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Introduction



Physics cases
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Jet flavor identification is mandatory for several physics cases

● b-ƃ charge asymmetry, interesting for New Physics searches

● identification of Higgs boson decaying to:
○ bƃ di-jets (observed @ ATLAS & CMS)
○ cc di-jets (not yet observed)

● Final states detected by the experiment → jets
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ATLAS-CONF-2021-021

http://cdsweb.cern.ch/record/2771724/files/ATLAS-CONF-2021-021.pdf


b-jet tagging @ LHCb
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@ LHC is fundamental to identify the flavour of the quark originating the jet → jet tagging

In particular @ LHCb we are interested in 
studying jets generated by b and ƃ quarks

b-jet tagging

“Jets are streams of particles produced by QCD 
processes in proton-proton collisions”
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b-jet (classical) tagging methods
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There are two possible approaches to achieve b-jet tagging: exclusive and inclusive algorithms

exclusive algorithms use information from a specific 
process to infer the quark flavour

inclusive algorithms use information from the whole 
jet substructure

Machine Learning (ML) algorithms 
such as Deep Neural Networks (DNN) 

muon tagging: a 𝜇 coming from the b (or b-bar) 
semileptonic decay (P =10%) is used to tag the jet

(𝜇 and b charges are correlated)
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QML for b-jet tagging



Dataset

LHCb simulation of di-jet generated by b and ƃ quarks @ Ecm = 13 TeV (Run 2 condition) 
~ 700.000 jets (60% training, 40% testing & evaluation)
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jet

particle

pT,rel
Δr

Inside each jet we consider 5 types of particles

and for each type we select 3 variables:
● pT,rel: transverse momentum relative to the jet axis
● Δr: distance relative to jet axis
● q: charge of the particle
+ 1 global variable → total jet charge 

muon     electron     pion     kaon     proton

16 input 
variables

LHCb Open Data

𝜇 e
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two datasets have been considered in this study:
● “muon dataset”: only muon features + total jet charge (4 features)
● “complete dataset”: all 16 features
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https://opendata.cern.ch/record/4910


“New” approach: going to quantum

classification problem = Variational Quantum Classifier

● data are fed into variational 
quantum circuit 

● measurements of qubits are 
mapped to probabilities for 
labels

● probabilities are used to 
estimate a cost function 
which is optimized through 
a classical optimizer
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● several quantum circuits geometries have been studied (more in the backup)
● quantum circuits are simulated with noiseless simulators, using PennyLane libraries 
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https://pennylane.ai/


Training procedure
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Measurement

b jets

ƃ jets

● cross-entropy

● ADAM optimizer
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Probability distribution and tagging power
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The figure of merit for this task is the tagging power

“efficiency” “mistag”

P

A
U

b jets

ƃ jets

in the following no optimization of the tagging 
power has been performed
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Results and 
future perspectives



Tagging power on the muon dataset

Classical ML and Quantum ML show equal 
performance within the uncertainty
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Quantum
Classical

● DNN and QML are trained and tested on the same 
number of events

● Angle Embedding is used as quantum circuit
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Tagging power on the complete dataset

The DNN shows better performance with 
respect to all quantum models (1-2 % better)
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Quantum

Classical

● QML algorithms are trained on 1/50th 
of events w.r.t. DNN

● testing is performed on the same 
number of events
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Tests on noisy simulators

● Up to now everything was done using noiseless simulators
● qiskit.aer  allows to simulate noise of a specific device:

● computational cost is demanding
● up to now training on 1000 events with muon (a.k.a. “muon dataset”)
● took ~ 30 h to train and validate on 5 CPU cores for 50 epochs

noise_model = NoiseModel.from_backend(provider.get_backend('ibmq_'+city))

future 
perspectives
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no clear difference 
when considering 

noise!

going to more qubits 
and different 
geometries
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the main idea is to exploit the quantum properties of the circuits 
to measure correlations between qubits (see https://doi.org/10.1038/s41534-021-00443-w)

● understand which features are important for the classification
● select only the relevant features and check classification performance

● possibly have a better understanding of jet physics!

Search for correlations
future 

perspectives
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https://doi.org/10.1038/s41534-021-00443-w


Conclusions

● Jet flavor identification is mandatory for several physics cases:
○ charge asymmetry for b- and c-jets
○ identification of Higgs boson decaying to b and c di-jets

● LHCb could play an interesting role in studying jet tagging with QML
● Results obtained so far show that it’s possible to apply QML to jet tagging:

○ for the muon dataset performance between DNN and QML are comparable
○ for the complete dataset the DNN performs slightly better than QML

● Still room for improvement and for new studies:
○ noisy simulation
○ correlations between variables
○ (hardware application)
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Thank you for your 
attention!



Backup slides



ROC curves for complete dataset

● for the muon dataset, DNN and Angle 
embedding performance are comparable

● for the complete dataset the DNN performs 
slightly better than the Amplitude encoding
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Circuit geometries
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Angle
Embedding

Amplitude
Encoding



Circuit geometries

VQC with “Tree-Topology”
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Data re-uploading



DNN structure
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LHCb
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LHCb is a forward spectrometer designed to study flavour physics

● complementary phase-space region 
w.r.t. ATLAS & CMS

● excellent vertex reconstruction
● excellent Particle Identification (PID)
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Forward-central asymmetry estimation

QML DNN

No Biases No Biases
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Run 2 statistical uncertainty on the FC asymmetry

on the complete dataset the 
classical DNN shows better 

performance w.r.t. QML
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