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b-b charge asymmetry, interesting for New Physics searches
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Physics cases

identification of Higgs boson decaying to:

o

(@]

bb di-jets (observed @ ATLAS & CMS)
cc di-jets (not yet observed)

Final states detected by the experiment — jets
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Jet flavor identification is mandatory for several physics cases
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b-jet tagging @ LHCb

@ LHC is fundamental to identify the flavour of the quark originating the jet — jet tagging
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“Jets are streams of particles produced by QCD In particular @ LHCb we are interested in
processes in proton-proton collisions” studying jets generated by b and b quarks

b-jet tagging
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b-jet (classical) tagging methods

There are two possible approaches to achieve b-jet tagging: exclusive and inclusive algorithms

inclusive algorithms use information from the whole

jet substructure

Machine Learning (ML) algorithms
such as Deep Neural Networks (DNN)

exclusive algorithms use information from a specific

process to infer the quark flavour

muon tagging: a © coming from the b (or b-bar)
emileptonic decay (P =10%) is used to tag the jet
(u and b charges are correlated)
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LHCb Open Data

Dataset

LHCb simulation of di-jet generated by b and b quarks @ E__ = 13 TeV (Run 2 condition)
~ 700.000 jets (60% training, 40% testing & evaluation)

4

/// Inside each jet we consider 5 types of particles
muon electron pion kaon proton

and for each type we select 3 variables:

e p. . transverse momentum relative to the jet axis ]

e Ar: distance relative to jet axis 16 input
e q:charge of the particle variables
+ 1 global variable — total jet charge

two datasets have been considered in this study:
e “muon dataset”: only muon features + total jet charge (4 features)
e “complete dataset”: all 16 features



https://opendata.cern.ch/record/4910
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“New” approach: going to quantum

|
classification problem = Variational Quantum Classifier
Quantum Classical
| : Output . e dataare fed into variational
— Al _:_ f(x; ) ; quantum circuit
STt = 1] l I e measurements of qubits are
. I 1 | efeg e
preparation - U0 H4 o _— | mapped to probabilities for
x - |x) : : Ely - f(x; 01 | labels
UCx; 6) - ! "1 e probabilities are used to
— — A : I ; estimate a cost function
pdate C - ..
F—— k1 it : which is optlmlzgd through
e '____/_u a classical optimizer

e several quantum circuits geometries have been studied (more in the backup)
e qguantum circuits are simulated with noiseless simulators, using PennylLane libraries
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Input data

accuracy

Training procedure

Measurement
lbjets
QUANTUM s Tagging probabilities
CIRCUIT p, M+l
2
B=1-Fh
Optimization
. _ L1 o,
. cross-entropy cE(,) ¥ %;etie%}pz log ¢;
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Probability distribution and tagging power

The figure of merit for this task is the tagging power

.bjets

b jets
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rag = eff g
/ N

wrong

tagged

“efficiency” “mistag”

in the following no optimization of the tagging

power has been performed
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e DNNand QML are trained and tested on the same
number of events

e Angle Embedding is used as quantum circuit

Model Nfeat. Npar
Angle Embedd. 4 48
DNN 4 181931
Muon Tagging 1 N.D.

Classical ML and Quantum ML show equal
performance within the uncertainty
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QML algorithms are trained on 1/50th
of events w.r.t. DNN

testing is performed on the same
number of events

Model Nfeat. Npar
Amplitude Embedd. 16 72
Data re-uploading 16 216
Tree-topology 8 104
DNN 16 163 307

The DNN shows better performance with
respect to all guantum models (1-2 % better)
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future

Tests on noisy simulators perspectives
|

Up to now everything was done using noiseless simulators
giskit.aer allows to simulate noise of a specific device:

noise model = NoiseModel.from backend(provider.get backend('ibmg '+city))

computational cost is demanding
up to now training on 1000 events with muon (a.k.a. “muon dataset”)

took ~ 30 h to train and validate on 5 CPU cores for 50 epochs no clear difference
om0, g when considering
§ 0.700 g nOise!
\‘ 9
osso | going to more qubits
osol? and different
40.0 epOCh geometl‘ies

200 w00 epoch 0.00 200
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future

Search for correlations perspectives

the main idea is to exploit the quantum properties of the circuits
to measure correlations between qubits (see https://doi.org/10.1038/s41534-021-00443-w)
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possibly have a better understanding of jet physics! > =
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Conclusions

Jet flavor identification is mandatory for several physics cases:
o charge asymmetry for b- and c-jets
o identification of Higgs boson decaying to b and c di-jets
LHCb could play an interesting role in studying jet tagging with QML
Results obtained so far show that it’s possible to apply QML to jet tagging:
o for the muon dataset performance between DNN and QML are comparable
o for the complete dataset the DNN performs slightly better than QML

Still room for improvement and for new studies:
o noisy simulation
o correlations between variables
o (hardware application)
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True Positive Rate

ROC curves for complete dataset
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Circuit geometries
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Circuit geometries

VQC with “Tree-Topology” Data re-uploading

x L repetitions
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DNN structure
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Magnet

LHCb

LHCb is a Forward spectrometer designed to study flavour physics

e complementary phase-space region
w.r.t. ATLAS & CMS

e excellent vertex reconstruction

e excellent Particle Identification (PID)
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. Forward-central asymmetry estimation
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Run 2 statistical uncertainty on the FC asymmetry
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