

First implementation of Quantum Machine Learning for b-jet tagging at LHCb

IEEE Quantum Week 2021 Workshop: Quantum Computing for High Energy Physics 21 October 2021 (online)

Alessio Gianelle, Davide Nicotra, Donatella Lucchesi, Lorenzo Sestini, Davide Zuliani*

*for questions and comments: davide.zuliani@cern.ch

Outline

Introduction

QML for b-jet tagging

Results and future perspectives

Introduction

Physics cases

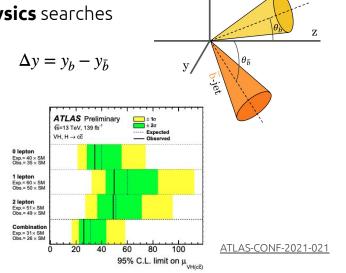
Jet flavor identification is mandatory for several physics cases

b-5 charge asymmetry, interesting for **New Physics** searches

$$A_C^{b\bar{b}} = \frac{N(\Delta y > 0) - N(\Delta y < 0)}{N(\Delta y > 0) + N(\Delta y < 0)}$$

$$\Delta y = y_b - y_{\bar{b}}$$

- identification of Higgs boson decaying to: •
 - bb di-jets (observed @ ATLAS & CMS) 0
 - cc di-jets (not yet observed) 0
- Final states detected by the experiment \rightarrow **jets**

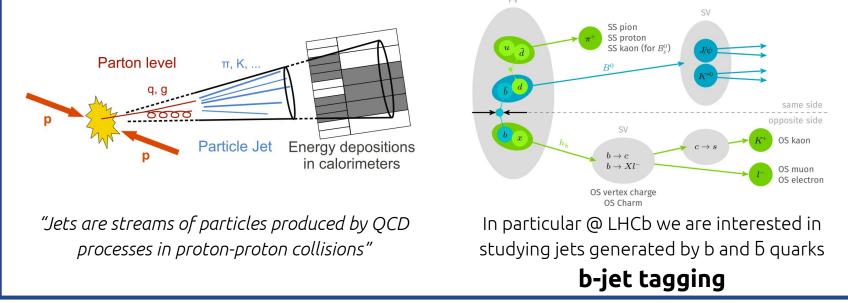


viet.

x

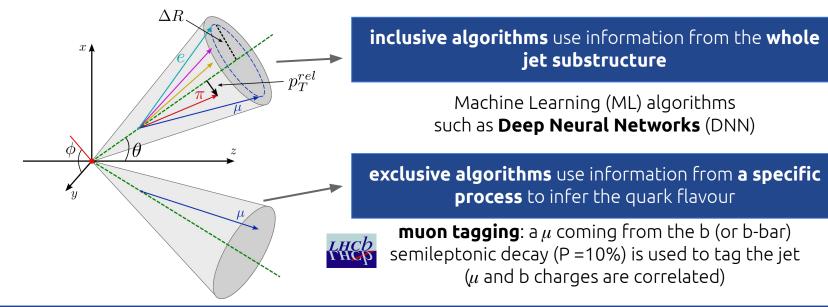
b-jet tagging @ LHCb

@ LHC is **fundamental** to identify the **flavour** of the quark originating the jet \rightarrow **jet tagging**

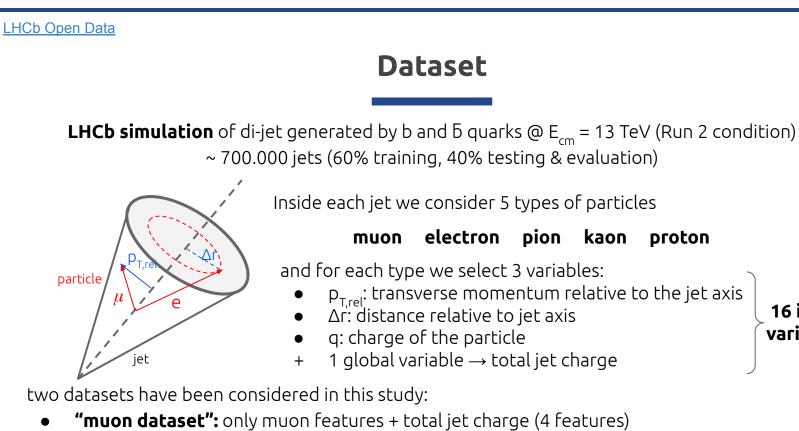


b-jet (classical) tagging methods

There are two possible approaches to achieve b-jet tagging: **exclusive** and **inclusive** algorithms



QML for b-jet tagging

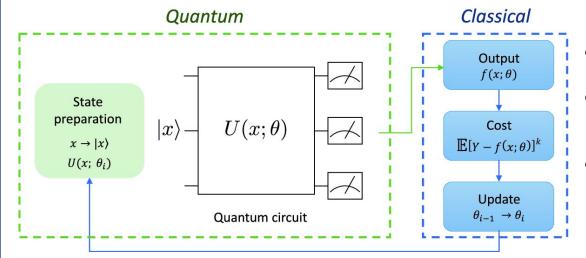


• "complete dataset": all 16 features

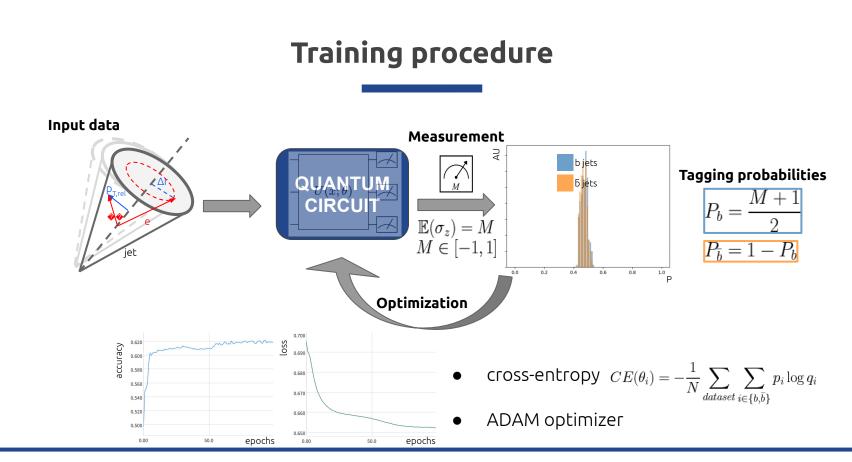
16 input

variables

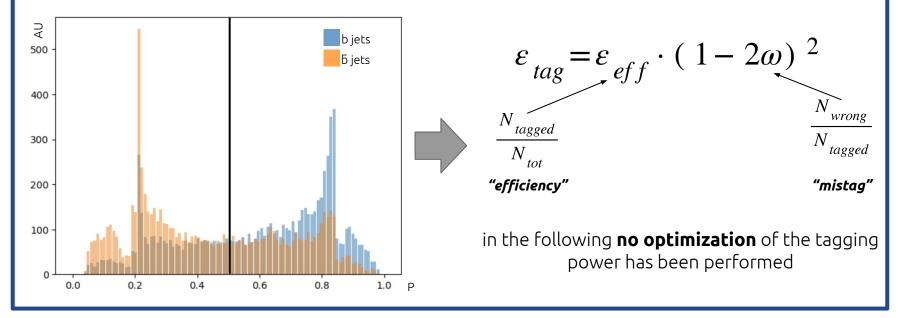
"New" approach: going to quantum



- data are fed into variational quantum circuit
- measurements of qubits are mapped to probabilities for labels
- probabilities are used to estimate a cost function which is optimized through a classical optimizer
- several quantum circuits geometries have been studied (more in the backup)
- quantum circuits are simulated with **noiseless simulators**, using <u>PennyLane</u> libraries

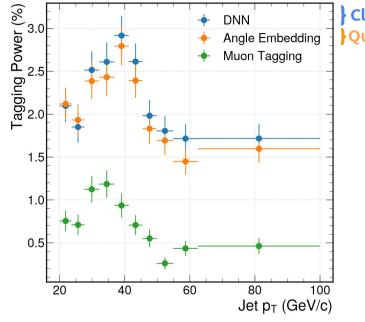


The figure of merit for this task is the tagging power



Results and future perspectives

Tagging power on the muon dataset



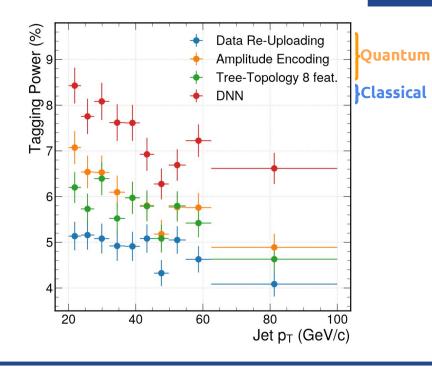
Classical

- DNN and QML are trained and tested on the same number of events
- Angle Embedding is used as quantum circuit

Model	$N_{feat.}$	$\mathbf{N}_{\mathbf{par}}$
Angle Embedd.	4	48
DNN	4	181931
Muon Tagging	1	N.D.

Classical ML and Quantum ML show **equal performance within the uncertainty**

Tagging power on the complete dataset



- QML algorithms are trained on 1/50th of events w.r.t. DNN
- testing is performed on the same number of events

Model	$N_{feat.}$	$\mathbf{N}_{\mathbf{par}}$
Amplitude Embedd.	16	72
Data re-uploading	16	216
Tree-topology	8	104
DNN	16	163307

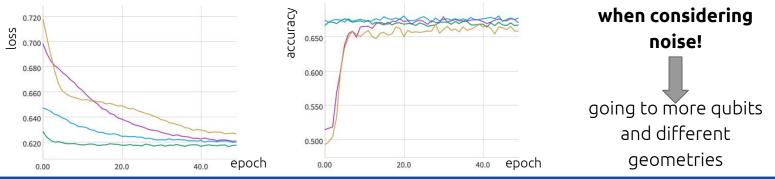
The DNN shows better performance with respect to all quantum models (1-2 % better)

no clear difference

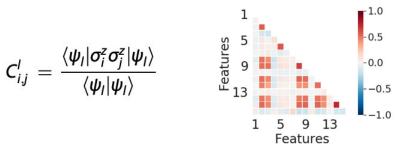
- Up to now everything was done using **noiseless** simulators
- qiskit.aer allows to simulate noise of a specific device:

noise_model = NoiseModel.from_backend(provider.get_backend('ibmq_'+city))

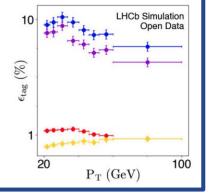
- computational cost is demanding
- up to now training on 1000 events with muon (a.k.a. "muon dataset")
- took ~ 30 h to train and validate on 5 CPU cores for 50 epochs



the main idea is to exploit the quantum properties of the circuits to measure correlations between qubits (see <u>https://doi.org/10.1038/s41534-021-00443-w</u>)



- understand which features are important for the classification
- select only the relevant features and check classification performance
- possibly have a better understanding of jet physics!



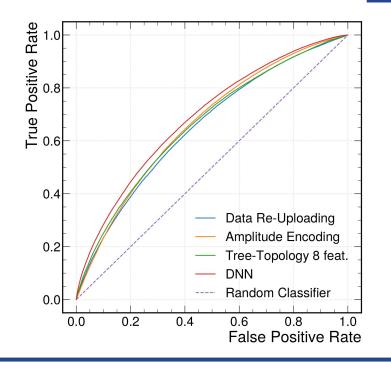
Conclusions

- Jet flavor identification is mandatory for several physics cases:
 - charge asymmetry for b- and c-jets
 - identification of Higgs boson decaying to b and c di-jets
- LHCb could play an interesting role in studying jet tagging with QML
- Results obtained so far show that **it's possible to apply QML to jet tagging**:
 - for the muon dataset **performance between DNN and QML are comparable**
 - for the complete dataset the DNN performs slightly better than QML
- Still room for improvement and for **new studies**:
 - noisy simulation
 - correlations between variables
 - (hardware application)

Thank you for your attention!

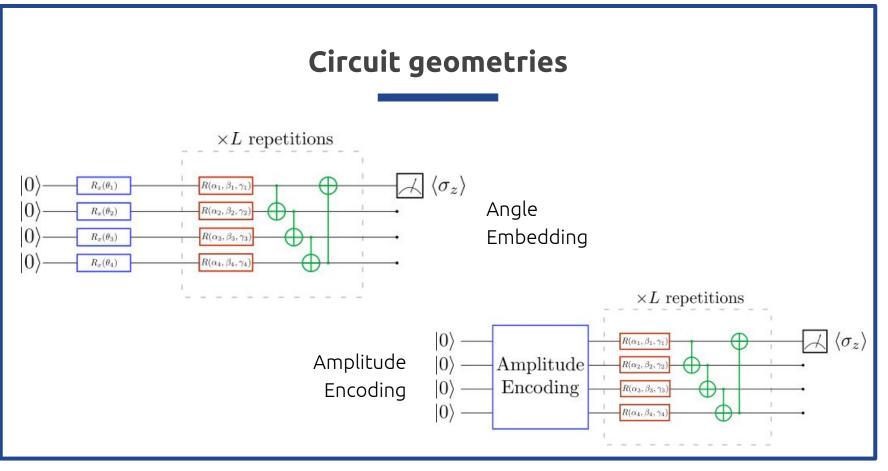
Backup slides

ROC curves for complete dataset

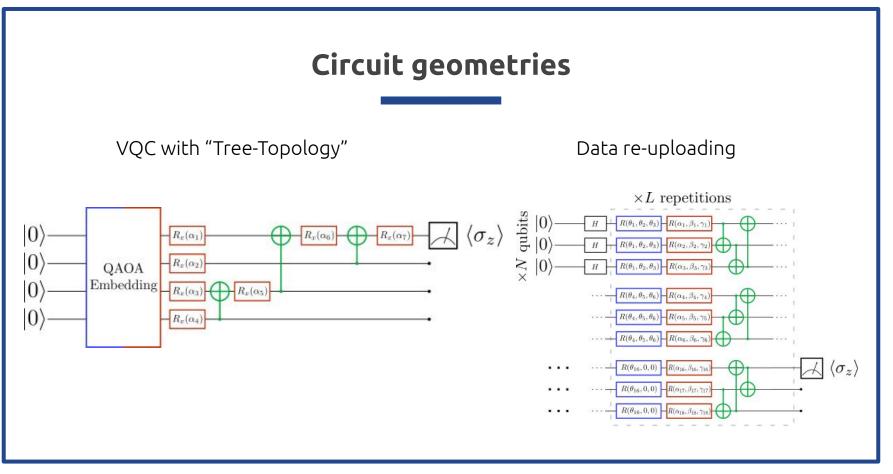


Dataset	Model	AUC
muon dataset	DNN	0.75
	Angle embedding	0.75
complete dataset	DNN	0.69
	Amplitude encoding	0.67
	Data re-uploading	0.65
	Tree-Topology (8 features)	0.66

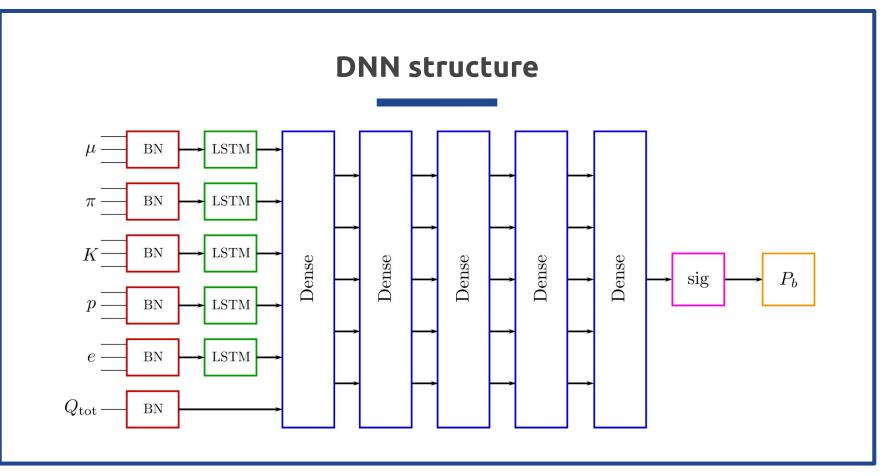
- for the muon dataset, DNN and Angle embedding performance are comparable
- for the complete dataset the DNN performs slightly better than the Amplitude encoding

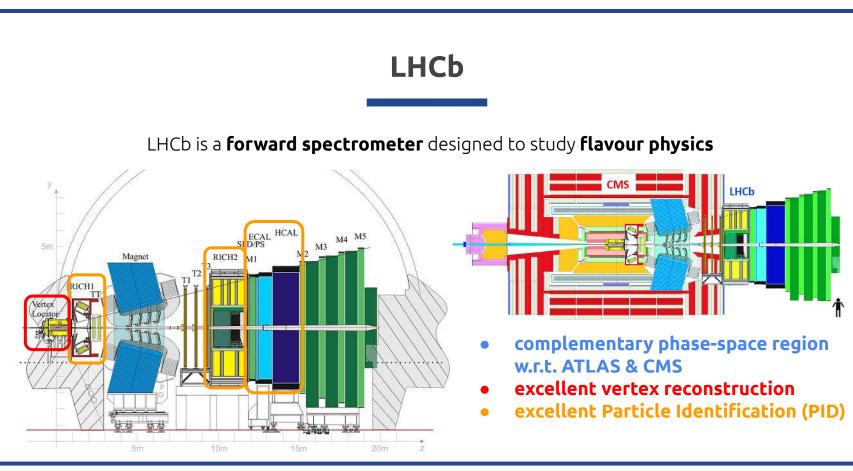


First implementation of Quantum Machine Learning for b-jet tagging at LHCb

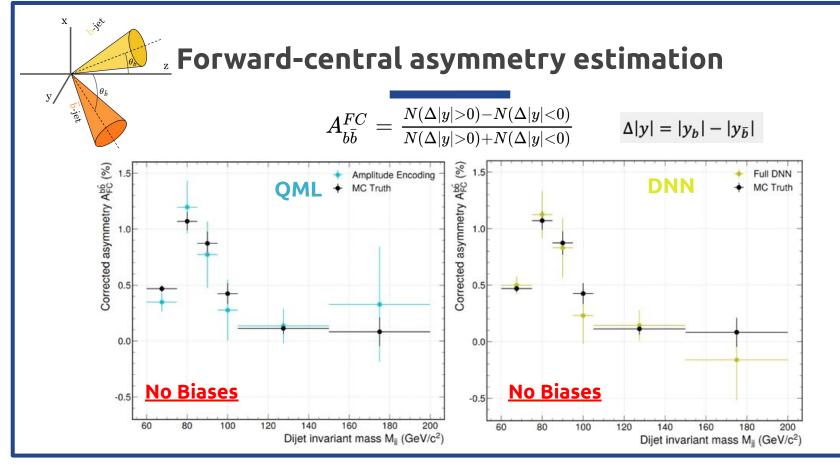


First implementation of Quantum Machine Learning for b-jet tagging at LHCb





Quantum Computing for High Energy Physics



Run 2 statistical uncertainty on the FC asymmetry

