Geant4 Library Modularization WARWICK
Status and Plans

Ben Morgan

<<Kuses>>

<<module>>
G4Foo

- sources.cmake <<library>>

1ibG4Foo0. so

- include/

- G4Foo. hh
- src/

- G4Foo.cc

G4Foo

Must Link To
<<module>>

G4Bar <<library>>
. 1ibG4Quux. so

<<module>> G4Bar G4Baz
G4Baz

Modularization? | o0 Esr e

“modules” into toolkit libraries ,

L N N J so o000 ch

Module Library

£ sources.cmake U X M CMakelLists.txt U X

cmake > = sources.cmake cmake > M CMakelLists.txt

geant4_add_module(G4Baz r
PUBLIC_HEADERS # Wh € X) ; add_definitions(-DG4QUUX_ALLOC_EXPORT)
G4Baz.hh
SOURCES g i : g i rom cma
G4Bar.cc) 8 geant4_global_library_target/(NAME G4quux
COMPONENTS
a € 3 L) | bar/sources.cmake
geant4_module_link_libraries(G4Baz baz/sources.cmake I
PUBLIC)
G4globman
${ZLIB_LIBRARIES}
PRIVATE #
G4leptons)

Cmake Commands for Follows CMake “target” commands

. and “usage requirements” as far as
Developers/Coordinators = ..ok,

https://cmake.org/cmake/help/latest/manual/cmake-commands.7.html#project-commands
https://cmake.org/cmake/help/latest/manual/cmake-buildsystem.7.html#target-usage-requirements

e 0 CMakeLists.txt — geant4-dev.git [SSH: 192.168.1.68]

CMakelLists.txt X

source > M CMakelLists.txt ® Recurse into subdirs to add modules, libraries

ry(intercoms) - .

ry(interfaces) ® Heavy lifting function
(materials) o Must be here because we can’t compose until
Eg::':i:g)isatims’ all modules/libraries are defined
(persistency) L] Checks:
(physics_lists) o No orphan Modules
(Processes) o Module not composed into >1 Library
(run) ® Calculates:
g:ﬁf;g) o Needed CMake add_library calls
(tracking) o Needed CMake target_link_library etc
(visualization) calls, e.g.. works out that “1ibG4Fo0” needs to

link to “1ibG4Quux”
geant4_compose_targets() ® Tests

Under The Hood...

o No Module-Module cycles (at CTest time)
o CMake checks Library-Library cycles

Composition still done at Category
level (one dir down) as before

Changes for 11.0

® No changes to user code or build scripts(*) for 11.0

o An internal build change, classic “global” libraries still generated

o Changes to library composition can only be made after final retirement of

GNUMake system for users(*)
e Future changes to library composition would break link-interface, and thus
ABI compatibility

Probably implies a new major version
Makes no change to API
We don’t (AFAIK) require/enforce ABI compatibility between minor releases
On the other hand, studying the library composition naturally involves ABI,
so perhaps this checking can be used to report both APl and ABI changes!
o Not saying we enforce compatibility, but useful to know/report changes!

O O O O

\Vavall

https://lvc.github.io/abi-compliance-checker/
https://abi-laboratory.pro/?view=timeline&l=xerces-c

Beyond 11.0: How to compose libs, or, why change?

e Neither “global” (current) or “granular” (1 Module to 1 Library) optimal
o “Granular” composition far too small (~145 libraries...)
o “Global” composition too big (G4processes), too small (“kernel”
functionality split across many libs)

® Criteria for “just right” coming up, but some up front caveats:
o DON’T want CMake option(s) to choose (go ahead, calculate the
permutations (and number of Cl jobs needed) with 145 libraries!
o DO want pattern to be easily changed when needed
o ... but don’t these conflict?
o ... Configurable Composition file provides customization point for users
(if they really need it), and to enable studies with no source changes

WV

' o000 CMakelLists.txt — geant4-dev.git [SSH: 192.168.1.68] o000 G4LibComp.cmake — geant4-dev.git [SSH: 192.168.1.68]
1 CMakeLists.txt M @ @m --- £ G4LibComp.cmake U X 1l

source > M CMakelLists.txt source > = GA4LibComp.cmake
add_subdirectory(intercoms) Y
add_subdirectory(interfaces) \ 1V € 5
add_subdirectory(materials) geant4_add_library(G4global

add_subdirectory(parameterisations) MODULES
add_subdirectory(particles) G4globman
add_subdirectory(persistency) ‘ G4hepgeometry
add_subdirectory(physics_lists) RGCUI’SG Into G4hepnumerics

34 add_subdirectory(processes) these, loading all g G4heprandom)
~ add_subdirectory(readout) sources.cmake

add_subdirectory(run)
add_subdirectory(tasking)

add_subdirectory(track) geant4_add_library(G4run MODULES G4run)

add_subdirectory(tracking) 3

add_subdirectory(visualization) ~ geant4_add_library(G4event MODULES G4event)
42| B Loa | be ; , ed i p re
include(${CMAKE_CURRENT_SOURCE_DIR}/G4LibComp.cmake) . geant4_add_library(G4processes

MODULE_SOURCES

Sl L processes/management/sources.cmake
geant4_compose_targets()

24!

In progress: Issues/limitations from -D

Configurable Composition i for alocators, cviake target

definitions, export to Geant4Config.cmake

Criteria for composition (for discussion)

e Optional modules (e.g. GDML) should always be in their own Library
o Library existence => availability, easier to compile/package
e Compose Libraries from modules at similar depth in module DAG?
o Categories may be a mix of modules across many levels
O Hints of “kernel” vs “implementation” layers during migration process
o E.g. (abstract) base classes, core/internal algorithms in “libG4kernel”,
specific implementations, e.g. physics models, at higher level
o Need to balance against too big, or new “variant”, libraries
e Don’t compromise performance
o Mostly for shared libraries, current “global” composition is the baseline
O Guilherme’s presentation from Tuesday: can we reduce interlibrary calls,

even hide truly internal symbols?

https://indico.cern.ch/event/1052654/contributions/4521602/

Test Cases

1. Split out G4gdml module from G4persistency library -> libG4gdml.so
a. Canonical case, even likely in 11.0 if GNUmake retired
b. Longer term would be Ul/Vis on basis on external lib used, but a lot more
work and tied in with out aspects like compiled in vs plugin drivers.
2. Find “layers/generations” in Module DAG (i.e. topological sorting)
a. Use this as a guide to prepare different “G4LibComp.cmake” files (NB No
changes to source code or category organization needed)
b. Build/Profile against “global” baseline, feedback results
c. Ildentify candidate compositions and discuss/decide on results with all WGs
d. Roll out agreed new composition in next appropriate minor/major Release
3. Related task for all: identify Public/Private APIs of your module(s)

\Vavall

C+ G4Foo.hh G4Foo.cc

source > global > management > include > €+ G4Foo.hh > ... source > global > management > src > G4Foo.cc > ...
#ifndef 00_HH #include "G4Foo.hh"
#define G4FO00_HH 2

#include "G4DeepThought.hh"
#include "globals.hh"

G4String G4Foo::TheAnswer(const G4String& question)
{
i
{ G4DeepThought Xx;
G4String TheAnswer(con G4String& question); 1 x.ReadQuestion(question);
1 1 G4String answer = x.GetTheAnswer();
#endif 13 if(answer == "42")
G+ G4DeepThought.hh) 1 L (L)
source > global > management > include > €+ G4DeepThought.hh > ...
#ifndef
#define G4DEEPTHOUGH

#include "globals.hh"

T

G4DeepThought

{
ReadQuestion(const G4String&);
GAString GetTheAnswer();
};
#endif

|dentifying Public/Privae 3784 header files, i.e. interfaces, in
Geant4. Which of these are intended

Module APIs for use outside their module?

0 sources.cmake — geant4-dev.git
= sources.cmake M X
source > global > management > = sources.cmake

Why does this help?

geant4_add_module(G4Foo
PUBLIC_HEADERS

G4Foo0.hh
. . PRIVATE_HEADERS
e Documentation: Clear which G4DeepThought . hh
SOURCES
headers/classes are part of Geant4 API, i
which are implementation details G4DeepThought . cc

® Reduce installed size of toolkit
o Trivial? but...

geant4_module_link_libra ries@G4Foo

e Private API = Hidden library symbol PUBLIC

L. . . G4globman
o Hiding symbols reduces library size

© May improve performance of shared
libraries via removal of trampolines
(PLT lookups)

® geant4_add_module will provide an
interface for declaring private headers
after GNUmake removal completed

PRIVATE
G4tasking

11 X i ‘\\ 4

https://www.akkadia.org/drepper/dsohowto.pdf#page=15
https://www.akkadia.org/drepper/dsohowto.pdf#page=15
https://www.akkadia.org/drepper/dsohowto.pdf#page=15

Summary and
Discussion

1. CMake tooling for modularization in production with final tweaks incoming
2. Some criteria for modularization and workflow defined - are these
reasonable? What others should be considered?
a. Informs decisions on how to proceed with noted Test Cases
3. You should start identifying Public/Private APIs of your modules to see if we

can reduce installed size of Geant4 or increase performance with symbol
hiding

12

