
G4HepEm: a Geant4 EM physics R&D

Jonas Hahnfeld, Benjamin Morgan, Mihály Novák

Jonas Hahnfeld, Benjamin Morgan, Mihály Novák 26th Geant4 Collaboration Meeting (virtual, 22nd September 2021)

Outline

1 Main motivations, ideas in a nutshell

2 Components, structure and library organisation

3 Some of the interesting properties
Cache efficient data layout
Stateless run time library
GPU support

4 Current state: EM shower simulation capability and verification

5 The very first performance numbers

6 What’s next

Jonas Hahnfeld, Benjamin Morgan, Mihály Novák 26th Geant4 Collaboration Meeting (virtual, 22nd September 2021) 1 / 12

Contents

1 Main motivations, ideas in a nutshell

2 Components, structure and library organisation

3 Some of the interesting properties
Cache efficient data layout
Stateless run time library
GPU support

4 Current state: EM shower simulation capability and verification

5 The very first performance numbers

6 What’s next

Jonas Hahnfeld, Benjamin Morgan, Mihály Novák 26th Geant4 Collaboration Meeting (virtual, 22nd September 2021) 1 / 12

Main motivations, ideas in a nutshell Components, structure and library organisation Some of the interesting properties Current state: EM shower simulation capability and verification The very first performance numbers What’s next

G4HepEm: motivations in a nutshell
initiated by the Geant4 EM physics working group as part of looking for solutions to reduce the
computing performance bottleneck experienced by the HEP detector simulation applications
targeting the most performance critical part of the HEP detector simulation applications, i.e. the EM
shower generation covering(initially) e−/e+ and γ particle transport
the main goal is to investigate the possible computing performance benefits of

I providing alternative, highly specialised (for particle types, e−/e+, γ and HEP applications) optional
stepping loops beyond the current general one
=⇒ giving up the “unutilised“ flexibility with the hope of some performance gain

I having a very compact and efficient implementation of all the related run time functionalities required for
an EM shower simulation
=⇒ compact run time library and data layout with the hope of some performance gain

the main design principles
I separation of initialisation- and run-time functionalities =⇒ in order to have a compact run-time library
I separation of data and functionality ⇐= since data are filled at initialisation- while used at run-time

resulted in a run-time EM shower simulation library with many attractive characteristics such as the
device(GPU) side support of all related computations (utilised in AdePT) or its stateless property that,
together with its simplicity, provides an excellent domain to check many further interesting ideas
see the initial presentation or the one at the last Geant4 technical forum on G4HepEm for more details

Jonas Hahnfeld, Benjamin Morgan, Mihály Novák 26th Geant4 Collaboration Meeting (virtual, 22nd September 2021) 2 / 12

https://geant4.web.cern.ch/node/1903
https://indico.cern.ch/event/983367/contributions/4141705/attachments/2158714/3641695/MNovak_G4HepEm_SFT_RnD_8Dec_2020.pdf
https://indico.cern.ch/event/1011728/contributions/4252278/attachments/2206563/3733519/MNovak_G4HepEm_11March_2021.pdf

Contents

1 Main motivations, ideas in a nutshell

2 Components, structure and library organisation

3 Some of the interesting properties
Cache efficient data layout
Stateless run time library
GPU support

4 Current state: EM shower simulation capability and verification

5 The very first performance numbers

6 What’s next

Jonas Hahnfeld, Benjamin Morgan, Mihály Novák 26th Geant4 Collaboration Meeting (virtual, 22nd September 2021) 2 / 12

Main motivations, ideas in a nutshell Components, structure and library organisation Some of the interesting properties Current state: EM shower simulation capability and verification The very first performance numbers What’s next

G4HepEm: library structure is determined by the main goals and design
clear separation of run-time and initialisation-time functionalities:

I many information are needed at initialisation time but only a small fraction of that is used at run time

I in order to obtain as compact run-time library as possible

results in separation of the data definitions and functionalities (i.e. very often more C-style than
C++): isolated, ”single function” implementation of the run-time functionalities, acting on and
according to their input arguments (mostly primitive types with some data structures)

all these above have lots of benefits (see some soon)
G4HepEm is structured along this separation:

I G4HepEmData: definition of all data structures filled at initialisation and used at run-time
I G4HepEmInit: all initialisation time functionalities, e.g. for constructing and populating the above data

structures (based on the given application setup) relying heavily on core Geant4 functionalities
I G4HepEmRun: all run-time functionalities, e.g. for reading/(interpolating) the data structures constructed

and populated at the initialisation time, compute the step lengths and perform the physics interactions
I G4HepEm: a tiny library for connecting all the above (a G4VProcess interface implementation as well)

Jonas Hahnfeld, Benjamin Morgan, Mihály Novák 26th Geant4 Collaboration Meeting (virtual, 22nd September 2021) 3 / 12

Main motivations, ideas in a nutshell Components, structure and library organisation Some of the interesting properties Current state: EM shower simulation capability and verification The very first performance numbers What’s next

G4HepEm: library structure is determined by the main goals and design
clear separation of run-time and initialisation-time functionalities:

I many information are needed at initialisation time but only a small fraction of that is used at run time

I in order to obtain as compact run-time library as possible

results in separation of the data definitions and functionalities (i.e. very often more C-style than
C++): isolated, ”single function” implementation of the run-time functionalities, acting on and
according to their input arguments (mostly primitive types with some data structures)
all these above have lots of benefits (see some soon)
G4HepEm is structured along this separation:

I G4HepEmData: definition of all data structures filled at initialisation and used at run-time
I G4HepEmInit: all initialisation time functionalities, e.g. for constructing and populating the above data

structures (based on the given application setup) relying heavily on core Geant4 functionalities
I G4HepEmRun: all run-time functionalities, e.g. for reading/(interpolating) the data structures constructed

and populated at the initialisation time, compute the step lengths and perform the physics interactions
I G4HepEm: a tiny library for connecting all the above (a G4VProcess interface implementation as well)

Example: material description

Geant4 provides a very rich and sophisticated material description library with all the extended
properties and built in material data bases needed for a wide range of simulations

but most of these functionalities and data are actually used for the (user) material definition and at
initialisation time computations (e.g. computation of density correction in the stopping power)

only a couple of these material properties are used at run-time during the EM shower generation

therefore, a very simple data structure (with couple of double/integer fields) is perfectly sufficient to
keep all material related information needed at run-time

as a consequence, there is no any run-time dependence on the Geant4 material description library

the same is true for the element, material-cuts couple data and many more complex data

Jonas Hahnfeld, Benjamin Morgan, Mihály Novák 26th Geant4 Collaboration Meeting (virtual, 22nd September 2021) 3 / 12

Main motivations, ideas in a nutshell Components, structure and library organisation Some of the interesting properties Current state: EM shower simulation capability and verification The very first performance numbers What’s next

G4HepEm: library structure is determined by the main goals and design
clear separation of run-time and initialisation-time functionalities:

I many information are needed at initialisation time but only a small fraction of that is used at run time
I in order to obtain as compact run-time library as possible

results in separation of the data definitions and functionalities (i.e. very often more C-style than
C++): isolated, ”single function” implementation of the run-time functionalities, acting on and
according to their input arguments (mostly primitive types with some data structures)

all these above have lots of benefits (see some soon)
G4HepEm is structured along this separation:

I G4HepEmData: definition of all data structures filled at initialisation and used at run-time
I G4HepEmInit: all initialisation time functionalities, e.g. for constructing and populating the above data

structures (based on the given application setup) relying heavily on core Geant4 functionalities
I G4HepEmRun: all run-time functionalities, e.g. for reading/(interpolating) the data structures constructed

and populated at the initialisation time, compute the step lengths and perform the physics interactions
I G4HepEm: a tiny library for connecting all the above (a G4VProcess interface implementation as well)

Jonas Hahnfeld, Benjamin Morgan, Mihály Novák 26th Geant4 Collaboration Meeting (virtual, 22nd September 2021) 3 / 12

Main motivations, ideas in a nutshell Components, structure and library organisation Some of the interesting properties Current state: EM shower simulation capability and verification The very first performance numbers What’s next

G4HepEm: library structure is determined by the main goals and design
clear separation of run-time and initialisation-time functionalities:

I many information are needed at initialisation time but only a small fraction of that is used at run time
I in order to obtain as compact run-time library as possible

results in separation of the data definitions and functionalities (i.e. very often more C-style than
C++): isolated, ”single function” implementation of the run-time functionalities, acting on and
according to their input arguments (mostly primitive types with some data structures)

all these above have lots of benefits (see some soon)

G4HepEm is structured along this separation:
I G4HepEmData: definition of all data structures filled at initialisation and used at run-time
I G4HepEmInit: all initialisation time functionalities, e.g. for constructing and populating the above data

structures (based on the given application setup) relying heavily on core Geant4 functionalities
I G4HepEmRun: all run-time functionalities, e.g. for reading/(interpolating) the data structures constructed

and populated at the initialisation time, compute the step lengths and perform the physics interactions
I G4HepEm: a tiny library for connecting all the above (a G4VProcess interface implementation as well)

Jonas Hahnfeld, Benjamin Morgan, Mihály Novák 26th Geant4 Collaboration Meeting (virtual, 22nd September 2021) 3 / 12

Main motivations, ideas in a nutshell Components, structure and library organisation Some of the interesting properties Current state: EM shower simulation capability and verification The very first performance numbers What’s next

G4HepEm: library structure is determined by the main goals and design
clear separation of run-time and initialisation-time functionalities:

I many information are needed at initialisation time but only a small fraction of that is used at run time
I in order to obtain as compact run-time library as possible

results in separation of the data definitions and functionalities (i.e. very often more C-style than
C++): isolated, ”single function” implementation of the run-time functionalities, acting on and
according to their input arguments (mostly primitive types with some data structures)

all these above have lots of benefits (see some soon)
G4HepEm is structured along this separation:

I G4HepEmData: definition of all data structures filled at initialisation and used at run-time
I G4HepEmInit: all initialisation time functionalities, e.g. for constructing and populating the above data

structures (based on the given application setup) relying heavily on core Geant4 functionalities
I G4HepEmRun: all run-time functionalities, e.g. for reading/(interpolating) the data structures constructed

and populated at the initialisation time, compute the step lengths and perform the physics interactions
I G4HepEm: a tiny library for connecting all the above (a G4VProcess interface implementation as well)

G4HepEm-library

G4HepEmInit-library G4HepEmRun-library

Geant4-libraries G4HepEmData-libraryG4HepEmData-library G4CLHEP-library

Jonas Hahnfeld, Benjamin Morgan, Mihály Novák 26th Geant4 Collaboration Meeting (virtual, 22nd September 2021) 3 / 12

Contents

1 Main motivations, ideas in a nutshell

2 Components, structure and library organisation

3 Some of the interesting properties
Cache efficient data layout
Stateless run time library
GPU support

4 Current state: EM shower simulation capability and verification

5 The very first performance numbers

6 What’s next

Jonas Hahnfeld, Benjamin Morgan, Mihály Novák 26th Geant4 Collaboration Meeting (virtual, 22nd September 2021) 3 / 12

Contents

1 Main motivations, ideas in a nutshell

2 Components, structure and library organisation

3 Some of the interesting properties
Cache efficient data layout
Stateless run time library
GPU support

4 Current state: EM shower simulation capability and verification

5 The very first performance numbers

6 What’s next

Jonas Hahnfeld, Benjamin Morgan, Mihály Novák 26th Geant4 Collaboration Meeting (virtual, 22nd September 2021) 3 / 12

Main motivations, ideas in a nutshell Components, structure and library organisation Some of the interesting properties Current state: EM shower simulation capability and verification The very first performance numbers What’s next

Cache efficient data layout

Compact data structures:
data structures (defined in G4HepEmData, filled in G4HepEmInit and utilised in G4HepEmRun), were
designed driven by their run-time usage
it means that their memory layouts are determined by their access patterns

the same is true for all energy loss related data (i.e. restricted stopping power, range, inverse range) but
also for the target element selectors, etc.
the goal is to enhance data locality as much as possible, that might bring performance improvements:

I especially when a complete simulation step within the compact G4HepEmRun library
I even more if sub-sequent steps can be done
I even more when all these can be done with more than one particles simultaneously (opportunistically see

next slide)

Jonas Hahnfeld, Benjamin Morgan, Mihály Novák 26th Geant4 Collaboration Meeting (virtual, 22nd September 2021) 4 / 12

Main motivations, ideas in a nutshell Components, structure and library organisation Some of the interesting properties Current state: EM shower simulation capability and verification The very first performance numbers What’s next

Cache efficient data layout

Compact data structures:
data structures (defined in G4HepEmData, filled in G4HepEmInit and utilised in G4HepEmRun), were
designed driven by their run-time usage
it means that their memory layouts are determined by their access patterns

the same is true for all energy loss related data (i.e. restricted stopping power, range, inverse range) but
also for the target element selectors, etc.
the goal is to enhance data locality as much as possible, that might bring performance improvements:

I especially when a complete simulation step within the compact G4HepEmRun library
I even more if sub-sequent steps can be done
I even more when all these can be done with more than one particles simultaneously (opportunistically see

next slide)

Example: restricted macroscopic cross sections for e−/e+ ionisation and bremsstrahlung.

I depends on the material and secondary production threshold, i.e. on the material-cuts couple
I computed/stored at initialisation over a discrete energy grid (unique: for the couple and interaction)
I used at run-time: the inverse MFP between hard(/discrete) ionisation/bremsstrahlung events
I the run-time (spline) interpolation for a given Ekin is based on 6 discrete values: Ei ≤ Ekin < Ei+1,

Σ(Ei),Σ(Ei+1),Σ(Ei)
′′
,Σ(Ei+1)′′

I evaluated for both interactions during the simulation step in the given material-cuts couple
I all the required values are as close as possible in the memory

0 1 . . . imc imc+1 . . . K-1

The K G4HepEmMCCData material - cuts data indices

· · . . . i0 · . . . ·

HOST side Restricted Macroscopic Cross Section Data memory alignment for a G4HepEmMCCData with the index of imc

indices

the content of fResMacXSecStartIndexPerMatCut array

. . . i0 i1 i2 i3 i4 k0 k1 k2 k3 k4 k5
. . . k3M�3 k3M�2 k3M�1 j0 j1 j2 j3 j4 l0 l1 l2 l3 l4 l5 . . . l3N�3 l3N�2 l3N�1 . . .

. . . M A1 A2 A3 A4 E1 ⌃(E1) ⌃(E1)
00

E2 ⌃(E2) ⌃(E2)
00 . . . EM ⌃(EM) ⌃(EM)

00
N B1 B2 B3 B4 E1 ⌃(E1) ⌃(E1)

00
E2 ⌃(E2) ⌃(E2)

00 . . . EN ⌃(EN) ⌃(EN)
00 . . .

(M + 5) + (N + 5) Restricted Macroscopic Cross Section Data for the G4HepEmMCCData with index of imc: indices and content of the fResMacXSecData array

5 auxiliary data for ioni. 3 ⇥ M macroscopic cross section data for ioni.: k0 = i0 + 5 5 auxiliary data for brem. 3 ⇥ N macroscopic cross section data for brem.: l0 = j0 + 5

Auxiliary data:

M/N : number of discrete primary particle kinetic energy points for ioni./brem. in case of this material - cuts

A1, A2/B1, B2 : argmax{⌃(E)} and max{⌃(E)} for ioni./brem.

A3, A4/B3, B4 : log(E0) and 1/[log(EX�1/E0)/(X � 1)] for ioni.(X = M)/brem.(X = N)

Jonas Hahnfeld, Benjamin Morgan, Mihály Novák 26th Geant4 Collaboration Meeting (virtual, 22nd September 2021) 4 / 12

Main motivations, ideas in a nutshell Components, structure and library organisation Some of the interesting properties Current state: EM shower simulation capability and verification The very first performance numbers What’s next

Cache efficient data layout

Compact data structures:
data structures (defined in G4HepEmData, filled in G4HepEmInit and utilised in G4HepEmRun), were
designed driven by their run-time usage
it means that their memory layouts are determined by their access patterns
the same is true for all energy loss related data (i.e. restricted stopping power, range, inverse range) but
also for the target element selectors, etc.
the goal is to enhance data locality as much as possible, that might bring performance improvements:

I especially when a complete simulation step within the compact G4HepEmRun library
I even more if sub-sequent steps can be done
I even more when all these can be done with more than one particles simultaneously (opportunistically see

next slide)

Jonas Hahnfeld, Benjamin Morgan, Mihály Novák 26th Geant4 Collaboration Meeting (virtual, 22nd September 2021) 4 / 12

Contents

1 Main motivations, ideas in a nutshell

2 Components, structure and library organisation

3 Some of the interesting properties
Cache efficient data layout
Stateless run time library
GPU support

4 Current state: EM shower simulation capability and verification

5 The very first performance numbers

6 What’s next

Jonas Hahnfeld, Benjamin Morgan, Mihály Novák 26th Geant4 Collaboration Meeting (virtual, 22nd September 2021) 4 / 12

Main motivations, ideas in a nutshell Components, structure and library organisation Some of the interesting properties Current state: EM shower simulation capability and verification The very first performance numbers What’s next

Stateless run time library

Benefits of (opportunistic) multi particle computations:
separating run-time and initialisation time functionalities results in a very compact G4HepEmRun
library → might give performance improvements, especially when a complete simulation step can be
performed within this library
separation of data definition and functionalities → self contained, ”single-function”

implementation of most of the G4HepEmRun functionalities (e.g. all interactions, step-limit, etc.)
it means that these functions do not contain or interact with further objects and act on and
according to their input arguments (mostly primitive types with some data structures)
=⇒ G4HepEmRun library do not have any states:

I this gives the possibility in the future of e.g. popping-up more than one e−/e+ or γ tracks (from the
internal secondary stacks) and tracking them together (opportunistically, e.g. when subsequent steps can be
done within the “current safety sphere“)

Jonas Hahnfeld, Benjamin Morgan, Mihály Novák 26th Geant4 Collaboration Meeting (virtual, 22nd September 2021) 5 / 12

Contents

1 Main motivations, ideas in a nutshell

2 Components, structure and library organisation

3 Some of the interesting properties
Cache efficient data layout
Stateless run time library
GPU support

4 Current state: EM shower simulation capability and verification

5 The very first performance numbers

6 What’s next

Jonas Hahnfeld, Benjamin Morgan, Mihály Novák 26th Geant4 Collaboration Meeting (virtual, 22nd September 2021) 5 / 12

Main motivations, ideas in a nutshell Components, structure and library organisation Some of the interesting properties Current state: EM shower simulation capability and verification The very first performance numbers What’s next

GPU support

Support of device side EM shower simulation:
separating run-time and initialisation time functionalities → the G4HepEmRun library contains exactly
what is needed at run-time for the EM shower simulation (since we wanted a compact run-time libarry)
separation of data definition and functionalities → self contained, ”single-function”

implementation of most of the G4HepEmRun functionalities (e.g. all interactions, step-limit, etc.)
it means that these functions do not contain or interact with further objects and act on and
according to their input arguments (mostly primitive types with some data structures)
=⇒ implicit device side support:

I exactly the same run time functions, used on the host (i.e. CPU) side EM shower simulation, can be
invoked on the GPU as device side functions

=⇒ explicit device side support:
I all the data, required at run-time by these functions, can be transferred to the device (by a single call to a

function after the initialisation)
most of the of the run-time G4HepEm EM shower simulation functionalities can be reused, as it is, on the
device side:

I accelerates significantly the related R&D activities targeting the same EM shower simulation on GPU
(utilised in AdePT, see Andrei’s presentation last Thursday)

I no code duplications which is great for the maintenance and validation

Jonas Hahnfeld, Benjamin Morgan, Mihály Novák 26th Geant4 Collaboration Meeting (virtual, 22nd September 2021) 6 / 12

https://geant4.web.cern.ch/node/1903
https://indico.cern.ch/event/1052654/contributions/4525306/

Contents

1 Main motivations, ideas in a nutshell

2 Components, structure and library organisation

3 Some of the interesting properties
Cache efficient data layout
Stateless run time library
GPU support

4 Current state: EM shower simulation capability and verification

5 The very first performance numbers

6 What’s next

Jonas Hahnfeld, Benjamin Morgan, Mihály Novák 26th Geant4 Collaboration Meeting (virtual, 22nd September 2021) 6 / 12

Main motivations, ideas in a nutshell Components, structure and library organisation Some of the interesting properties Current state: EM shower simulation capability and verification The very first performance numbers What’s next

Physics coverage: for the very first evaluation
the core part of the physics, required for an EM shower simulation in HEP detectors, has just been
implemented (see below with all details in the documentation)
this is the essential set required for the very first performance evaluations
the remaining parts (such as energy loss fluctuation or gamma- and lepto-nuclear interactions) will be
handled in case this core part provides promising results

Jonas Hahnfeld, Benjamin Morgan, Mihály Novák 26th Geant4 Collaboration Meeting (virtual, 22nd September 2021) 7 / 12

https://g4hepem.readthedocs.io/en/latest/IntroAndInstall/introduction.html#physics-modelling-capability

Main motivations, ideas in a nutshell Components, structure and library organisation Some of the interesting properties Current state: EM shower simulation capability and verification The very first performance numbers What’s next

-0.2

-0.1

 0

 0.1

1 5 10 15 20 25 30 35 40 45 50

R
el

.
er

r.
 [

%
]

Layer index

 0

 50

 100

 150

 200

 250

 300

 350

Simplified sampling calorimeter: 50 layers of [2.3 mm PbWO4 + 5.7 mm lAr]

N = 10
6
 e

-
, E0 = 10 [GeV]

(/process/em/applyCuts true)

M
ea

n
 E

n
er

g
y
 D

ep
o
si

t
[M

eV
]

G4-Native EM
G4HepEm

/process/em/applyCuts true: mean number of secondary e− is reduced by ∼ 80 % (charged steps by ∼ 25 %)!

Jonas Hahnfeld, Benjamin Morgan, Mihály Novák 26th Geant4 Collaboration Meeting (virtual, 22nd September 2021) 8 / 12

Contents

1 Main motivations, ideas in a nutshell

2 Components, structure and library organisation

3 Some of the interesting properties
Cache efficient data layout
Stateless run time library
GPU support

4 Current state: EM shower simulation capability and verification

5 The very first performance numbers

6 What’s next

Jonas Hahnfeld, Benjamin Morgan, Mihály Novák 26th Geant4 Collaboration Meeting (virtual, 22nd September 2021) 8 / 12

Main motivations, ideas in a nutshell Components, structure and library organisation Some of the interesting properties Current state: EM shower simulation capability and verification The very first performance numbers What’s next

Configurations and notations:
G4HepEm build: dynamic and it is still not optimised, e.g. the standard mathematical functions are used
instead of the optimised versions of Geant4
Geant4 build: master with static libraries; -DGEANT4 BUILD STORE TRAJECTORY=OFF and
-DGEANT4 BUILD VERBOSE CODE=OFF; on AMD Ryzen 9 3900
hardware: 12 core AMD Ryzen 9 3900

application TestEm3: 10 [GeV] e− in a simplified sampling calorimeter with 50 layers of 2.3 [mm] PbWO4
and 5.7 [mm] liquid-Ar using the default EM settings (e.g. /process/em/applyCuts false)
=⇒ pure EM shower simulation
application cms2018: CMS geometry with gg2ttbar events with physics settings similar to CMSSW,
including hadronic physics, gamma-lepto-nuclear processes, a propagation in constant field and
optimisations such as /process/em/applyCuts true
=⇒ close to production settings with its realistic EM fraction

results Physics List: using the usual physics list interface, i.e. the general stepping loop, either with
G4NativeEm processes or G4HepEm
results Specialised Tracking: using a specialised stepping/tracking loop implementation, i.e. NOT
the general stepping loop, either with G4NativeEm processes or G4HepEm

Jonas Hahnfeld, Benjamin Morgan, Mihály Novák 26th Geant4 Collaboration Meeting (virtual, 22nd September 2021) 9 / 12

Main motivations, ideas in a nutshell Components, structure and library organisation Some of the interesting properties Current state: EM shower simulation capability and verification The very first performance numbers What’s next

Setup: TestEm3, 100k e−, 10 GeV, 24 threads on AMD Ryzen 9 3900 (default EM settings)

Physics List Specialised Tracking difference
G4NativeEm 500 s 426 s -14.8 %
G4HepEm 459 s 373 s -18.7 %
difference -8.2 % -12.4 % -25.4 %

Setup: cms2018, 1000x the same gg2ttbar event, 24 threads on AMD Ryzen 9 3900 (optimised EM)

Physics List Specialised Tracking difference
G4NativeEm 2889 s 2747 s -4.9 %
G4HepEm 2847 s 2660 s -6.6 %
difference -1.5 % -3.2 % -7.9 %

Note: significant performance gain due to the specialised tracking of e−/e+ and γ even already using
Geant4 native processes that is boosted further with G4HepEm (even in its current, preliminary phase)

Jonas Hahnfeld, Benjamin Morgan, Mihály Novák 26th Geant4 Collaboration Meeting (virtual, 22nd September 2021) 10 / 12

Main motivations, ideas in a nutshell Components, structure and library organisation Some of the interesting properties Current state: EM shower simulation capability and verification The very first performance numbers What’s next

Using native Geant4 processes with a single thread. The minimum time of three runs are reported.

setup Physics List Specialised Tracking difference
TestEm3, 1000 e−, 10 GeV 65.99 s 57.40 s -13.02 %
plus magnetic field, Bz = 1T 78.45 s 71.59 s -8.74 %
cms2018, one gg2ttbar event∗ 42.35 s 40.29 s -4.85 %

Note: significant performance gain due to the specialised tracking of e−/e+ and γ even already using
Geant4 native processes while obtaining numerically identical results!

Both the specialised tracking/stepping and G4HepEm (already in its current state) provides significant
performance improvements! How do we provide the possibility of implementing these
specialised/external tracking? See the discussion on the G4VTrackingManager last Tuesday.

Jonas Hahnfeld, Benjamin Morgan, Mihály Novák 26th Geant4 Collaboration Meeting (virtual, 22nd September 2021) 11 / 12

https://indico.cern.ch/event/1052654/contributions/4524767/

Main motivations, ideas in a nutshell Components, structure and library organisation Some of the interesting properties Current state: EM shower simulation capability and verification The very first performance numbers What’s next

Using native Geant4 processes with a single thread. The minimum time of three runs are reported.

setup Physics List Specialised Tracking difference
TestEm3, 1000 e−, 10 GeV 65.99 s 57.40 s -13.02 %
plus magnetic field, Bz = 1T 78.45 s 71.59 s -8.74 %
cms2018, one gg2ttbar event∗ 42.35 s 40.29 s -4.85 %

Note: significant performance gain due to the specialised tracking of e−/e+ and γ even already using
Geant4 native processes while obtaining numerically identical results!

Both the specialised tracking/stepping and G4HepEm (already in its current state) provides significant
performance improvements! How do we provide the possibility of implementing these
specialised/external tracking? See the discussion on the G4VTrackingManager last Tuesday.

Jonas Hahnfeld, Benjamin Morgan, Mihály Novák 26th Geant4 Collaboration Meeting (virtual, 22nd September 2021) 11 / 12

https://indico.cern.ch/event/1052654/contributions/4524767/

Contents

1 Main motivations, ideas in a nutshell

2 Components, structure and library organisation

3 Some of the interesting properties
Cache efficient data layout
Stateless run time library
GPU support

4 Current state: EM shower simulation capability and verification

5 The very first performance numbers

6 What’s next

Jonas Hahnfeld, Benjamin Morgan, Mihály Novák 26th Geant4 Collaboration Meeting (virtual, 22nd September 2021) 11 / 12

Main motivations, ideas in a nutshell Components, structure and library organisation Some of the interesting properties Current state: EM shower simulation capability and verification The very first performance numbers What’s next

What’s next?
while these results are definitely promising, keep in mind that these are just the very first results right
after the verification

I some obvious but important optimisations still need to be done together with a clean-up
I some of the current functionalities should reach their final form before moving further

hopefully the discussion, started last Tuesday on how to provide the possibility to plug-in the
specialised stepping loop and G4HepEm into a Geant4 application, will converge soon and the
possibility will be provided by version 11.0.
these are the main items till the next point where:

I we might show even more attractive performance gain
I detailed performance analysis regarding their origin
I some important decisions can be made regarding the future
I a detailed list of the further interesting ideas (multi-particle tracking, general process like optimisations,

etc.) and the functionalities missing for production (fluctuation, gamma-nuclear interactions, etc.)

experiments already show some interest: we already had a meeting with our ATLAS colleagues who
would be happy to provide us feedbacks and we will keep working with Vladimir to make sure that all the
functionalities that are required by CMS and ATALS in production are provided
still a long way to go, but rather encouraging results form the first evaluations

Jonas Hahnfeld, Benjamin Morgan, Mihály Novák 26th Geant4 Collaboration Meeting (virtual, 22nd September 2021) 12 / 12

https://indico.cern.ch/event/1052654/contributions/4524767/

	Main motivations, ideas in a nutshell
	Components, structure and library organisation
	Some of the interesting properties
	Cache efficient data layout
	Stateless run time library
	GPU support

	Current state: EM shower simulation capability and verification
	The very first performance numbers
	What's next

