
Updates in optical physics

Daren Sawkey

Geant4 Collaboration Meeting

Sept 22, 2021

Summary

 Usability enhancements

 Some changes to user code required

 Some redundant functionality removed

 Small speedups

 Not on scale helpful to FNAL

 Examples with detection (wls) and gdml (OpNovice) working

Usability

Use optical physics like this:

auto physicsList = new FTFP_BERT;

auto opticalPhysics = new G4OpticalPhysics();

auto opticalParams =

G4OpticalParameters::Instance();

opticalParams->SetBoundaryInvokeSD(true);

physicsList->RegisterPhysics(opticalPhysics);

runManager->SetUserInitialization(physicsList);

Use pre-packaged physics list in

most cases

User-defined parameters live

here. Modelled after

G4EmParameters

See the examples

WLS example
(wave length shifting)

 Added vis attributes

 Bug fixes

 WLS fibre is built!

 Switched to

G4OpBoundary::invokeSD

 SD detects optical photons

 So does UserSteppingAction

 Add some histograms

detectio

n

Scintillator -> WLS fibre -> detector

Now it works!

OpNovice example with GDML

 <matrix coldim="2" name="REFLECTIVITY"

values="2.034*eV 0.3 4.136*eV 0.5"/>

 Option to read detector, including material properties, from

GDML

 (by Hans Wenzel)

 Otherwise the same as regular OpNovice

Specifying material properties

 Use vectors

 Run-time check that the vector of energies is the same length as the vector of values

 C arrays still work

 But no protection against out-of-bounds reads

std::vector<G4double> energy = {

2.00 * eV, 2.03 * eV, 2.06 * eV, 2.09 * eV, 2.12 * eV, 2.15 * eV, 2.18 * eV,

...

3.26 * eV, 3.29 * eV, 3.32 * eV, 3.35 * eV, 3.38 * eV, 3.41 * eV, 3.44 * eV

};

std::vector<G4double> emissionFib = {

0.05, 0.10, 0.30, 0.50, 0.75, 1.00, 1.50, 1.85, 2.30, 2.75,

...

0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00

};

auto mptWLSfiber = new G4MaterialPropertiesTable();

mptWLSfiber->AddProperty("WLSCOMPONENT", energy, emissionFib);

Scintillation material properties
Change required in user code

 The “enhanced” time constant properties of 10.7 is now the only method of specifying

scintillation properties

 Reduced need to build custom physics lists

 3 time constants, and particle-dependent yields with > 1 time constant

 Change to user code required if there is a material property with “FAST” or “SLOW” in its name

 In most cases simply rename the material properties

 FAST/SLOW -> 1/2/3

 Documented in Book for Application Developers already in 10.7

Pre-defined optical material parameters

 Include MaterialProperties in the Geant4 distribution

 Ideally users shouldn’t have to define their own properties for standard/uninteresting materials

 Use them as:

 So far, refractive indices for air, water, PMMA, fused silica

 Liquid argon to come (thanks to Hans Wenzel)

 Please, send your favourite values

 Or add to materials/include/G4OpticalMaterialProperties.hh

 Make sure the source license permits it

fiberProperty->AddProperty("RINDEX", "PMMA");

Creating new material property name
Change required in user code

 Previously, users had the “RIDNEX” problem

 Thanks to Mike Kelsey for the name

 This compiles and runs fine but no Cerenkov photons are produced:

 Now it is a run-time error

 If you do want to define a new property:

auto mpt = new G4MaterialPropertiesTable();

mpt->AddProperty("RIDNEX", energies, refractiveIndex);

mpt->AddProperty("myProperty", energies, someValues, true);

Removal of some duplicated UI commands
Change required in user code

 If your command has “defaults” in it, remove “defaults”

 /process/optical/defaults/scintillation/setFiniteRiseTime

 becomes

 /process/optical/scintillation/setFiniteRiseTime

 /process/optical/setTrackSecondariesFirst Cerenkov

 becomes

 /process/optical/cerenkov/setTrackSecondariesFirst

 Same for scintillation

Both sets of commands exist in 10.7 and previous. Keep only 1 in 11.0

Scintillation by particle type

 Currently, need to specify absolute (not differential) yield for all particles

 Electron, proton, deuteron, triton, alpha, ion

 Often not interested or not known

 Proposal by Nate MacFadden to allow specifying a default differential yield for remaining

particles

 Seems fine; not yet implemented

 However scintillation by particle type still seems quite complicated.

 Any ideas on how to improve it?

Bug fixes

 Protection against small Cerenkov steps not advancing primary (1992)

 Davis look-up table (G4OpBoundary) out of bounds read (2287)

 Scintillation not occuring for neutral particles (2372)

 Recalculate group velocity if RINDEX modified (2313)

 RealSurface data sets zlib-compressed (2241)

 800 MB to 127 MB

Speed-ups

 100x speed-up wanted by experiments not going to come about by incremental improvement

 Need something else:

 See e.g. H. Wenzel talk on Opticks integration (GPU)

 https://indico.cern.ch/event/1052654/contributions/4525304/

Material properties map becomes vector

 Previously material properties stored as

 std::map<G4int, G4MaterialPropertyVector*>

 Similarly for material constant properties

 In 11.0, move to std::vector<G4MaterialPropertyVector*>

 Access value internally with vector.at(int) instead of map.find(int)

 1-3% speed improvement (OpNovice2/electron.mac with O3 optimization)

 No changes for user

Summary

 Usability enhancements

 Some changes to user code required

 Some redundant functionality removed

 Small speedups

 Not on scale helpful to FNAL

 Examples with detection (wls) and gdml (OpNovice) working

