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The need for fast simulation methods 

Physics studies & detector performance benchmarks
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Reference

Speed-up simulation to generate more data within the same CPU time

Reference

Reference

HL-LHC : simulation of more complex events 

https://arxiv.org/pdf/1606.09408.pdf
https://lhcbproject.web.cern.ch/lhcbproject/Publications/f/p/Directory_LHCb-FIGURE-2019-018/hidef_ComputingResourceProjection.png
https://twiki.cern.ch/twiki/pub/AtlasPublic/ComputingandSoftwarePublicResults/cpuHLLHC_comparison_2020_InputData_3April_ATLAS.pdf


3Figures from Geant4 Advanced Course, Anna Zaborowska

How to fast simulate particles in Geant4?

FullSim FastSim 
Classical & ML-based

Shortcut standard tracking & detailed simulation

https://indico.cern.ch/event/866056/contributions/3726143/attachments/2114291/3556913/G4Course_fastSim_handout.pdf


● Continuous integration of tuning tools and generalization procedures
● Tuning procedures of parameters of GFlash-based models 

○ Start of shower tuning
○ Transverse shower profile tuning

Anna Zaborowska
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 FastSim: Classical Parametrization

https://arxiv.org/pdf/hep-ex/0001020.pdf


 FastSim: Classical Parametrization
Anna Zaborowska
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Original GFlash parameters
Fitted function

log ፐ, log α extracted from single particle 
longitudinal profiles for PBWO4

Longitudinal profile not improved immensely 
but extracted parameters (ፐ,α), first and 

second moments are closer to full sim than 
GFlash



From AI to Generative Models
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AI ML DL

Data to drive algorithms 

Leveraging cutting edge ML algorithms inspired by artificial 
Neural Networks 

Approximate a generative probability function

Generative models

AI  : Artificial Intelligence
ML: Machine Learning
DL: Deep Learning

http://www.youtube.com/watch?v=3f66kBwfMto


Fast Simulation & Generative Models 
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and many more ….
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Reference

https://app.dimensions.ai/discover/publication?search_mode=content&search_text=fast%20simulation%20with%20generative%20models%20&search_type=kws&search_field=full_search


From ML training to Geant4 fast simulation
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ML Training Geant4 Simulation

FullSim samplesTraining samples Data 
Converter

Trained model

ML model, objective function, HPO optimization, 
knowledge injection, validation ...

Python environment
CPU, GPU, ... 

Model 
Converter

Inference Interface

FasSim samples

C++ environment
Inference : CPU, GPU ...

h5, 
tf-Records, 

...

LWTNN, 
ONNX, …

Model 
saving



Towards a generalizable and a fast adaptive ML simulator 
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Single (simplified) detector 
geometry 2 (simplified) detector geometries

2 (simplified) detector geometries 
+

Real detector geometry (LHCb)

2 (simplified) detector geometries 
+

2 real detector geometry 
(LHCb+CMS)

● Proof of concept
● Model learns P(shower|energy)
● Inference integration in Geant4

● Model learns P(shower|energy,geometry)
● Model learns P(shower|energy,angle,geometry)
● Joint learning 

● Access the performance on a realistic detector geometry
● Model learns P(shower|energy,angle,geometry)
● Joint learning

● Generalizable & fast adaptive model
● Model meta-learns P(shower|energy,angle,geometry)
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One model to learn from different tasks/domains ?



2-detector geometries : Geant4 samples 

z
    Incident angles 
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P ( shower | energy , angle , geometry)

● 3D readout geometry, 
electromagnetic calorimeters 

○ Lead tungstate (PBWO4)
○ Silicon-tungsten (SiW)

● Flat energy samples 1-500 GeV
● Incident angle from 0o to 90o



How to use the trained ML model for inference in Geant4?

- Demo example: 
https://gitlab.cern.ch/dasalama/ag_ml_sim/-/tree/agmlsim_test_Pb_Geo/Geant4M
LFastSim_Par04 

- src/Par04DetectorConstruction.cc
- Cylindrical detector with r,phi,z segmentation
- Region for the detector is created as an 

envelope of the fast simulation
- src/Par04InferenceInterface.cc

- Load the model Generator.onnx from 
- Configure and run inference

- Root files full/fastSim are available here
- Validation plots: longitudinal and 

transverse profiles (+time) for different 
energies, angles are available in this 
notebook 
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https://gitlab.cern.ch/dasalama/ag_ml_sim/-/tree/agmlsim_test_Pb_Geo/Geant4MLFastSim_Par04
https://gitlab.cern.ch/dasalama/ag_ml_sim/-/tree/agmlsim_test_Pb_Geo/Geant4MLFastSim_Par04
http://generator.onnx
https://gitlab.cern.ch/dasalama/ag_ml_sim/-/tree/agmlsim_test_Pb_Geo/Geant4MLFastSim_Par04/build
https://gitlab.cern.ch/dasalama/ag_ml_sim/-/blob/agmlsim_test_Pb_Geo/Geant4MLFastSim_Par04/build/ValidationPlots.ipynb
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PBWO4

SiW



Geant4 Inference Interface 
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Interface that allows to read in ML models, configure, and execute inference. 

Two main functions :

  void GetEnergies(std::vector<G4double>& aDepositsEnergies, 
G4double aParticleEnergy);

void GetPositions(std::vector<G4ThreeVector>& aDepositsPositions,
                G4ThreeVector aParticlePosition,
                G4ThreeVector aParticleDirection);

Infer energies deposited in the 

detector

Calculate positions to 

corresponding energies in the 

detector



From ML training to Geant4 fast simulation
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ML Training Geant4 Simulation

G4 samples (FullSim)Training samples Data 
Converter

Trained model

ML model, objective function, HPO optimization, 
knowledge injection, validation ...

Model 
Converter

Inference Interface

FasSim samples

h5, 
tf-Records, 

...

Model 
saving

LWTNN ONNX

 4GB 61MBResident Memory

Virtual Memory 4GB 52MB



Optimizing the memory footprint
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ML 
Optimization

Integration 
Optimization

● Using a highly granular calorimeter -> more inputs to the model -> larger network -> 
more parameters -> larger memory footprint  

● The memory footprint can be optimized 
○ ML optimization : to reduce the number of trainable parameters
○ Integration optimization : to reduce the complexity of the model representation 



● Graphs :  as data structures

● ONNX Runtime provides various graph optimizations to 

improve model performance. 

● Graph optimizations graph-level transformations

○ Basic Graph Optimizations : remove redundant nodes 

and redundant computation

○ Extended Graph Optimizations: fuse nodes

Integration optimization : Graph optimization 
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Integration optimization : Quantization & Graph Optimization 
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Raw Model (without 
optimization)

Quantization Quantization + 
Graph Optimization

Loading + 
Inference 

Resident memory (MB) 2265.34 650.414 555.828 

Virtual memory(MB) 3205.26 1339.22 1073.21

● Quantization in ONNX Runtime refers to 8 bit linear quantization
● Floating point real values are mapped to an 8 bit quantization space 

Documentation

Very large network

https://www.onnxruntime.ai/docs/how-to/quantization.html


Towards a generalizable generative modeling 

● Previously... 
○ ML model learns P( shower | energy, angle, geometry ) (joint training) -> can’t adapt quickly to 

a new geometry

■ Geometry encoded as one hot vector -> adding a new geometry would require changing 

the encoding and retraining  

● Work in progress
○ Adding the CMS (ECAL) to the set of geometries  

○ Re-design of the key components for generalizability and adaptability 

○ ML model meta-learns P( shower | energy, angle, geometry )  
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Generative 
Model

Tokenization Uni-Mod 

Uni-Mod: Universal Modality
AutoML: Automatic Machine Learning (for validation & hyperparameter tuning )

AutoML

Geant4-Inference

Optimization

Geometry features, GDML File Data : ∀ geometry, ∀ size

Token / Geometry
Universal Representation

FastSim 
Model ● Knowledge Distillation

● Graph optimization
● Quantization
● Pruning 

Fast simulated events

● Meta Learning
● Few-shot Learning

Geant4-App
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Meta Learning : learning-to-learn “Fast”

arXiv:1703.03400

arXiv:1803.02999
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https://arxiv.org/abs/1703.03400
https://arxiv.org/abs/1803.02999
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https://docs.google.com/file/d/1lv5lsqKbHI5NhngvO9qGAb6FK7_KrvBE/preview


Automatic Machine Learning (AutoML)
● Summer project 

○ Report by Poliana Nascimento Ferreira: 
https://indico.cern.ch/event/1060366/

● Automatically search the best hyperparameters 
according to a metric

○ Combined ML-Physics metric (image reconstruction, total energy, 
energy per layer)

● Compared to a grid search AutoML has the advantage 
of changing more than one hyperparameter at the same 
time

● AutoML approaches: 
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https://indico.cern.ch/event/1060366/


Meta-learning model performance : total energy

26

PbW04 SiW Lhcb

Energy 60 GeV
Angle 200



27

After 100 iterations0 iteration After 1000 iterations

Test on new geometry :  CMS
Energy 60 GeV
Angle 200

3mn on CPU, local machine (4 cors, 16Gb memory)



● Continuation of tuning of parameters of GFlash-inspired models
● ML-Multi-detector geometry model 

○ Conditioned on the geometry, energy and incident angle of the particle
○ First tested on 2 simplified geometries 
○ Currently testing on a real LHC experiment detectors 

■ Meta-learning with few shot learning is a very promising approach towards a generalizabile simulator
■ Many improvements are expected
■ More geometries will be tested and evaluated 

● Geant4 inference integration
○ Provide G4 examples extending its simulation facilities to Classical & ML-based methods 
○ For ML-based fast simulation

■ Compare inference libraries such as LWTNN, ONNX
■ To better optimize the memory footprint with ONNX

● Graph optimizations 
● Qunatization 28

Summary & Outlook

Thank you for your attention!



Backup 
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Geant4 Inference Interface : simulation time

With LWTNN
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Model loading Session Initialization

Inference 

28 ms

Model profiling : inference on a single event  
Time



From ML training to Geant4 fast simulation
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ML Training Geant4 Simulation

G4 samples (FullSim)Training samples Data 
Converter

Trained model

ML model, objective function, HPO optimization, 
knowledge injection, validation ...

Model 
Converter

Inference Interface

FasSim samples

h5, 
tf-Records, 

...

Model 
saving

Disk space 
Model weights (.h5  file) 28.3 MB
Architecture (.json file) 5.71 kB

LWTNN
.json

195 MB

ONNX
.onnx

28.3 MB



PBWO4 Geometry with 24x24x24 cell segmentation
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Validation metrics

34Source

https://towardsdatascience.com/17-types-of-similarity-and-dissimilarity-measures-used-in-data-science-3eb914d2681
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In CNN only last 

layer is fully 
connected 

Dense layers

Convolutional  layers

● With smaller input size 24x24x24 dense 
layers are easy to train , number of 
trainable parameters depends on the 
width and length of the NN

● Test 1: (50x48x120) with dense layers
● Test 2: (50,48,120) with Conv layers

+ Reduce the number of trainable 
parameters 

600 Mb (with 
integration 
optimization)

500 Mb (no 
integration 
optimization)

Memory 
footprint 
(CPU)

ML optimization : from dense to convolutional layers
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LHCb geometry loaded from a GDML file

Multi-detector geometry modeling using an 
LHC experiment calorimeter 

http://gdml.web.cern.ch/GDML/


Inference libraries : LWTNN vs ONNX
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LightWeight Trained Neural Network 
(LWTNN)

Open Neural Network Exchange 
(ONXX)   Github

Description C++ library to apply NN
Minimal dependencies : Eigen, Boost

Open format to represent ML models 
ONNX Runtime: a cross-platform framework 
for ML model’s inference and deployment 

Supported ML 
libraries

Sklearn and Keras models (it is possible to 
convert a Tensorflow model to a keras 
model)

Saves models from (almost) all libraries 

Supported layers All expect:  CNN, Repeat Vector, Reshape. All

Supported 
Activation functions

All except: Selu, PRelu All

File format JSON ProtoBuf

Github

https://github.com/onnx/onnx
https://github.com/lwtnn/lwtnn
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Particle 
Energy 

Particle 
Incident Angle 

Detector 
Geometry

Latent 
Representation

Universal 
Representation

PBWO4 Siw LHCb

Multi-detector geometry modeling 
Generative Model
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PBWO4 SiW LHCb
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Meta Learning : learning-to-learn “Fast”

arXiv:1703.03400

arXiv:1803.02999
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https://arxiv.org/abs/1703.03400
https://arxiv.org/abs/1803.02999

