

Implementation of the EPICS2017 database for photons in Geant4

Zhuxin Li, Ph.D

Ph.D supported by China Scholarship Council and University of Bordeaux

Supervised by Claire Michelet and Sébastien Incerti Centre d'Etudes Nucléaires de Bordeaux Gradignan (CENBG) CNRS/University of Bordeaux

In collaboration with Vladimir Ivanchenko, Mihaly Novak (CERN, Switzerland) and Susanna Guatelli (University of Wollongong, Australia)

26th Geant4 Collaboration Meeting, 13-24 September, 2021

Context

- □ Livermore low-energy electromagnetic models uses EPDL97 database
- Database EPICS2017 (Electron Photon Interaction Cross Section library) contains physical data (cross section...) for electron and photon transport calculation
- Update of Livermore models using EPICS2017 database
- Physics processes relating to photons
 - 1) Gamma conversion

→ Already available in Geant4 10.7

- 2) Compton effect
- 3) Photoelectric effect
- 4) Rayleigh scattering

→ Soon available in Geant4 11

1) Gamma conversion

- Cross-sections are updated
- ♦ More data points in EPICS2017 → linear interpolation
- Two models are already available in Geant4 10.7:
 - G4LivermoreGammaConversionModel
 - G4LivermoreGammaConversion5DModel

2) Compton effect

- Cross-sections and scattering functions are updated
- Parameterization of scattering functions is improved

2) Compton effect

- Precision of parameterizations of scattering function is improved by a factor of:
 - ~1000 for low momentum transfer region
 - ~2.8 for high momentum transfer region

High momentum transfer region

3) Photoelectric effect

- Total and subshell cross-sections are updated and reparameterized
- Precision of parameterizations for total cross-sections are improved by a factor of:
 - ~1.9 for low energy fit
 - ~1.3 for high energy fit

Centre d'Etudes Nucléaires de Bordeaux-Gradignan

4) Rayleigh scattering

- Cross-sections and form factors are updated
- Precision of parameterization for form factors is improved by a factor of ~1.3

- Two goals:
 - Assess quantitatively the compatibility of implemented models versus models in Geant4 10.6
 - Demonstrate the accuracy and reliability of new cross-section data with respect to reference NIST-XCOM data
- Implemented models are tested:
 - G4LivermoreGammaConversionModel
 - G4LivermoreComptonModel
 - G4LivermorePhotoElectricModel
 - G4LivermoreRayleighModel
- Selected materials: beryllium, carbon, aluminum, silicon, germanium, iron, silver, cesium, gold, lead, uranium, water and ICRU compact bone
- Mass attenuation coefficients (total + partial) are calculated

- Example: material = water, for Compton effect
- A good agreement with XCOM data was observed.

- Example: material = water, for total (all processes)
- A good agreement with XCOM data was observed

 Average of absolute relative difference on all the energy points is calculated for the selected materials

- □ A good agreement with XCOM data was observed
- Compatibility between updated models and Geant4 10.6

Conclusion

- Implementation for four photon processes:
 - Gamma conversion
 - Parameterization for scattering functions of Compton effect by a factor of:
 - ~1000 for low momentum region
 - ~2.8 for high momentum region
 - Parameterization for total cross sections of Photoelectric effect
 - ~1.9 for low energy fit
 - ~1.3 for high energy fit
 - Parameterization for form factors of Rayleigh scattering
 - · ~1.3
- The implementation is soon available in Geant4 11

Centre d'Etudes Nucléaires de Bordeaux-Gradignan

Thanks for listening

Centre d'Etudes Nucléaires de Bordeaux-Gradignan

