
Geant4 Library Modularization
Status and Plans
Ben Morgan

How we group source code
“modules” into toolkit libraries

2
Modularization?

<<module>>
G4Foo
- sources.cmake
- include/
- G4Foo.hh

- src/
- G4Foo.cc

<<module>>
G4Bar
- ...

<<module>>
G4Baz
- ...

<<library>>
libG4Foo.so

G4Foo

<<library>>
libG4Quux.so

G4Bar G4Baz

<<uses>>
Must Link To

CMake commands for
Developers/Coordinators

Follows CMake “target” commands
and “usage requirements” as far as
possible. 3

Module Library

Internal links
are to modules,
not libraries

https://cmake.org/cmake/help/latest/manual/cmake-commands.7.html#project-commands
https://cmake.org/cmake/help/latest/manual/cmake-buildsystem.7.html#target-usage-requirements

Under The Hood...
Composition still done at Category
level (one dir down) as before

4

● Recurse into subdirs to add modules, libraries
● Heavy lifting function

○ Must be here because we can’t compose until
all modules/libraries are defined

● Checks:
○ No orphan Modules
○ Module not composed into >1 Library

● Calculates:
○ Needed CMake add_library calls
○ Needed CMake target_link_library etc

calls, e.g.. works out that “libG4Foo” needs to
link to “libG4Quux”

● Tests
○ No Module-Module cycles (at CTest time)
○ CMake checks Library-Library cycles

● No changes to user code or build scripts(*) for 11.0
○ An internal build change, classic “global” libraries still generated
○ Changes to library composition can only be made after final retirement of

GNUMake system for users(*)
● Future changes to library composition would break link-interface, and thus

ABI compatibility
○ Probably implies a new major version
○ Makes no change to API
○ We don’t (AFAIK) require/enforce ABI compatibility between minor releases
○ On the other hand, studying the library composition naturally involves ABI,

so perhaps this checking can be used to report both API and ABI changes!
○ Not saying we enforce compatibility, but useful to know/report changes!

5

Changes for 11.0

https://lvc.github.io/abi-compliance-checker/
https://abi-laboratory.pro/?view=timeline&l=xerces-c

Beyond 11.0: How to compose libs, or, why change?

● Neither “global” (current) or “granular” (1 Module to 1 Library) optimal
○ “Granular” composition far too small (~145 libraries…)
○ “Global” composition too big (G4processes), too small (“kernel”

functionality split across many libs)

● Criteria for “just right” coming up, but some up front caveats:
○ DON’T want CMake option(s) to choose (go ahead, calculate the

permutations (and number of CI jobs needed) with 145 libraries!
○ DO want pattern to be easily changed when needed
○ … but don’t these conflict?
○ … Configurable Composition file provides customization point for users

(if they really need it), and to enable studies with no source changes

6

Configurable Composition
In progress: Issues/limitations from -D
flags for Allocators, CMake target
definitions, export to Geant4Config.cmake7

Recurse into
these, loading all
sources.cmake

● Optional modules (e.g. GDML) should always be in their own Library
○ Library existence => availability, easier to compile/package

● Compose Libraries from modules at similar depth in module DAG?
○ Categories may be a mix of modules across many levels
○ Hints of “kernel” vs “implementation” layers during migration process
○ E.g. (abstract) base classes, core/internal algorithms in “libG4kernel”,

specific implementations, e.g. physics models, at higher level
○ Need to balance against too big, or new “variant”, libraries

● Don’t compromise performance
○ Mostly for shared libraries, current “global” composition is the baseline
○ Guilherme’s presentation from Tuesday: can we reduce interlibrary calls,

even hide truly internal symbols?

8

Criteria for composition (for discussion)

https://indico.cern.ch/event/1052654/contributions/4521602/

1. Split out G4gdml module from G4persistency library -> libG4gdml.so
a. Canonical case, even likely in 11.0 if GNUmake retired
b. Longer term would be UI/Vis on basis on external lib used, but a lot more

work and tied in with out aspects like compiled in vs plugin drivers.
2. Find “layers/generations” in Module DAG (i.e. topological sorting)

a. Use this as a guide to prepare different “G4LibComp.cmake” files (NB No
changes to source code or category organization needed)

b. Build/Profile against “global” baseline, feedback results
c. Identify candidate compositions and discuss/decide on results with all WGs
d. Roll out agreed new composition in next appropriate minor/major Release

3. Related task for all: identify Public/Private APIs of your module(s)

9

Test Cases

3784 header files, i.e. interfaces, in
Geant4. Which of these are intended
for use outside their module? 10

Identifying Public/Private
Module APIs

● Documentation: Clear which
headers/classes are part of Geant4 API,
which are implementation details

● Reduce installed size of toolkit
○ Trivial? but...

● Private API ⋍ Hidden library symbol
○ Hiding symbols reduces library size
○ May improve performance of shared

libraries via removal of trampolines
(PLT lookups)

● geant4_add_module will provide an
interface for declaring private headers
after GNUmake removal completed

11

Why does this help?

https://www.akkadia.org/drepper/dsohowto.pdf#page=15
https://www.akkadia.org/drepper/dsohowto.pdf#page=15
https://www.akkadia.org/drepper/dsohowto.pdf#page=15

Summary and
Discussion

1. CMake tooling for modularization in production with final tweaks incoming
2. Some criteria for modularization and workflow defined - are these

reasonable? What others should be considered?
a. Informs decisions on how to proceed with noted Test Cases

3. You should start identifying Public/Private APIs of your modules to see if we
can reduce installed size of Geant4 or increase performance with symbol
hiding

12

