WebAssembly

G4 virtual workshop 2021

Guy Barrand, CNRS/IN2P3/IJCLab

WebAssembly

An 1nteresting technology to have on the web a C++
application, that does WebGL for 1ts graphics, and this
without having to deploy a specific web server.

Guy Barrand, CNRS/IN2P3/IJCLab 2

The secret
—

In your web browsers, there 1s a virtual machine
(some kind of)! (yes, yes):

the wasm

(Some « portable virtual stack machine », dixit Wikipedia)

Guy Barrand, CNRS/IN2P3/IJCLab 3

How it works?

In your web browsers, there 1s a virtual machine!

You 1install on your beloved mac, or your preferred Linux, or your
forever-upsetting Windows, the « emsdk » toolkit. (em 1s for
« emscripten ». (No 1dea of what 1t means)).

You cross-compile your app with « em++ » to build a

« .wasm » (binary), some .js and one index.html. (em++ uses
clang and LLVM).

You deploy {index.html, .wasm, .js} 1n static web pages 1n any
web host (for exemple gbarrand.github.10 for me).

Then no need to deploy a specific server.

Guy Barrand, CNRS/IN2P3/IJCLab 4

How it works (2) ?

When you load the index.html from your web browser,
the .wasm 1s loaded and executed in the virtual wasm
machine, then on your local machine.

ET VOILA'!

Guy Barrand, CNRS/IN2P3/IJCLab 5

Graphics?

The main 1dea 1s to use WebGL. Then we have 3D.

There 1s a poor implementation of GL-ES-1 on WebGL 1n the
emsdk toolkit, and I do not recommend it (it 1s very incomplete
and bugged).

WebGL: from the C++ we do then “string programming” = we
build javascript code which is then passed to the browser to be
compiled and executed, and that itself will finish to use
compiled OpenGL.

Then we have obviously an inefficiency compared to the same

app compiled and run locally and using straight the compiled
OpenGL.

Guy Barrand, CNRS/IN2P3/IJCLab 6

My apps
I
C++98: ok with em++. What [use of STL/STD works here.
My scene graph logic is ok too. (And then my plotting too).
My code to read .root files 1s ok.

Mastering of the externals: I bring, since ever, the code of my
critical externals: freetype, expat, zlib, jpeg, png. (There 1s nothing
of these coming with the emscripten SDK!). And these are ok too.

I did the port of cfitsio, hdf5.
Geant4-10.03 core 1s ok!
I can run my apps! ©©©

In particular due to the fact that I do my GUI with my scene
graphs logic, and then in WebGL (unified graphics).

Guy Barrand, CNRS/IN2P3/IJCLab 7

1o be known

It 1s 1n 32 bits.

Usage of sockets is forbidden. To do some http, someone has to
pass by the browser that will do the requests asynchronously: it
complicates the life.

We can upload a local data file in the wasm. We can also
download a file from the wasm (for exa a .png) on the local
machine.

There 1s no true file system in the wasm, but we can encapsulate

files (for exa fonts, icons) in a .data container seen by the standard
C API (fopen, etc...)

The windowing 1s done in a HTML canvas and can be inserted in
any web page. In particular we can mix with some GUI done in
javascript.

Guy Barrand, CNRS/IN2P3/IJCLab 8

Physics: Geant4, HEP

I ported gdview, gdexa: and then have Geant4 (10.3) in .wasm!
[can read .root files with geometries, histos and ntuples.

pmx 1s ok: then an embryo of LHCb event display (to show, again and
again, that we can do highly portable C++ HEP apps without having
to embark... the rest of the world).

EsbRootView: R&D display for ESSnuSB (ESS 1s an accelerator at
Lund). Presented at vVCHEP-2021 in May. There 1s now a paper.

[have a terminal mode (done with xterm.js) to type “insh”
commands, or... G4 commands, then from the web browser!

All these are testable from gbarrand.github.10, under the sections
« WebAssembly » of each apps.

Guy Barrand, CNRS/IN2P3/IJCLab 9

It works ...
o

It works for me with Safari, Firefox and Chrome on my (beloved)
Mac, on 10S and Android, on Windows-10 and on Linux VMs (at
least centos?7 and ubuntu).

WARNING: {.wasm, data related to the app} can be big, then the
loading at startup could be slow on a poor connection from a remote
web host.

But soon everybody will be on 5G :-)

For Geant4 apps, problem with the data files. (In gdexa, gdview I
bring only what 1s needed). (Problem if deploying on github that
limits file size to 50 Mbytes. I have to find a way for that. Hmmm,
would be great to arrange that G4/processes get themselves their
needed files through the web!)

10

e — gdview

B | ’-vamm‘:f—: Tl — i

S M e = = ey

ILaN

— e — -
'] 5 9 1 \
gél_2ide_occasole il _hide _meta_aone
$ gui_hide_main_mens
$ gé
9t _apply command g4 _exa A01 g4 _cutput g4 _pythia version g4 _versica
g4 _beanm on o4 exa caloriseter g4 particle ia g4 read gdml gé vis gecs
94 _event start anis el ¢ 14 sanager ls o4 material ia» gé pv in g4 _scene add gec volume

$ gé¢_apply commard ‘/rea/beasOn
$ 9é_apply commard ‘/rea/beasOn
$ gé¢_apply command ' /rea/beastn
o

Guy Barrand, CNRS/IN2P3/IJCLab 11

Guy Barrand, CNRS/IN2P3/IJCLab 12

Download app out.png

|
|

Download spp out. pog , d, CNRS/IN2P3/IJCLab

Conclusions ©®
Y

At last an interesting connection « C++/WebGL » with the Web!
(Then no need to rewrite everything in javascript just for the web).
Due to my “strategical choices” my C++ apps run here.

BUT I feel, at usage, that the web browsers are though more to
execute « little tasks asynchronously », than to run big synchronous
tasks.

Some web browsers (Safari) block these kind of tasks.
Anyway the interactivity 1s less reactive that in « pure local ».

My feeling 1s that the wasm would be just great to do outreach or
highly targeted physics tasks bringing « only what is needed » with
not so much needs in graphics. I think hat we must continue to
fight to run locally so that « big apps » stay close of the silicium.

Guy Barrand, CNRS/IN2P3/IJCLab 14

Demos...

Guy Barrand, CNRS/IN2P3/IJCLab

15

