

Geant4 Annual Collaboration Meeting

Ngoc Hoang Tran, CENBG

Mesoscopic model of Water Radiolysis in Geant4-DNA

in collaboration with Laurent Desorgher, Flore Chappuis and Sébastien Incerti

FLASH Radiotherapy

Modeling ultra-high dose rate irradiation requires

- High radical species concentration
- Long time chemical yield evolution (beyond 1 us)

Electronic state	Decay channel	Fraction
All ionization states	$H_2O^+ + H_2O \rightarrow H_3O^+ + {}^{\bullet}OH$ (through proton transfer)	100 %
Excitation state A1B1: (1b1) → (4a1/3s)	$H_2O^* \rightarrow ^{\bullet}OH + H^{\bullet}$ $H_2O^* \rightarrow H_2O + \Delta E$	65 % 35 %
Excitation state B1A1: (3a1) → (4a1/3s)	$H_2O^* \rightarrow HO^+ + {}^{\bullet}OH + e^{-}_{aq}$ $H_2O^* \rightarrow {}^{\bullet}OH + {}^{\bullet}OH + H_2$ $H_2O^* \rightarrow H_2O + \Delta E$	55 % 15 % 30 %
Excitation state : Rydberg, diffusion bands	$H_2O^* \rightarrow HO^+ + {}^{\bullet}OH + e^{-}_{aq}$ $H_2O^* \rightarrow H_2O + \Delta E$	50 % 50 %

Geant4-DNA: Step by Step (SBS) and Independent Reaction Time (IRT) methods

- Using the dynamic time step model
- Describing the diffusion process corresponding to the Brownian motion (SBS)
- Simplifying the multiple particle problem to the two-particle problem in an approximation (IRT)
- Until 1 us

Time (ps)

Computation time is the main drawback

Time (ps)

Using Brownian dynamics and Smoluchowski theory

Using Reaction-Diffusion Master Equation (RDME)

Reaction-Diffusion Master Equation

$$\frac{\partial}{\partial t} \mathbb{P}\left(\boldsymbol{u},t\right) = \sum_{i=1}^{I} \sum_{r=1}^{R} \left[a_{i}^{r} \left(\mathbf{u} - \boldsymbol{\nu}_{i,r}\right) \mathbb{P}\left(\boldsymbol{u} - \boldsymbol{\nu}_{i,r},t\right) - a_{i}^{r} \left(\mathbf{u}\right) \mathbb{P}\left(\boldsymbol{u},t\right) \right] \\
+ \sum_{i=1}^{I} \sum_{\substack{j=1\\j\neq i}}^{I} \sum_{\ell=1}^{L} \left[\lambda_{i,j}^{\ell} \left(u_{i}^{\ell}(t) + 1\right) \mathbb{P}\left(\boldsymbol{u} - \boldsymbol{e}_{i,j}^{\ell},t\right) - \lambda_{i,j}^{\ell} u_{i}^{\ell}(t) \mathbb{P}\left(\boldsymbol{u},t\right) \right],$$

Event-driven simulation using the "Next-Subvolume Method" (NSM):

- \triangleright Calculation of the propensity functions a_i for all voxels
- Sampling of the time when the next event occurs

$$\tau_i = \frac{-\ln\left(\xi\right)}{a_i}$$

- \triangleright Sampling which reaction or diffusion will take place according to the <u>propensity</u> function a_i
- Processing the first event in the queue and changing the concentrations in the voxels involved in the event
 - ✓ If the event is a reaction, we eliminate reactants and create products.
 - ✓ If the event is a diffusion, we remove the particle in the voxel where it was located and add the particle in the voxel where it goes.

<u>Test 1</u>: Spatial (radial) distributions of solvated electrons

RDME method (blue histogram) and the SBS (line)

<u>Test 2</u>: Spatial (radial) distribution and <u>reaction</u> of solvated electrons

$$e^-_{aq}$$
 + e^-_{aq} + $2H_2O \rightarrow 2OH^-$ + H_2

Two main drawbacks of the compartment-based model:

- "Well-mixed" condition
- Computational efficiency and physical validity of the model

Adaptation of voxel sizes during the evolution time

All species of finer voxels are moved to a larger voxel of a coarser mesh after each "transfer time"

End time	1 ns	10 ns	100 ns	1 μs	10 μs	100 μs
Speedup factor	1.3x10 ¹	1.57x10 ¹	1.65x10 ¹	2.5x10 ²	2.3x10 ³	2.3x10 ⁴

Combination of the SBS model with the compartment-based model

Reaction
$H^{\bullet} + e_{-aq} + H_2O \rightarrow OH - + H_2$
H* + *OH → H2O
H• + H• → H2
$H_2O_2 + e_{-aq} \rightarrow OH - + {}^{\bullet}OH$
$H_3O^+ + e_{-aq} \rightarrow H^{\bullet} + H_2O$
$H_3O^+ + OH- \rightarrow 2H_2O$
•OH + e− _{aq} → OH-
•OH + •OH → H ₂ O ₂
$e_{aq} + e_{aq} + 2H_2O \rightarrow 2OH + H_2$

Just published:

Tran et al., Int. J. Mol. Sci. 2021, 22

Conclusion

- ➤ Coarse-grained model
- ➤ Simulating from heterogeneous -> homogeneous states
- > Taking into account secondary reactions at long time (beyond 1 us)

The first prototype of model could be released from version Geant4 11 and feedback is welcome

Thank you very much