)).

• You cross-compile your app with « em++ » to build a
« .wasm » (binary), some .js and one index.html. (em++ uses
clang and LLVM).

• You deploy {index.html, .wasm, .js} in static web pages in any
web host (for exemple gbarrand.github.io for me).

• Then no need to deploy a specific server.

4

Guy Barrand, CNRS/IN2P3/IJCLab

How it works (2) ?

When you load the index.html from your web browser,
the .wasm is loaded and executed in the virtual wasm
machine, then on your local machine.

5

ET VOILA !

Guy Barrand, CNRS/IN2P3/IJCLab

Graphics?

• The main idea is to use WebGL. Then we have 3D.
• There is a poor implementation of GL-ES-1 on WebGL in the

emsdk toolkit, and I do not recommend it (it is very incomplete
and bugged).

• WebGL: from the C++ we do then “string programming” = we
build javascript code which is then passed to the browser to be
compiled and executed, and that itself will finish to use
compiled OpenGL.

• Then we have obviously an inefficiency compared to the same
app compiled and run locally and using straight the compiled
OpenGL.

6

Guy Barrand, CNRS/IN2P3/IJCLab

My apps

• C++98: ok with em++. What I use of STL/STD works here.
• My scene graph logic is ok too. (And then my plotting too).
• My code to read .root files is ok.
• Mastering of the externals: I bring, since ever, the code of my

critical externals: freetype, expat, zlib, jpeg, png. (There is nothing
of these coming with the emscripten SDK!). And these are ok too.

• I did the port of cfitsio, hdf5.
• Geant4-10.03 core is ok!
• I can run my apps! ☺☺☺
• In particular due to the fact that I do my GUI with my scene

graphs logic, and then in WebGL (unified graphics).

7

Guy Barrand, CNRS/IN2P3/IJCLab

To be known
• It is in 32 bits.
• Usage of sockets is forbidden. To do some http, someone has to

pass by the browser that will do the requests asynchronously: it
complicates the life.

• We can upload a local data file in the wasm. We can also
download a file from the wasm (for exa a .png) on the local
machine.

• There is no true file system in the wasm, but we can encapsulate
files (for exa fonts, icons) in a .data container seen by the standard
C API (fopen, etc…)

• The windowing is done in a HTML canvas and can be inserted in
any web page. In particular we can mix with some GUI done in
javascript.

8

Guy Barrand, CNRS/IN2P3/IJCLab

Physics: Geant4, HEP

• I ported g4view, g4exa: and then have Geant4 (10.3) in .wasm!
• I can read .root files with geometries, histos and ntuples.
• pmx is ok: then an embryo of LHCb event display (to show, again and

again, that we can do highly portable C++ HEP apps without having
to embark… the rest of the world).

• EsbRootView: R&D display for ESSnuSB (ESS is an accelerator at
Lund). Presented at vCHEP-2021 in May. There is now a paper.

• I have a terminal mode (done with xterm.js) to type “insh”
commands, or… G4 commands, then from the web browser!

• All these are testable from gbarrand.github.io, under the sections
« WebAssembly » of each apps.

9

Guy Barrand, CNRS/IN2P3/IJCLab

• It works for me with Safari, Firefox and Chrome on my (beloved)
Mac, on iOS and Android, on Windows-10 and on Linux VMs (at
least centos7 and ubuntu).

• WARNING: {.wasm, data related to the app} can be big, then the
loading at startup could be slow on a poor connection from a remote
web host.

• But soon everybody will be on 5G :-)
• For Geant4 apps, problem with the data files. (In g4exa, g4view I

bring only what is needed). (Problem if deploying on github that
limits file size to 50 Mbytes. I have to find a way for that. Hmmm,
would be great to arrange that G4/processes get themselves their
needed files through the web!)

It works…

10

Guy Barrand, CNRS/IN2P3/IJCLab

g4view

11

Guy Barrand, CNRS/IN2P3/IJCLab

g4exa

12

Guy Barrand, CNRS/IN2P3/IJCLab

Etc..

13

Guy Barrand, CNRS/IN2P3/IJCLab

Conclusions ☺☹
• At last an interesting connection « C++/WebGL » with the Web!
• (Then no need to rewrite everything in javascript just for the web).
• Due to my “strategical choices” my C++ apps run here.
• BUT I feel, at usage, that the web browsers are though more to

execute « little tasks asynchronously », than to run big synchronous
tasks.

• Some web browsers (Safari) block these kind of tasks.
• Anyway the interactivity is less reactive that in « pure local ».
• My feeling is that the wasm would be just great to do outreach or

highly targeted physics tasks bringing « only what is needed » with
not so much needs in graphics. I think hat we must continue to
fight to run locally so that « big apps » stay close of the silicium.

14

Guy Barrand, CNRS/IN2P3/IJCLab

Demos…

15

