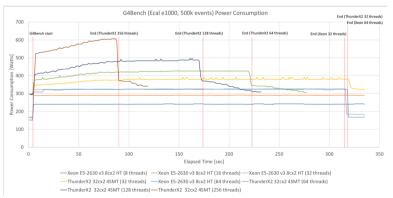
Performance Tests (A64FX, Apple M1, AMD)


Koichi Murakami (KEK)

Virtual Geant4 Collaboration Meeting 2021

Motivation

- We are interested in Data Center Business:
 - o architecture choice, system design, procurement, system installation, operation...
 - CPU choice is an important task.
 - o performance, cost efficiency, power efficiency, compatibility, ...
 - Geant4simulation accounts for big percentage of CPU usage in HEP data centers.
- Emerging CPUs other than Intel / x86
 - Intel is in very difficult situation...
 - o https://news.in-24.com/business/144257.html
 - o AMD EPYC (x86)
 - ARM-based processors
 - o Fujitsu A64FX, Apple M1,...

Power consumption study

What should know about ARM

- Arm Ltd. develops the architecture and licenses it to other companies. They utilize Arm's architectural model as a kind of template, building systems that use Arm cores as their central processors.
 - o CPU characteristics differs from each other.
- ARM is a family of reduced instruction set computing (RISC) architectures for computer processors.
 - x86 is CISC (Complex Instruction Set Computer)
 - No compatibility between RICS and CISC
 - History of CISC vs. RISC

Tested Arm Processors

Marvell ThunderX2 Cavium

- o HPE Apollo 70: Marvell ThunderX2 CN9980 (32cores, 2.0GHz) x2 + 256GB DDR4 / 180W TDP
- o ISA: ARM v8.1
- o Micro Arch: Vulcan / 16nm
- o unfortunately they withdrawed from HPC.

Fujitsu A64FX

- Fujitsu FX700 : A64FX (48cores, 2.0GHz) x1 + 32GB HBM2 / 150W TDP (guess)
- ISA: ARM v8.2-A + SVE (Scalable Vector Extention)
- o Micro Arch: Originally Designed / 7nm

Apple M1

- Mac mini : Apple M1 / 8GB Unified / 39W (max)
- o ISA: ARM v8.4 (No SVE)
- Micro Arch: Firestrorm + Icestorm / 5nm / big.LITTLE-based
- o 4 HP cores (Firestorm) + 4 HE cores (Icestorm) / 3.2GHz (big), 2GHz (little)

Intel / AMD Processors

Intel Xeon

- Xeon Gold 6240, 18cores (2.6/3.9GHz) x2 + 192GB
- o Code: Cascade Lake, 14nm
- Future test : Ice Lake Xeon

Intel Core i9 (reference)

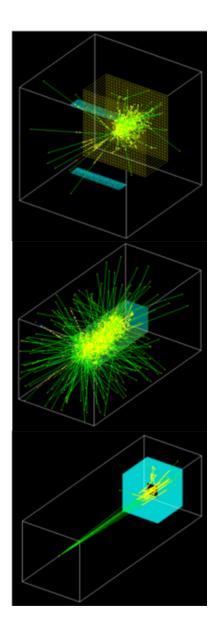
- o i9-9900K, 8cores (3.6/5.0GHz)
- o Code: Coffee Lake (9th Gen), 14nm
- Note: single thread performance is better than Xeon series.

AMD / Rome

- o Ryzen Threadripper PRO 3995WX, 64cores (2.7/4.2GHz) x1 + 256 GB
- o Micro Arch: Zen2 (Rome), 7nm

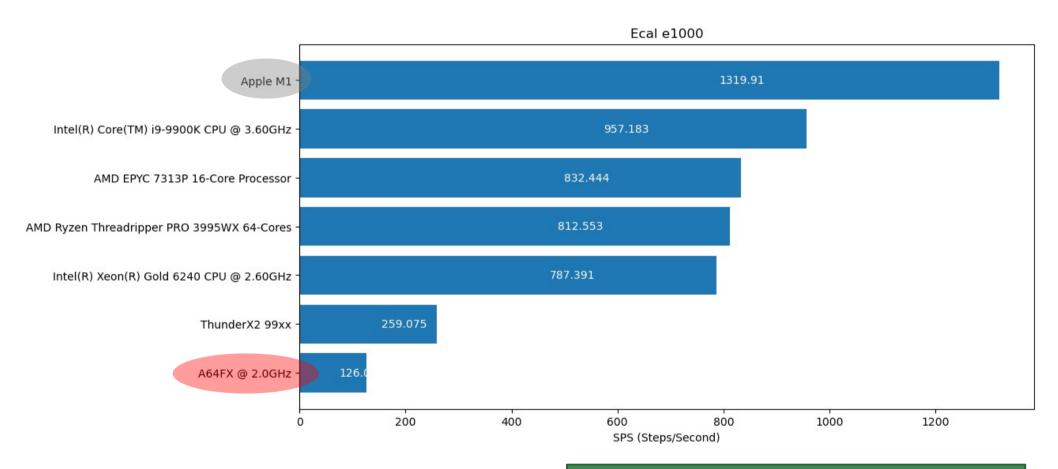
AMD EPYC / Millan

- o EPYC 7313P 16cores (3.0/3.7GHz)x1
- o Mirco Arch: Zen3 (Millan), 7nm
- o EPYC 7643 48cores (2.3/3.6GHz) x2 planned



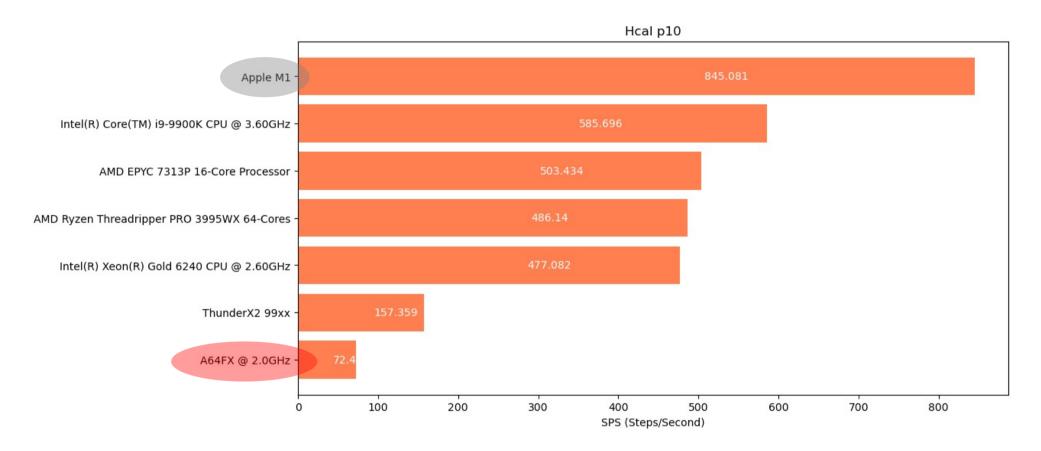
Benchmark Programs

- G4Bench (Geant4 v.10.7.p1)
 - https://github.com/koichi-murakami/g4bench
 - o 3 Tests:
 - o ECAL-e1000 : EM shower for 1GeV electron
 - HCAL-p10 : Hadron sandwich calorimeter for 10GeV proton
 - VGEO-x18/e20/p200: Water phantom voxel for
 - o X-ray (18MV Linac) / 20MeV electron / 200MeV proton
 - Observations:
 - EPS: #Events per (milli)second
 - SPS: #Steps per second: same trend with EPS
 - Edep: total energy deposit for physics regression
 - Continuous testing using GitHub Actions and Docker
 - https://hub.docker.com/repository/docker/koichimurakamik6/geant4-runtime
 - https://github.com/koichi-murakami/geant4_runtime
- Chem-Bench
 - GitHub private repository (limited access)
 - G4DNA benchmark : G-value w/ IRT (physics/chemical processes)
 - Observations: EPS (#Histories per min)



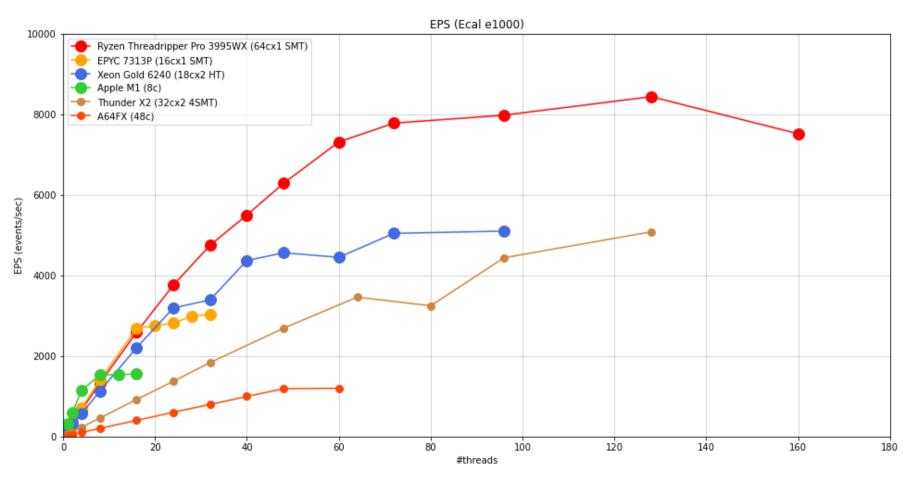
Notes on A64FX Compiler Study

For A64FX machine, we tested with 2 compilers:


- o GCC 8.3.1
- o Fujitsu compiler (v4.2.0):
 - Default options and w/ Optimization flags
- Obseved slight improvements (gcc < FC < FC-opt, 1% Δ)
- No significant differences were observed between these settings.

Single Thread Peformance (EM)

Edep: 967.048 (x86) / 967.125 (M1) / 967.374 (A64FX)


Single Thread Peformance (Hadron)

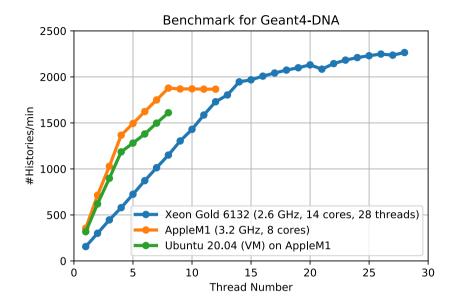
No siginificant difference is obserbed from EM.

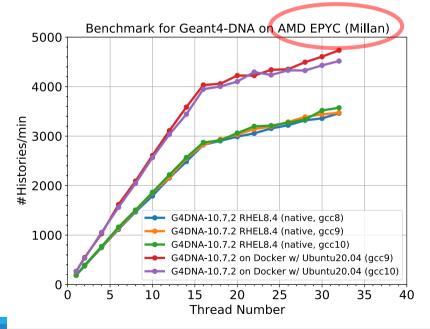
Edep: 844.723 (x86) / 844.986 (M1) / 845.345 (A64FX)

Multi-Thread Peformance (EM)

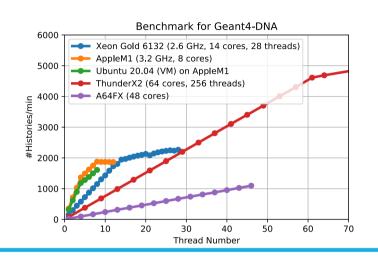
- Apple M1 has 2 types cores (4HP/4HE)
- ARM shows good linearty. (RISC characteristics)

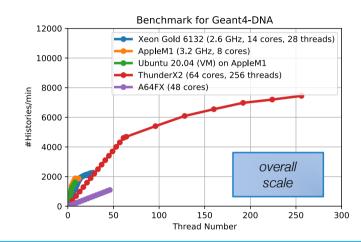
Chem-Bench results of Apple M1

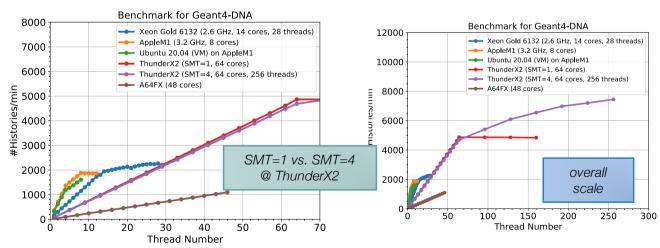

Single-thread EPS (histories/min):


Apple M1	366
Intel Xeon Gold 6132	150

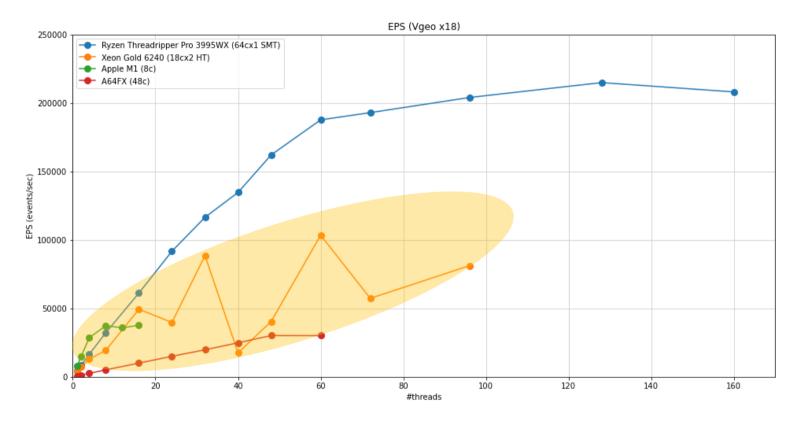
MT:


- o same tendency with G4Bench
- slight vCPU overhead for M1 (Parallles + Ubuntu)
- AMD EPYC Millan
 - x1.5 faster than Xeon Gold (Sky lake)
 - Ubuntu Docker is 30% faster??? (under investigation)
 - o Ubuntu 20.04 is faster than RH8.4 in bare metal
 - o only for Chem-Bench, no observation in G4Bench

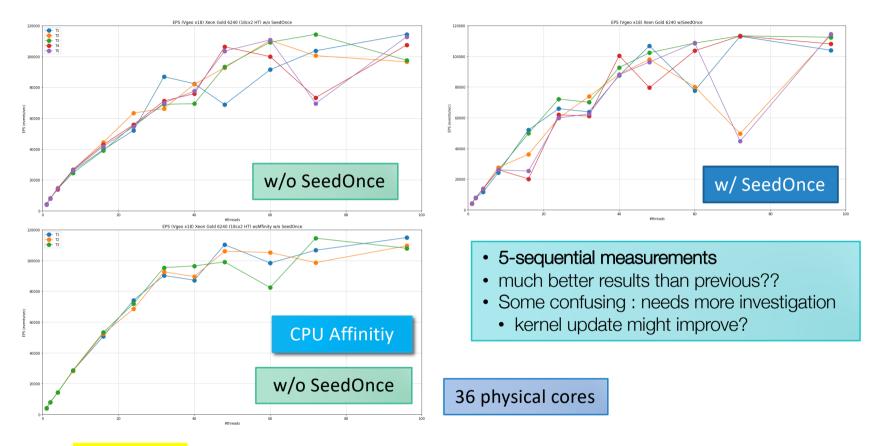

by Shogo


Chem-Bench results (2)

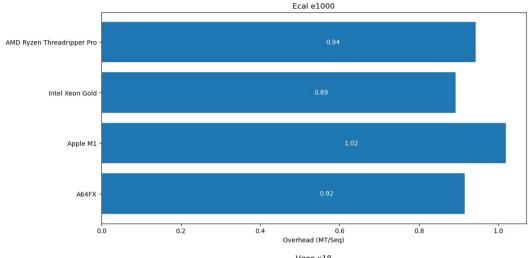
Same trend with G4Bench


- Apple M1 fastest
- A64FX worst

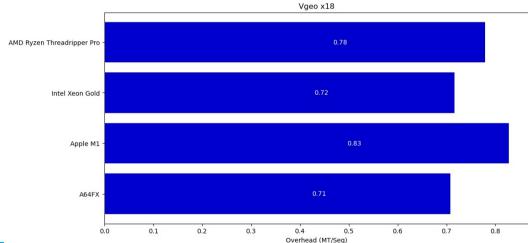
SMT effect


- SMT : Simulteneous Mutithreading
- SMT=1 is slightly better upto 64 threads.
- leveling off at 64threads for SMT=1

MT issues (Intel)

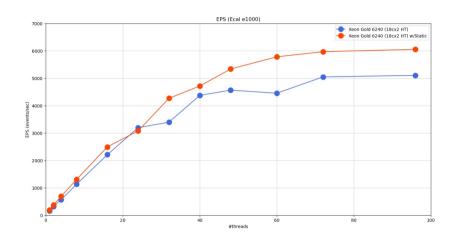

- In case of short event cycle, MT performance is quite unstable for Intel processors. (~5 events/msec)
- Other processors are ok. (AMD, ARM, Power)

MT Performance Stability Study

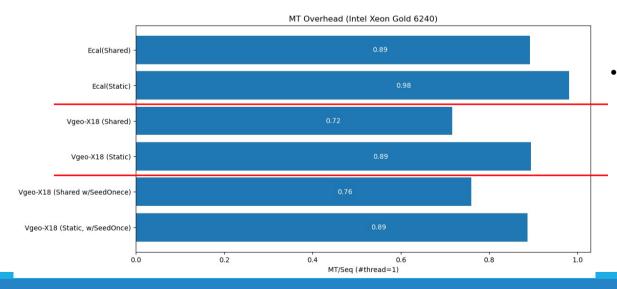


- SeedOnce = 1 is 30% faster for lower #threads<20. Still unstable for higher #threads.
- No significant difference in ECAL (w/ vs. w/o SeedOnce)
- CPU affinity setting can help.
- · Static library linking do not affect much.

MT Overhead (MT/Seq for single thread)



5-10% overhead is observed except Apple M1 for Ecal



- 20-30% overhead for short-cycle events (Vgeo)
- Apple M1 shows better numbers.

Shared vs. Static Library Linking

Static library: 10-20% better performance in general

MT event dispatch overhead is improved by using static library

Thoughts

- Apple M1 shows good performance especially on power efficiency.
 - o RISC architecture w/ more decoders enables high performance.
 - https://bit.ly/3yz5040
 - But, Apple M1 is consumer processor, not for HPC.
- A64FX performance is quite poor w/o SVE.
 - The concept of chip design is based on SVE usage.
 - o Complier optimization does not help automatic SVE usage.
 - SVE offloading -> Amdarhl's law
- Neoverse seems to rely on SVE from revealed information. (NVIDIA future plan for HPC)
- ARM in HPC in the future?

Thoughts (2)

- Using Geant4 static library linking improves perforance by 10-20%.
 - Overhead of event (thread) dispatch : 5-30% -> static linking can improve well.
- Instability of Intel processors (Xeon) for short-event cycle (5events/msec) simulation
 - SeedOnece=1 option shows better performance, but does not improve.
 - o CPU affinitive setting can help some.
 - Need more investigation
 - Latest generation CPU improves the situation? : should check for Cascade lake Xeon (Planned)
 - Meltdown/Spectre patches might affect????
 - Spin-wait loops on HT-enabled system??" -> should check for HT-disabled
 - https://software.intel.com/content/www/us/en/develop/articles/long-duration-spin-wait-loops-on-hyper-threadingtechnology-enabled-intel-processors.html

Backup

Notes on Static Library Linking

- Shared vs. Static libraries
 - Static linkage gets slight better performance.
 - o for FPS and MT overhead
- TLS mode (MT)
 - o "initial-exec" (default) is used both for share and static cases.
 - O Notes:
 - o "initial-exec" results in run-time seg-fault for full static link (use -static, static linking with system libraries)
 - o "global-dynamic" is not necessary if static linking only with G4 libs.
 - o not using `-static` option and link directly with libG4xxxx.a