

Open and new requirements: medical and bio science

26th Geant4 Collaboration Meeting 20/09/2021

Giada Petringa^{1,2}, PhD giada.petringa@eli-beams.eu

Post-Doc Fellow MSCA-IF

¹INFN-LNS, Laboratori Nazionali del Sud

²ELI-Beamlines, Institute of Physics of CAS

« Radiobiology » requirements : Geant4-DNA

Source: S. Incerti

1.Physics: more discrete & accurate (low energy) models for a variety of materials Liquid water, DNA, amino-acids, gas (micro/nanodosimetry), solid state (e.g. high Z materials for NP-aided radiotherapy)

2.Chemistry

Mesoscopic approach under development (longer times, larger volumes) compared to existing Geant4 (step by step and IRT) approaches

3. Geometry

Provide (external) files to describe geometries of biomolecules (e.g. plasmids, bacterium & cell genome)

4. Verification & validation

Continue efforts in chemistry under irradiation & radiobiology

- G-values, under variety of exp. conditions: T, pH, scavengers...
- Radiobiological damage: beyond strand-breaks towards macroscopic observables (e.g. requiring analytical repair models)

Addition of related extended and advanced examples for users

« Radiobiology » requirements : Geant4-DNA

Source: S. Incerti

5. Multiscale combination

Mixing condensed-history and discrete approaches, e.g. for radioprotection in space : cosmic spectra – space habitat – human phantom – « microscopic » & « macroscopic » biological end-effects

6.Optimization (speed & memory usage)

Faster navigation in detailed geometries

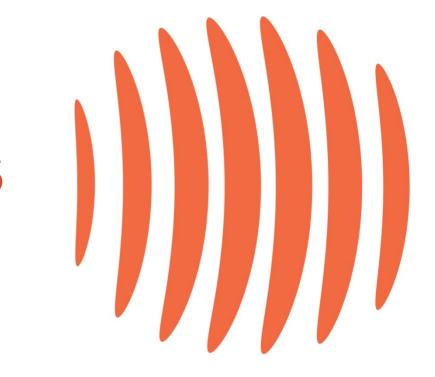
GPU porting (physics & chemistry & geometries) – see Takashi's / KEK team developments

Some of these activities are currently on-going through

the ESA BioRad III project (2021-2023): CEA (FR), CHUV (CH), G4AI Ltd. (UK), IN2P3 (FR – coord.), INFN (IT), Ioannina U. (GR), IRSN (FR), Sevilla U. (ES), Swhard (IT)

the MAGIC project (2020-2023): CHUV (CH – coord.), CENBG (FR)

collaboration with the TOPAS-nBio team



Physics

Physics: the pB nuclear fusion reaction

Source: P. Cirrone


WHAT WE ARE DOING:

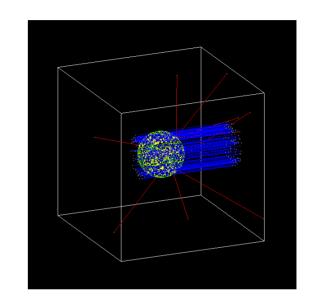
 We are realising a comparative study between all the hadronic physics models for the p+B11 -> 3 alpha reaction.

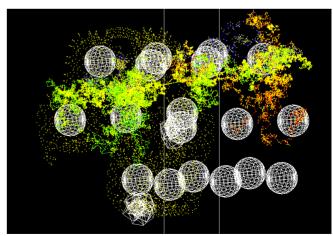
WHAT DO WE NEED:

- Extend the hadronic physics models below 1 MeV
- Improve the issue of non conservation of the baryonic number in PHP

Total cross section for alpha production

Physics: the pB nuclear fusion reaction

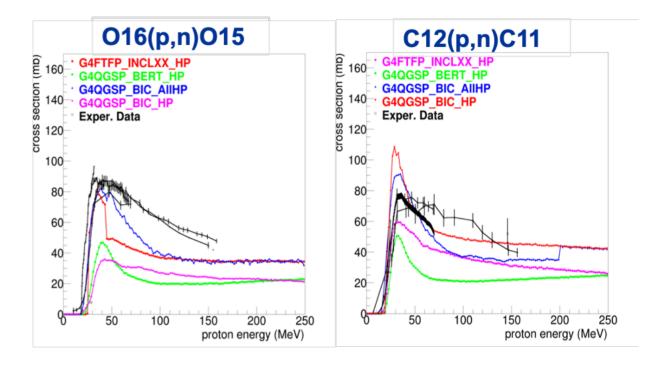

Source: P. Cirrone


WHAT WE ARE DOING:

We are trying to evaluate, at nanometric scale, DNA damage enhancement due to the p+B11 -> 3 alpha reaction.

WHAT DO WE NEED:

- Extend material coverage of Geant4-DNA beyond DNA and liquid water (i.e. include Boron)
- Include hadronic interactions in Geant4-DNA Physics Lists



Physics: Isotope production from protons

Source: P. Arce

- ❖No good Geant4 model to reproduce isotope production cross section
 - ✓ PET range studies for protontherapy
 - ✓ Design of isotope production
 - ✓ Cyclotron

•••

- ☐ IAEA has made an extensive work to cover isotope production for medical applications (https://www-nds.iaea.org/medical/)
 - > Put IAEA medical cross section into Geant4 ParticleHP database
 - 3 Not all energies covered: fit to experimental data

AtRest in Geant4 Biasing framework

Source: P. Arce

- Bremsstrahlung splitting is not optimized for gamma radiotherapy linac simulations
 - Produce many gammas not directed towards patient
- © Play Russian Roulette with those gammas not directed towards patient
- Will end having scoring particles with very different weigts → bigger statistical uncertainty
- © Treat all particles (from any interaction) so that all scoring particles have same weight (method developed in GAMOS)
- © Geant4 Biasing framework does not support AtRest (for annihilition gammas)

Request: add AtRest in Geant4 Biasing framework

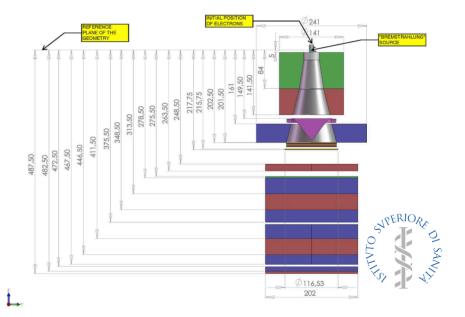
Validation

Finding reliable data for MedLinac **Advanced Example**

Source: B. Caccia

An example of reliable data to validate MedLinac advanced example

Date: 20/09/2021



Saturne 43 I NHB linac **Exercise: photons mode, 12 MV** This simple Linac and the complete dataset of the dosimetric data used for the inter comparison can help users to develop the skills needed to build and calibrate a Monte Carlo simulation and perform a dosimetric analysis.

It is not simple to have a model of a LINAC and a dosimetric data set to use for test own MC model.

EURADOS Report 2020-05: B. Caccia, V. Blideanu, M. Le Roy, H. Rabus, R. Tanner: "A model validation scheme for Monte Carlo simulations of a medical linear accelerator: geometrical description and dosimetric data used in the "Linac Action"", Neuherberg, October 2020. The Report is placed at the EURADOS SharePoint. DOI: 10.12768/9rvp-fq82

New examples

Extended Examples

To have an extended example to retrieve directly from the simulation Auger electron energy and associated atomic transition

Date: 20/09/2021

A. Mantero: update of the unit test and implementation in an extended example of Geant4 (in discussion phase)

Source: S. Guatelli

User Forum: DICOM

DICOM RT ION PLAN to GPS

Ideas and Requirements

mrxak

Jun 25

Can you provide an example of DICOM RT ION PLAN conversion to GeneralParticleSource or some reader of DICOM RT ION PLAN?

Note: I know you have a reader interface of DICOM RT PLAN implemented in /examples/extended/medical/DICOM/dicomReader/src/DicomFilePlan.cc though it's not used in the actual code of this example itself, but I'm talking of another DICOM document (https://dicom.innolitics.com/ciods/rt-ion-plan 5).

User Forum: Radiation Damage

Modelling Radiation damage in Semiconductor devices

Applications

sanchitsharma

Jul 19

Hello,

I need to model radiation damage in semiconductor devices. Does anyone here has any example that I could follow?

Thanks!

Geant4 is hard!!

- There is the idea in the medical physics community that to use Geant4 is hard.
- Personally I think that there have been many improvements to make Geant4 "easier" for novel users, but it seems not enough.
- Possible ideas:
 - A new general purpose interface as part of Geant4?
 - Develop Geant4 examples for medical physics which are easier to use, more flexible, with an extended/advanced user interface? E.g. the user needs to change parameters in input macro files only, at least for some emblematic applications.
 - Improve documentation
 - Online tutorials/videos on how to use the Extended/Advanced Examples in medical physics
 - Establish a Geant4 bio-medical user forum
- Maybe extend the activities of the G4-Med to a subset of ideas listed above

Thank you for your attention!

