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The need for fast simulation methods

Speed-up simulation to generate more data within the same CPU time
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How to fast simulate particles in Geant4?

hadronic
calorimeter

electromagnetic
calorimeter

FullSim

region:
calorimeters

FastSim

Classical & ML-based

region:

Shortcut standard tracking & detailed simulation

Figures from Geant4 Advanced Course, Anna Zaborowska 3



https://indico.cern.ch/event/866056/contributions/3726143/attachments/2114291/3556913/G4Course_fastSim_handout.pdf
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FastSim: Classical Parametrization

e Continuous integration of tuning tools and generalization procedures
e Tuning procedures of parameters of GFlash-based models
o Start of shower tuning
o Transverse shower profile tuning SR oo N——
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https://arxiv.org/pdf/hep-ex/0001020.pdf
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FastSim: Classical Parametrization
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From Al to Generative Models

Leveraging cutting edge ML algorithms inspired by artificial
Neural Networks

Generative models
/ Approximate a generative probability function
Al ML DL

Data to drive algorithms

Al : Artificial Intelligence
ML: Machine Learning
DL: Deep Learning



http://www.youtube.com/watch?v=3f66kBwfMto

Fast Simulation & Generative Models
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Data Augmentation at the LHC through Analysis-specific Fast Simulation with Deep Learning: W+jet
training/test dataset

Pierini, Maurizio, Chen, Cheng
2020 - Zenodo

W+jet events at generator and reconstruction level, used to train analysis-specific generative models. Events are represented as
an array of relevant high-level features. Reco objects are matched to Gen objects and a minimal selection is applied to define the
generator support in the N-dim space identified by the input features. About 2M events, used for training/validation/testing Details
in https://arxiv.org/abs/2010.01835 less

Three Dimensional Energy Parametrized Generative Adversarial Networks for Electromagnetic Shower
Simulation

Gul Rukhkhattak, Sofia Vallecorsa, Federico Carminati
2018, 2018 25th IEEE International C

on Image P ing (ICIP) -

High Energy Physics (HEP) simulations are traditionally based on the Monte Carlo approach and generally rely on time consuming

calculations. The present work investigates the use of Generative Adversa... more
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Generative models for fast cluster simulations in the TPC for the ALICE experiment

Kamil Deja, Tomasz Trzcin’ski, tukasz Graczykowski

2019, EPJ Web of Conferences - Article

Simulating the detector response is a key component of every highenergy physics experiment. The methods used currently for
this purpose provide high-fidelity results. However, thi... more
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Deep Generative Models for Fast Shower Simulation in ATLAS

Dalila Salamani, Stefan Gadatsch, Tobias Golling, Graeme Andrew Stewart, Aishik Ghosh, David Rousseau, Ahmed Hasib, Jana S...
2018, 2018 IEEE 14th International Conference on e-Science (e-Science) - Proceeding

Detectors of High Energy Physics experiments, such as the ATLAS dectector [1] at the Large Hadron Collider [2], serve as cameras

that take pictures of the particles produced in the collision events. O... more
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Fast and Accurate Simulation of Particle Detectors Using Generative Adversarial Networks

Pasquale Musella, Francesco Pandolfi

2018, Computing and Software for Big Science - Article

Deep generative models parametrised by neural networks have recently started to provide accurate results in modeling natural

images. In particular, generative adversarial networks provide an unsupervi... more
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Generative Adversarial Networks for LHCb Fast Simulation

Fedor Ratnikov

2020, arXiv - Preprint

LHCb is one of the major experiments operating at the Large Hadron Collider at CERN. The richness of the physics program and

the increasing precision of the measurements in LHCb lead to the need of ev... more
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and many more ....
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https://app.dimensions.ai/discover/publication?search_mode=content&search_text=fast%20simulation%20with%20generative%20models%20&search_type=kws&search_field=full_search

From ML training to Geant4 fast simulation

h5,
ML Training tf-Records, Geant4 Simulation
Training samples ~— Data _—— FullSim samples
Converter

ML model, objective function, HPO optimization,

knowledge injection, validation ...
Inference Interface

Model /

Trained model Converter \
saving LWTNN, FasSim samples
ONNX, ...
Python environment C++ environment

CPU, GPU, ... Inference : CPU, GPU ...



Towards a generalizable and a fast adaptive ML simulator

Single (simplified) detector

> 2 (simplified) detector geometries

geometry
e  Proof of concept e  Model learns P(shower|energy,geometry)
e  Model learns P(shower|energy) e Model learns P(shower|energy,angle,geometry)
e Inference integration in Geant4 e Joint learning

2 ([BIplinee]) ¢ CHeen gRome e 2 (simplified) detector geometries

+
+
2 real detector geometry
Real detector geometry (LHCb
(LHCb+CMS) 9 ity (H7eio)
e  Generalizable & fast adaptive model e Access the performance on a realistic detector geometry
e Model meta-learns P(shower|energy,angle,geometry) e Model learns P(shower|energy,angle,geometry)

e Joint learning



One model to learn from different tasks/domains ?

One Model To Learn Them All
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Abstract

Deep learning yields great results across many fields, from speech recognition,
image classification, to translation. But for each problem, getting a deep model
to work well involves research into the architecture and a long period of tuning.
We present a single model that yields good results on a number of problems span-
ning multiple domains. In particular, this single model is trained concurrently on
ImageNet, multiple translation tasks, image captioning (COCO dataset), a speech
recognition corpus, and an English parsing task. Our model architecture incor-
porates building blocks from multiple domains. It contains convolutional layers,
an attention mechanism, and sparsely-gated layers. Each of these computational
blocks is crucial for a subset of the tasks we train on. Interestingly, even if a block
is not crucial for a task, we observe that adding it never hurts performance and
in most cases improves it on all tasks. We also show that tasks with less data
benefit largely from joint training with other tasks, while performance on large
tasks degrades only slightly if at all.

Dot-Prod. Attention

Attention

Target Source

Timing @.%;
5x1 ConvStep

5x1 Convtep
Dilation 4

Dot-product
Attention

'3 13

Dot-Prod. Attention
Pointwise | [ Pointwise
Gonv Conv.

Dot-Prod. Aftention

Attended Source

ConvBlock

Inputs

Input Encoder

Inputs

Timing
3x1 Convtep
Diation 1 3x [ ConvBlock
¥

¥

3x1 Convstep
Diation 1

Mixture of
Experts (opt)

15x1 ConvStep
Diation 1

15x1 ConvStep.
Diation 4

Outputs

/Bl
I
@

Encoded
Inputs

1/0 Mixer

Encoded
Inputs  Outputs

a1 Convtep
Dilation 1

@

Encoded
Outputs

Decoder

Encoded Encoded
Outputs ~ Inputs

31 ConvStep
Dilation 1
ax1 Convstep
Diation 1

10



2-detector geometries : Geant4 samples

e 3D readout geometry,
electromagnetic calorimeters
o Lead tungstate (PBWO,)
o Silicon-tungsten (SiW)
e Flat energy samples 1-500 GeV
e Incident angle from 0° to 90°

P (shower | energy, angle, geometry)




How to use the trained ML model for inference in Geant4?

# Abbreviations: PV = Physical Volume, LV = Logical Volume,

| # SD = Sensitive Detector, RO = Read Out Geometry.
. "World":0 / "World"
- De MO eXam p I e. "Detector":80 / “Detector”
https://gitlab.cern.ch/dasalama/ag_ml_sim/-/tree/agmisim_test Pb_Geo/Geant4M "Layer":0-23 (24 replicas) / "Layer"
LFastSim_Par04 "G4_PbWO04":0 / "G4_PbwoO4"
. "PhiCell":0-23 (24 replicas) / "PhiCell"
- src/Par04DetectorConstruction.cc "Cell":0-23 (24 replicas) | "Cell" (SD="sensitiveDetector")
: : : : : G4ASClITreeSceneHandler::EndModeling
- Cylindrical detector with r,phi,z segmentation Risverting to viewer-0.(0penGLStoredot)

- Region for the detector is created as an
envelope of the fast simulation

- src/ParO4Inferencelnterface.cc

— @& MLModels

- Load the model Generator.onnx from e
- Configure and run inference & include
- Root files full/fastSim are available here S e
- Validation plots: longitudinal and & gitceep
transverse profiles (+time) for different B CMakeLists
energies, angles are available in this [ READVE
notebook g PRA:

[% examplePar04.in
< run.py

% vis.mac


https://gitlab.cern.ch/dasalama/ag_ml_sim/-/tree/agmlsim_test_Pb_Geo/Geant4MLFastSim_Par04
https://gitlab.cern.ch/dasalama/ag_ml_sim/-/tree/agmlsim_test_Pb_Geo/Geant4MLFastSim_Par04
http://generator.onnx
https://gitlab.cern.ch/dasalama/ag_ml_sim/-/tree/agmlsim_test_Pb_Geo/Geant4MLFastSim_Par04/build
https://gitlab.cern.ch/dasalama/ag_ml_sim/-/blob/agmlsim_test_Pb_Geo/Geant4MLFastSim_Par04/build/ValidationPlots.ipynb
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Transverse profiles PBWO,

e~,10[GeV], 0°, Pb
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Geant4 Inference Interface

Interface that allows to read in ML models, configure, and execute inference.

Two main functions :

void GetEnergies(std::vector<G4double>& aDepositsEnergies, Infer energies deposited in the
G4double aParticleEnergy); detector

void GetPositions(std::vector<G4ThreeVector>& aDepositsPositions,  Calculate positions to
G4ThreeVector aParticlePosition, corresponding energies in the
G4ThreeVector aParticleDirection); detector

16



From ML training to Geant4 fast simulation

Inference Interface

\

FasSim samples

________________________

""""""""""""""""

Resident Memory | 4GB i 61MB

__________________________

""""""""""""""""

Vitual Memory | 4GB || 52MB

__________________________



Optimizing the memory footprint

— S

ML Integration
Optimization Optimization

\//’

e Using a highly granular calorimeter -> more inputs to the model -> larger network ->
more parameters -> larger memory footprint
e The memory footprint can be optimized
o ML optimization : to reduce the number of trainable parameters
o Integration optimization : to reduce the complexity of the model representation

18



Integration optimization : Graph optimization

e Graphs : as data structures

e ONNX Runtime provides various graph optimizations to

improve model performance.

e Graph optimizations graph-level transformations

o Basic Graph Optimizations : remove redundant nodes

and redundant computation

o Extended Graph Optimizations: fuse nodes

e

mat

o
-
mul_... Relu

FP"\B‘

.

4
matmul.f...

19



Documentation

Integration optimization : Quantization & Graph Optimization

e Quantization in ONNX Runtime refers to 8 bit linear quantization
e Floating point real values are mapped to an 8 bit quantization space

Raw Model (without Quantization Quantization +
optimization) Graph Optimization
Loading + | Resident memory (MB) 2265.34 650.414 555.828
Inference
Virtual memory(MB) 3205.26 1339.22 1073.21

f

Very large network 20


https://www.onnxruntime.ai/docs/how-to/quantization.html

Towards a generalizable generative modeling

e Previously...
o ML model learns P( shower | energy, angle, geometry ) (joint training) -> can’t adapt quickly to
a new geometry
m  Geometry encoded as one hot vector -> adding a new geometry would require changing
the encoding and retraining
e \Work in progress
o Adding the CMS (ECAL) to the set of geometries
o Re-design of the key components for generalizability and adaptability

o ML model meta-learns P( shower | energy, angle, geometry )

21



Geometry features, GDML File

Data : V geometry, V size
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c Model
[,
e
o

Geant4-Inference
|
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Graph optimization
Quantization
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5
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Fast simulated events

Uni-Mod: Universal Modality
AutoML: Automatic Machine Learning (for validation & hyperparameter tuning )




Reptile

Meta Learning : learning-to-learn “Fast”

On First-Order Meta-Learning Algorithms

Alex Nichol and Joshua Achiam and John Schulman
OpenAl
{alex, jachiam, joschu}@openai.com

arXiv:1803.02999
Abstract

This paper considers meta-learning problems, where there is a distribution of tasks, and we
would like to obtain an agent that performs well (i.e., learns quickly) when presented with a
previously unseen task sampled from this distribution. We analyze a family of algorithms for
learning a parameter initialization that can be fine-tuned quickly on a new task, using only first-
order derivatives for the meta-learning updates. This family includes and generalizes first-order
MAML, an approximation to MAML obtained by ignoring second-order derivatives. It also
includes Reptile, a new algorithm that we introduce here, which works by repeatedly sampling
a task, training on it, and moving the initialization towards the trained weights on that task.
We expand on the results from Finn et al. showing that first-order meta-learning algorithms
perform well on some well-established benchmarks for few-shot classification, and we provide
theoretical analysis aimed at understanding why these algorithms work.

MAML

Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks
Chelsea Finn, Pieter Abbeel, Sergey Levine arXiv:1703.03400

We propose an algorithm for learning that is model ic, in the sense that it is compatible with any model trained with
gradient descent and applicable to a variety of different learning problems, including classification, regression, and reinforcement

learning. The goal of meta-learning is to train a model on a variety of learning tasks, such that it can solve new learning tasks using
only a small number of training samples. In our approach, the parameters of the model are explicitly trained such that a small number
of gradient steps with a small amount of training data from a new task will produce good generalization performance on that task. In
effect, our method trains the model to be easy to fine-tune. We demonstrate that this approach leads to state-of-the-art performance
on two few-shot image classification benchmarks, produces good results on few-shot regression, and accelerates fine-tuning for policy
gradient reinforcement learning with neural network policies.

Algorithm 1 Reptile (serial version)

Initialize ¢, the vector of initial parameters

for iteration = 1,2,... do
Sample task 7, corresponding to loss L, on weight vectors ¢
Compute ¢ = UF(¢), denoting k steps of SGD or Adam
Update ¢ + ¢ + €(¢ — @)

end for

23


https://arxiv.org/abs/1703.03400
https://arxiv.org/abs/1803.02999
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https://docs.google.com/file/d/1lv5lsqKbHI5NhngvO9qGAb6FK7_KrvBE/preview

Automatic Machine Learning (AutoML)

Summer project

o Report by Poliana Nascimento Ferreira:
https://indico.cern.ch/event/1060366/

Automatically search the best hyperparameters —_
according to a metric o = Fypersand
o  Combined ML-Physics metric (image reconstruction, total energy, — =a

energy per layer) £ 1]

Compared to a grid search AutoML has the advantage « =

of changing more than one hyperparameter at the same ']

time 1|

AUtOML approaCheS: 54000 56000 saoEonoergy [Messtlmo 62000 64000

Random Search

Hyperband

+ Simple

Tracking of the tuning
process

Approximate objective
function for fast scoring

Fast

Explore larger space
Tracking of the tuning
process

No control of the
tuning process

Too long to approximate a
good enough function

Discard some trials too

fast 25



https://indico.cern.ch/event/1060366/

Meta-learning model performance : total energy
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Energy 60 GeV
Test on new geometry : CMS Angle 20°

O iteration After 100 iterations After 1000 iterations

Total energy deposited in the calorimeter Total energy deposited in the calorimeter

Total energy deposited in the calorimeter
— 3 Fulisim 3 FuliSim 3 FullSim
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Summary & Outlook

e Continuation of tuning of parameters of GFlash-inspired models
e ML-Multi-detector geometry model

o  Conditioned on the geometry, energy and incident angle of the particle
o  First tested on 2 simplified geometries
o  Currently testing on a real LHC experiment detectors
m  Meta-learning with few shot learning is a very promising approach towards a generalizabile simulator
m  Many improvements are expected
m  More geometries will be tested and evaluated
e (Geant4 inference integration
o  Provide G4 examples extending its simulation facilities to Classical & ML-based methods
o  For ML-based fast simulation
m  Compare inference libraries such as LWTNN, ONNX
m  To better optimize the memory footprint with ONNX
e  Graph optimizations

e  Qunatization Thank you for your attention! 2s
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Geant4 Inference Interface : simulation time

Truth energy 60GeV

Truth energy 10GeV

Truth energy 100GeV

0.0 0.1

Simulation time in s

B FullSim
- FastSim

] I 100
0.2 0.3 0.4 0.

# number of events
=
o
2

5 -1.0 -0.5

Truth energy 60GEeV

With LWTNN

mm FullSim

/ [ FastSim

= FullSim 10?
mmm FastSim
i)
c
[
>
[
‘s
5 10!
Q
£
3
c
#
\ 10°
0.0 05 1.0 15 2.0 2.5 00

Simulation time in s

10t

# number of events

0.00 0.01 0.02 0.03

Simulation time in s

- FastSim

0.04 0.05

# number of events

10t

Truth\energy 60GeV

0.5 1.0 1.5 2.0 2.5
Simulation time in s

. FullSim

Simulation time in s

21

3.0

30



Time

Model profiling : inference on a single event /

|0 ms ) ) ) ) |200ms ) ) ) |400ms ) ) ) |600ms ) ) |800 ms

nference

|800 ms

|780 ms |790 ms

28 ms

1 item selected. Slice (1)

Title Relu1_kemel_time
Category Node
R EE——— User Friendly Category ~ other
[778600ps ) ) ) |778.700ps ) ) ) |778.800ps ) Start 778.691 ms
< 206 s > Wall Duration 0.007 ms
Y Args
output_size "400"
parameter_size "o"
activation_size "400"
graph_index 26"
£ exec_plan_index %67
provider "CPUExecutionProvider"
op_name "Relu”
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From ML training to Geant4 fast simulation

Model /

Converter
Model
saving
Disk space . LWTNN ' ONNX
Model weights (.h5 file) 28.3 MB , Json i .onnx

Architecture (,json file) 5.71 kB 195MB | 28.3MB |

,

______________________

32



PBWO4 Geometry with 24x24x24 cell segmentation

33



Validation metrics
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https://towardsdatascience.com/17-types-of-similarity-and-dissimilarity-measures-used-in-data-science-3eb914d2681

ML optimization : from dense to convolutional layers

e With smaller input size 24x24x24 dense
layers are easy to train , number of
trainable parameters depends on the
width and length of the NN

e Test 1: (50x48x120) with dense layers

e Test 2:(50,48,120) with Conv layers

+ Reduce the number of trainable
parameters

Dense layers Memory
- footprint
- ] (CPU)
\\§‘0/ \v ;/ \ .
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Multi-detector geometry modeling using an
LHC experiment calorimeter

LHCb geometry loaded from a GDMIL file

36


http://gdml.web.cern.ch/GDML/

Inference libraries : LWTNN vs ONNX

Description

Supported ML
libraries

Supported layers

Supported
Activation functions

File format

LightWeight Trained Neural Network
(LWTNN) Github

C++ library to apply NN
Minimal dependencies : Eigen, Boost

Sklearn and Keras models (it is possible to
convert a Tensorflow model to a keras
model)

All expect: CNN, Repeat Vector, Reshape.

All except: Selu, PRelu

JSON

Open Neural Network Exchange
(ONXX) Github

Open format to represent ML models
ONNX Runtime: a cross-platform framework
for ML model’s inference and deployment

Saves models from (almost) all libraries

All

All

ProtoBuf
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https://github.com/onnx/onnx
https://github.com/lwtnn/lwtnn

Multi-detector geometry modeling

PBWO, Siw LHCb
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MAML

Reptile

Meta Learning : learning-to-learn “Fast”

Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks A . - i
arXiv-1703.03400 Algorithm 1 Reptile (serial version)

Chelsea Finn, Pieter Abbeel, Sergey Levine

We propose an algorithm for meta-learning that is model-agnostic, in the sense that it is compatible with any model trained with Initialize ¢ the Vector Of initial parameters
gradient descent and applicable to a variety of different learning problems, including classification, regression, and reinforcement )

learning. The goal of meta-learning is to train a model on a variety of learning tasks, such that it can solve new learning tasks using b = —

only a small number of training samples. In our approach, the parameters of the model are explicitly trained such that a small number for 1tera'tlon - 1 ) 2’ see do

of gradient steps with a small amount of training data from a new task will produce good generalization performance on that task. In S 1 k d- 1 L . h oy
effect, our method trains the model o be easy to fine-tune. We demanstrate that ths approach leads to state-of-the-art performance ample task 7, corresponding to loss L, on weight vectors ¢
on two few-shot image classification benchmarks, produces good results on few-shot regression, and accelerates fine-tuning for policy

gradient reinforcement learning with neural network policies. Compute ¢ = U,l’_c(qs), denoting k StepS Of SGD OI‘ A.da/m

Update ¢ < ¢ + e(¢ — ¢)
end for

On First-Order Meta-Learning Algorithms

Alex Nichol and Joshua Achiam and John Schulman
OpenAl v
{alex, jachiam, joschu}@openai.com ¢

arXiv:1803.02999

Abstract
W *
This paper considers meta-learning problems, where there is a distribution of tasks, and we 2

would like to obtain an agent that performs well (i.e., learns quickly) when presented with a
previously unseen task sampled from this distribution. We analyze a family of algorithms for
learning a parameter initialization that can be fine-tuned quickly on a new task, using only first-
order derivatives for the meta-learning updates. This family includes and generalizes first-order
MAML, an approximation to MAML obtained by ignoring second-order derivatives. It also
includes Reptile, a new algorithm that we introduce here, which works by repeatedly sampling
a task, training on it, and moving the initialization towards the trained weights on that task.
‘We expand on the results from Finn et al. showing that first-order meta-learning algorithms
perform well on some well-established benchmarks for few-shot classification, and we provide
theoretical analysis aimed at understanding why these algorithms work.

Figure 2: The above illustration shows the sequence of iterates obtained by moving alternately towards two
optimal solution manifolds W; and W, and converging to the point that minimizes the average squared
distance. One might object to this picture on the grounds that we converge to the same point regardless of
whether we perform one step or multiple steps of gradient descent. That statement is true, however, note
that minimizing the expected distance objective E [D(¢, W;)] is different than minimizing the expected loss
objective E; [L,(fs)]. In particular, there is a high-dimensional manifold of minimizers of the expected loss
L. (e.g., in the sine wave case, many neural network parameters give the zero function f(¢) = 0), but the
minimizer of the expected distance objective is typically a single point.
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