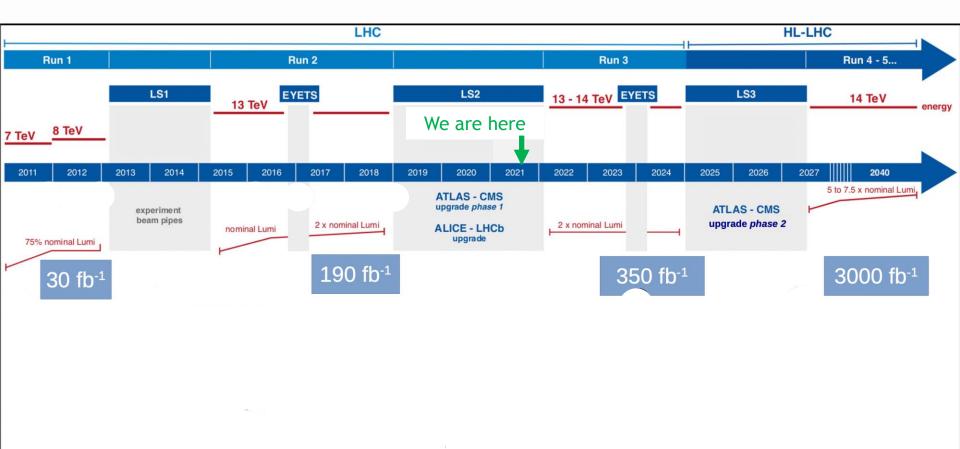


GridPP Status

CPUS Running Processes GridPP46 1st September 2021 month


yeek og

Heek 10

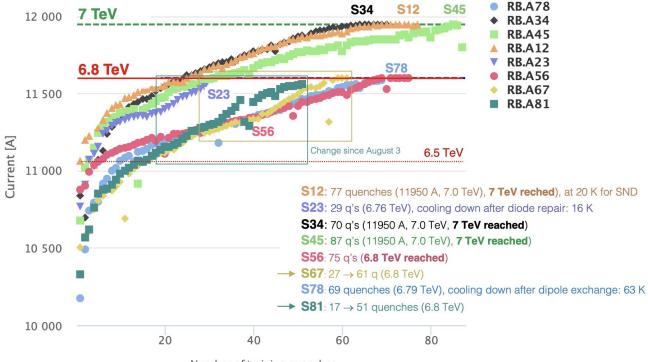
Prof. David Britton GridPP Project leader University of Glasgow

Timelines

LHC Dipole Training (24 Aug)

Latest progress of training:

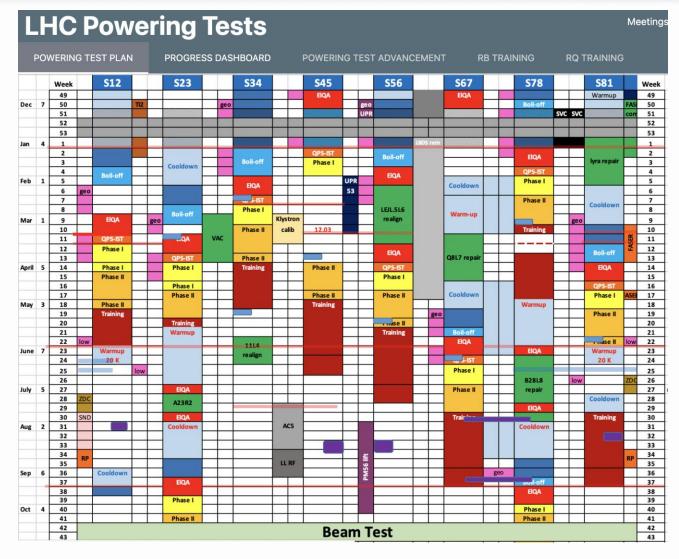
Main dipole training status (154 dipoles per LHC


sector, 8 sectors)

Currents to reach + margin

- 7.0 TeV = 11,850 A + 100 A
- 6.8 TeV = 11,500 A + 100 A
- 6.5 TeV = 10,980 A + 100 A

Total number of quenches: 519 (71 since August 3)

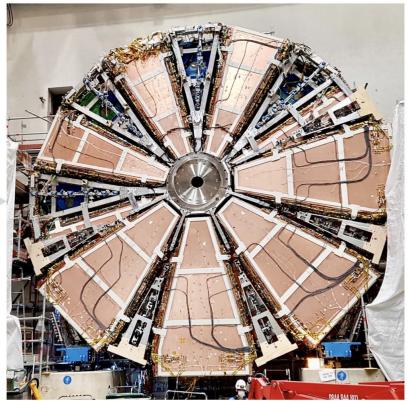

All **quadrupole circuits** have been successfully powered and trained to target currents (S23 and S78 to be redone)

Number of training quenches

LHC Machine Schedule

Schedule for the beam test is very tight for S23 and S78 in particular... but as of Aug 24th was still the plan.

David Britton, University of Glasgow



ATLAS New "Small" Wheel

NSW-C in B191 on 9 August

NSW-C in B191 on 23 August

ATLAS NSW-C Status:

- Four large sectors still to be installed scheduled by 14 September
- End of commissioning projected for 28 September
- Transport to P1 (SX1) October 11-14 (TBC)

David Britton, University of Glasgow

GridPP46

Slide 5

Since Last Time

- GridPP6 Oversight Committee
- IRIS + other additional Funding
- Excalibur and SwiftHEP
- Ongoing delivery of resources

27th Oversight Committee

- Revamped committee chaired by Jeremy Yates
- Had requested (additional) input documents for March meeting on:
 - Brexit Risks
 - Security incidents
- New actions for October meeting on:
 - Pledging Process (done)
 - Network/DMZ @ RAL (done)
 - Security Activities (in progress)
 - Covid-related Hardware delays (done)
 - Site escalation procedures (in progress)

- End-of-year (FY20) Capital Injection from STFC of £3.03m, that needed to be spent very quickly.
- IRIS 4x4 capital of £1.3m in FY20 and £0.65m to be spent in FY21.

 \rightarrow These funds went to Tier-1 and large Tier-2s.

Future:

• GridPP6 Tier-2 hardware funding of £1.5m expected in FY 2022/3 (plus ongoing annual Tier-1 hardware funding)

 \rightarrow Expect* distribution to a wider set of Tier-2s.

Status:

• GridPP6 has now had additional capital funding ~£5m which, together with Run-3 delays and much better CPU costs than expected, means that the original £9m capital shortfall, is now significantly reduced.

GridPP6: The big Context

	Entity	Scope	20	18 2	019	2020	2021	2022	2023	2024	2025	2026	2027	2028
are	LHC	Global	Run	2		LS2			Run-	3		LS3		Run-4
Infrastructure	WLCG	Global		Glob	oal coo	rdinati	on of re	quireme	nts, reso	urces, poli	cies, netv	working, s	ecurity	, etc.
rastı	GridPP	UK		GridPP	5			GridPP6				?		
Inf	IRIS-UK	UK	икто		IRIS 4y	r x £4	n		S	upport of	non-LHC	STFC com	muniti	es?
Ņ	ATLAS-CMS	Global	S&C	Concept	ual Des	ign	S&C	Technica	al Design		S&C dep	loyment		Operation
nent	LHCb	Global	S&C	TDR	S&C	deploy	/ment			Operation	and Upgra	ade 2 prep	aration	
Experiments	DUNE	Global	Prot	odune	S&	C CDR		oDUNE p model	DUNE	implemen	tation and	d deploym	ent	Operation
Ê	Others	Global	E	xperime	nts con	nmon s	oftware	nfrastru	cture desi	gn and dev	elopment	(neutrino,	dark m	natter, etc)
	HSF	Global		HEP	Softwa	re For	ım: Whi	te Paper	> Worl	ing Group	s> Con	nmunity N	leeting	gs>
Ire	IRIS-HEP	USA	S2I2		IR	IS-HEP	: 5yr x 5	m USD				?		
Software	ECHEP	UK			£50k E	CHEP								
So:	Excalibur	UK			£24	Ok Ex	calibur				?			
	HSUK	UK					SM	/IFTHEP-	1: 3 x £40	Dk	SM	VIFTHEP-2	: n x £2	m?

Excalibur

GridPP45 Slide

GridPF

GridPP and Excalibur

- Excalibur was an EPSRC call for "exascale software development" which (now we are all UKRI) was also open to STFC. Originally directed at developing code for HPC machines but the STFC bid successfully managed to get an exascale-data project funded.
- Scale: £240k over 15months (underway), four focus-areas. Led by Davide.
- GridPP connection: Exascale Data Organisation and Management [RAL SCD, 0.4 FTE. Lead Alastair Dewhurst]
- Defines a "Data transport service node", something that helps get data from A to B (e.g. GridFTP, XrootD, Xcache, Webdav: Apache servers, S3-endpoints, Squids, Service nodes like FTS, DynaFed or Rucio daemons). A and B could be different sites, different types of storage at the same site, or B could be a job.
- Objectives:
 - Deploy data transport service nodes automatically via Kubernetes
 - Perform a study of current data access patterns and make predictions for how this will evolve.
 - Prototype the intelligent deployment of data transport service nodes based on the observed usage.
 - Produce a report describing the work and setting out areas for further work/improvement.

Excalibur phase 1b:

- Only open to groups who were initially funded and expects to fund ~3 projects (out of the 10).
- UKRI encourages groups to merge. The gist of Excalibur is to fund RSE to develop algorithms/tools for future exascale machine(s).
- Deadline end of September.
- Plan is to submit a joint proposal with the Exalat team, lattice QCD theorists.
- A work package on "data management" optimising resources for parallel transfers.

Bye Bye Mr. BDII...

20	74	T		BHHH		1	Maria	Chaf	Dur	E al	CIE	Duin	0	000	#=:*==	20
vo		Imp	_		Lan	Liv		Shef			Gla			PPD		vo
Gluex	Ν	N	N	N	N	Ν	N	N	N	N	Y	N	Ν	N	1	Gluex
alice	Y	N	N	N	N	Y	N	N	N	Ν	N	N	Y	Y	4	alice
atlas	Y	N	Y	N	Y	Y	Y	Y	Y	Y	Y	N	Y	Y		atlas
bes	Ν	N	N	N	N	Ν	Y	N	N	N	N	N	N	N	1	bes
biomed	Y	N	N	N	Y	Y	Y	N	Ν	Ν	Y	N	Ν	Y		biomed
calice	Ν	N	N	N	N	Y	N	N	N	N	N	N	Ν	Y		calice
camont	Ν	N	N	N	N	N	N	N	Y	Ν	N	N	N	Y		camont
cdf	Ν	N	N	N	N	Ν	N	N	Y	Ν	Ν	N	Ν	Y	2	cdf
серс	Ν	N	Y	N	Y	Ν	N	N	Ν	Ν	Ν	N	Ν	N		серс
cernatschool.org	Ν	N	Y	N	N	Y	N	N	N	Ν	Ν	N	Y	N	3	cernatschool.org
clas12	Ν	N	N	N	Ν	Ν	N	N	Ν	Ν	Y	N	Ν	Ν	1	clas12
cms	Y	N	Y	N	Y	Y	Y	N	Y	Ν	Y	N	Υ	Y	9	cms
comet.j-parc.jp	Ν	N	N	N	N	Ν	N	N	Ν	Ν	Ν	N	Ν	Y	1	comet.j-parc.jp
dteam	Y	N	Y	N	Y	Υ	Y	Y	Y	Ν	Y	Ν	Υ	Y	10	dteam
dune	Υ	Ν	Y	Ν	Y	Y	Y	Y	Ν	Ν	Y	N	Υ	Y	9	dune
enmr.eu	Y	N	N	N	Ν	Ν	N	N	Ν	Ν	Ν	Ν	Ν	Ν		enmr.eu
epic.vo.gridpp.ac.uk	Y	N	N	N	Ν	Y	N	N	Ν	Ν	Ν	Ν	Ν	Ν	2	epic.vo.gridpp.ac.uk
esr	Ν	N	N	N	Ν	Υ	N	N	Ν	Ν	Ν	Ν	Υ	Y		esr
fermilab	Ν	Ν	N	N	Y	Ν	Y	Ν	Ν	Ν	Ν	Ν	Ν	Ν	2	fermilab
fusion	Ν	Ν	N	Ν	Ν	Υ	Ν	N	Ν	Ν	Ν	N	Υ	Y	3	fusion
geant4	Υ	Ν	N	N	N	Y	Ν	N	Ν	Ν	Ν	N	Ν	Y	3	geant4
glast.org	Υ	N	N	N	N	Ν	N	N	N	Ν	Ν	N	Ν	Ν	1	glast.org
gridpp	Υ	N	Y	N	Y	Y	Y	Y	Y	Υ	Y	N	Υ	Y	11	gridpp
none	Ν	N	N	N	N	Ν	Y	N	N	Ν	Ν	N	Ν	Y	2	hone
hyperk.org	Y	N	Y	N	Y	Y	N	N	N	Ν	Y	N	Y	Y	7	hyperk.org
icecube	Ν	N	Y	N	N	Ν	Y	N	N	Ν	Ν	N	Ν	N		icecube
ilc	Y	N	Y	N	N	N	Y	N	Y	Ν	N	N	Y	Y	6	ilc
lhcb	Y	N	Y	N	Y	N	Y	Y	Y	Y	Y	N	Y	Y	10	lhcb
lsst	Y	N	Y	N	Y	Y	Y	N	N	Y	Y	N	Y	Y	9	lsst
z	N	N	Y	N	Y	Y	Y	Y	N	Y	Y	N	Y	Y	9	Iz
magic	N	N	N	N	N	Y	N	N	N	Ν	N	N	N	Y	2	magic
mice	N	N	N	N	N	Ŷ	N	N	N	N	Y	N	Y	Y		mice
mu3e.org	N	N	N	N	Y	Y	N	N	N	N	N	N	Y	N		mu3e.org
na62.vo.gridpp.ac.uk	Y	N	N	N	Y	Y	N	N	N	N	Y	N	Y	Y		na62.vo.gridpp.ac.uk
ops	Ŷ	N	Y	N	Ŷ	Ŷ	Y	Y	Y	Y	Ŷ	N	Ŷ	Ŷ	11	ops
osg	Ŷ	N	N	N	N	N	N	N	N	N	N	N	N	N	1	osg
pheno	Ŷ	N	Y	N	N	Y	Y	N	Y	N	Y	N	Y	Y	8	pheno
planck	N	N	N	N	N	Y	N	N	N	N	N	N	N	Ŷ	2	planck
skatelescope	N	N	N	N	N	N	Y	N	N	N	N	N	N	N		skatelescope
skatelescope.eu	Y	N	Y	N	Y	Y	Y	N	N	N	Y	N	Y	Y		skatelescope.eu
snoplus.snolab.ca	Y	N	Y	N	Y	Y	N	N	N	N	Y	N	Y	Y		snoplus.snolab.ca
solidexperiment.org	Y N	N	Y N	N	N	Y N	N	N	N	N	Y	N	Y	N		solidexperiment.org
	N	N	N	N	N	N	N	N	N	N	N	N	N	Y		
superbvo.org	Y	N	Y		Y	Y	Y	Y				_	Y	Y		superbvo.org
t2k.org	_			N	Y Y				N	N	Y Y	N		Y N		t2k.org virgo
virgo	N	N	N	N	_	N	N	N	N	N		N	N			
vo.cta.in2p3.fr	N	N	N	N	Y	N	N	N	N	N	N	N	N	N	1	vo.cta.in2p3.fr
vo.moedal.org	N	N	Y	N	N	Y	N	N	N	N	N	N	N	Y		vo.moedal.org
vo.northgrid.ac.uk	N	N	N	N	Y	Y	Y	N	N	N	N	N	N	N		vo.northgrid.ac.uk
vo.northgrid.ac.uk/manchester	Ν	N	N	N	N	Ν	Y	N	Ν	Ν	Ν	Ν	Ν	N		vo.northgrid.ac.uk/mancheste
vo.scotgrid.ac.uk	Ν	N	N	N	N	N	N	N	Υ	N	Y	N	Ν	N		vo.scotgrid.ac.uk
vo.southgrid.ac.uk	Ν	N	N	N	Ν	Ν	N	N	Ν	Ν	Ν	N	Y	Y		vo.southgrid.ac.uk
					N	Y	N	N	Y							
zeus	N T1	N Imp	N QMUL	N RHUL	Lan	Liv	Man	N Shef	Y Dur	N Ed	N Gla	N Bris	Y Ox	Y PPD	4	zeus

Our "Steve Lloyd" metrics page on what sites support which VOs should presumably be retired...

David Britton, University of Glasgow

Accounting Portal

vo	Tier-1	BRU	IC	QMUL	RHUL	LANC	LIV	MAN	SHEF	DUR	EDI	GLA	BIR	BRIS	CAM	ох	PPD	SUSX	
None																			2
alice																			3
atlas																			17
bes																			1
biomed																			8
серс																			2
cernatschool.org																			2
clas12																			1
cms																			10
comet.j-parc.jp																			4
dteam																			7
dune																			14
enmr.eu																			1
fermilab																			3
gridpp																			17
hyperk.org																			10
icecube																			1
ilc																			12
lhcb																			17
lsst																			12
lz																			13
magrid																			2
mice																			8
mu3e.org																			5
na62.vo.gridpp.ac.uk																			9
ops																			16
pheno																			11
skatelescope.eu																			11
snoplus.snolab.ca																			10
solidexperiment.org																			4
t2k.org																			11
virgo																			3
vo.complex-systems.eu																			1
vo.cta.in2p3.fr																			1
vo.moedal.org																			5
vo.northgrid.ac.uk																			5
vo.scotgrid.ac.uk																			2
	20	15	21	17	7	20	20	16	6	8	10	25	21	9	6	19	19	2	

Look at where VO jobs have run in the past year. Simply binary yes/no plot.

E.g. Lancaster: BDII - 21 Here - 20 E.g. Glasgow: BDII - 22 Here - 25

Important VOs for Sites

0	vo	Tier-1	BRU	IC	QMUL	RHUL	LANC	LIV	MAN	SHEF	DUR	EDI	GLA	BIR	BRIS	CAM	OX	PPD	SUSX	Sites	VO
1	None	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	2	None
2	alice	2%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	60%	0%	0%	10%	0%	0%	3	alice
3	atlas	46%	10%	9%	52%	70%	54%	54%	67%	86%	68%	41%	78%	30%	0%	19%	66%	17%	100%	17	atlas
4	bes	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	1	bes
5	biomed	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	8	biomed
6	cepc	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	2	серс
7	cernatschool.org	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	2	cernatschool.org
8	clas12	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	3%	0%	0%	0%	0%	0%	0%	1	clas12
9	cms	25%	64%	66%	11%	9%	0%	0%	0%	0%	0%	0%	10%	0%	40%	0%	5%	53%	0%	10	cms
10	comet.j-parc.jp	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	4	comet.j-parc.jp
11	dteam	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	7	dteam
12	dune	1%	3%	1%	1%	0%	1%	2%	0%	1%	0%	0%	0%	0%	6%	0%	1%	4%	0%	14	dune
13	enmr.eu	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	1	. 0
14	fermilab	0%	0%	0%	0%	0%	12%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	3	fermilab
15	gridpp	0%	0%	0%	0%	0%	0%	0%	0%	4%	0%	1%	0%	0%	0%	0%	0%	0%	0%	17	gridpp
16	hyperk.org	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	10	hyperk.org
	icecube	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	1	icecube
18 i	ilc	0%	6%	0%	0%	4%	0%	6%	6%	0%	9%	0%	0%	0%	0%	0%	2%	1%	0%		ilc
19	hcb	24%	16%	20%	36%	18%	25%	30%	26%	8%	14%	58%	8%	9%	54%	81%	11%	23%	0%	17	lhcb
20	sst	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%		lsst
21	z	0%	0%	2%	0%	0%	0%	0%	0%	1%	0%	0%	0%	0%	0%	0%	0%	0%	0%	13	Iz
	magrid	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	2	magrid
23	mice	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%		mice
	mu3e.org	0%	0%	0%	0%	0%	3%	2%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%		mu3e.org
25	na62.vo.gridpp.ac.uk	0%	0%	2%	0%	0%	0%	3%	0%	0%	0%	0%	1%	0%	0%	0%	4%	2%	0%		na62.vo.gridpp.ac.uk
26	ops	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%		ops
27	pheno	0%	0%	0%	0%	0%	0%	0%	0%	0%	9%	0%	0%	0%	0%	0%	0%	0%	0%	11	pheno
	skatelescope.eu	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%		skatelescope.eu
	snoplus.snolab.ca	0%	0%	0%	0%	0%	0%	1%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	10	snoplus.snolab.ca
30	solidexperiment.org	0%	0%	1%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%		solidexperiment.org
31	t2k.org	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	11	t2k.org
	virgo	0%	0%	0%	0%	0%	3%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%		virgo
	vo.complex-systems.eu	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%		vo.complex-systems.eu
	vo.cta.in2p3.fr	0%	0%	0%	0%	0%	2%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%		vo.cta.in2p3.fr
35	vo.moedal.org	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	5	vo.moedal.org
	vo.northgrid.ac.uk	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	5	vo.northgrid.ac.uk
37	vo.scotgrid.ac.uk	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	2	vo.scotgrid.ac.uk
0	SUM	33%	2%	10%	4%	5%	7%	3%	11%	1%	5%	1%	5%	1%	2%	1%	4%	7%	0%	C	0

Shows which VOs are important to which sites.

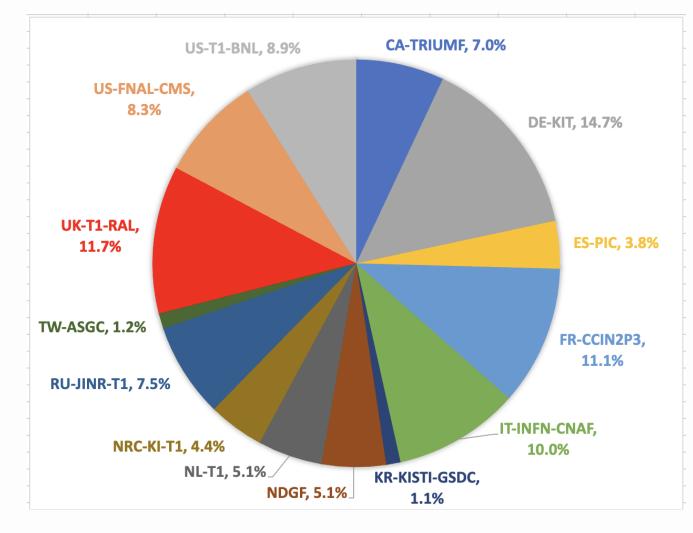
David Britton, University of Glasgow

GridPP46

Important Sites for VOs

	vo	Tier-1	BRU	IC	QMUL	RHUL	LANC	LIV	MAN	SHEF	DUR	EDI	GLA	BIR	BRIS	CAM	ОХ	PPD	SUSX	Sites	vo	,
1	None	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	100%	0%	0%	0%	2	None	
2	alice	48%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	30%	0%	0%	23%	0%	0%	3	alice	
3	atlas	32%	0%	2	- 1				_	li -	1. I			1		1.	ņ					
4	bes	0%	0%	0	VO		o rd			a ui al		-										
5	biomed	27%	0%	0	٧U	Ia C	ard	: VO	.ma	gria	.ma	🗹 Up	date									
6	серс	0%	0%	0																		
7	cernatschool.org	0%	0%	0																		
8	clas12	0%	0%	0						Va	alidation da	ate				20	016-05-27	7				
9	cms	37%	7%	30	1 0	eneral l	nformati	on														
10	comet.j-parc.jp	0%	0%	14													0					
11	dteam	0%	0%	61	2 A	knowled	gement	stateme	nt	Di	scipline							oort Activ				
12	dune	29%	7%	5													c	Miscell	aneous			
13	enmr.eu	100%	0%	0	3 F	lesource	S															
14	fermilab	0%	0%	0																		
15	gridpp	1%	1%	1		lailing Li	st			Er	nrollment l	Jrl				ht	ttps://vom	s.magrid	.ma:8443/	voms/vo.n	nagrid.ma	
16	hyperk.org	49%	0%	16			or															
_	icecube	0%	0%	0		ontact L	ict										the state of the second	man mulal ma				
18		1%	8%	1	0	Unlact	.151			п	omepage l	Jri				n	ttp://www.	magna.n	la			
19	lhcb	34%	2%	9																		
	lsst	3%	0%	2	6 F	Registry S	Server			Su	upport Pro	cedure U	Irl									
21		0%	1%	86																		
	magrid	0%	0%	0	7 V	OMS Gr	oup/Rol	е		G	GUS dedic	ated use	r cuppor			N	0					
	mice	0%	16%	31						G	dos deulo	aleu use	support			IN	0					
-	mu3e.org	0%	1%	0																		
	na62.vo.gridpp.ac.uk	18%	0%	31						V	OMS setup	support				Ye	es (N.A)					.uk
	ops	13%	10%	6																		
-	pheno	2%	1%	1																		
	skatelescope.eu	1%	0%	0						Dee	cription				٨	ceptabl		olicy				
-	snoplus.snolab.ca	21%	1%	27						Des	scription				A	ceptabl	C USE P	oncy				
	solidexperiment.org	0%	0%	82																		org
	t2k.org	71%	6%	3						N	/O vo.magr	id.ma is a	a multidisc	ciplinary		N.A						
	virgo	7%	0%	0						N	/O providin	g genera	grid serv	ices								
-	vo.complex-systems.eu		0%	100							and support											ms.eu
-	vo.cta.in2p3.fr	0%	0%	0							community		001011									
-	vo.moedal.org	0%	0%	0						0	onnunity											
-	vo.northgrid.ac.uk	0%	0%	0,0		070	T.10	2/0		070		070	370	2/0	070	070	070	070	070		vo.norugriu.	au.urí
37	vo.scotgrid.ac.uk	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	64%	36%	0%	0%	0%	0%	0%	2	vo.scotgrid.a	c.uk
	SUM	33%	2%	10%	4%	5%	7%	3%	11%	1%	5%	1%	5%	1%	2%	1%	4%	7%	0%			
+																					1	

Shows which sites are important to which VOs. Does NOT show which VOs are biggest site users!


David Britton, University of Glasgow

GridPP46

Slide 14

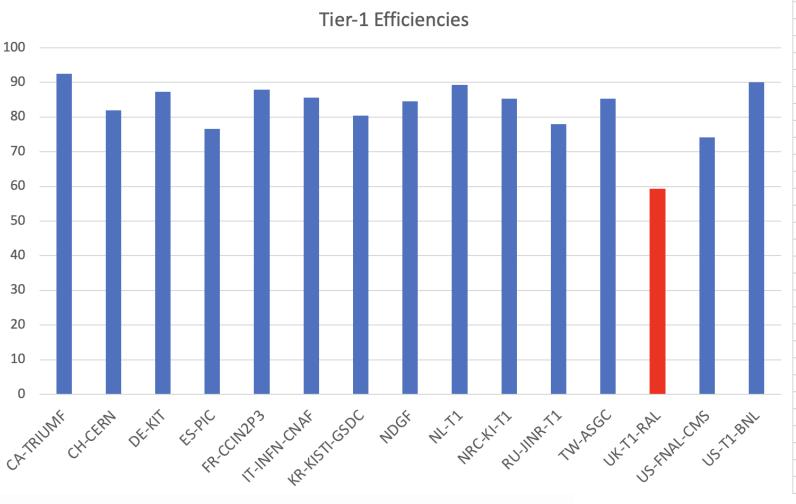
LHC Tier-1 CPU Delivery

Sum Wallclock Work (HS06) by Tier-1 for LHC VOs; August 2020 - July 2021

The Fine Print:

We pledge 12.6% of the Tier-1 requirements based on our M&O authorship fraction, but other countries use different metrics to pledge and may also over-deliver, or deliver more Tier-1 and less Tier-2 type resources. In absolute terms, we deliver what we pledge:

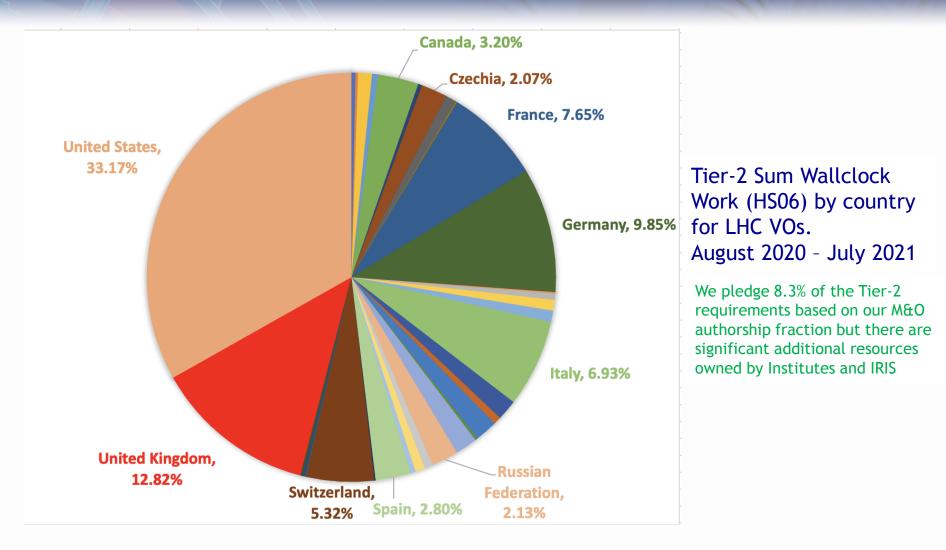
2020 Pledge was 369.25 KHS06 2020 Delivery was 374.45 KHS06


(Wall clock)

David Britton, University of Glasgow

GridPP46

LHC Tier-1 Efficiencies*



* CPU-Time / Wallclock

David Britton, University of Glasgow

LHC Tier-2 CPU Delivery

LHC Tier-2 Efficiency?

Country	alice	atlas	cms	lhcb	Total 🔻
Slovenia	0%	104.96%	0%	0%	104.96%
Switzerland	0%	101.87%	101.29%	100.08%	101.29%
Portugal	0%	101.55%	100.05%	0%	100.88%
Slovakia	98.52%	102.4%	0%	0%	100.7%
Poland	99.14%	100.13%	100.29%	100.13%	100.01%
Latin America	88.29%	101.57%	78.65%	99.22%	98.92%
Estonia	0%	0%	98.48%	0%	98.48%
Canada	0%	98.42%	0%	0%	98.42%
Japan	0%	92.82%	0%	0%	92.82%
Australia	0%	91.11%	0%	0%	91.11%
Israel	0%	90.41%	0%	96.47%	
France	87.09%	90.6%	73.21%	97.04%	88.28%
Spain	0%	90.26%	81.68%	98.34%	87.58%
United Kingdom	87.53%	92.54%	71.81%	88.68%	87.35%
Czechia	78.93%	89.75%	0%	0%	85.84%
Germany	0%	88.56%	75.79%	98.72%	83.94%
China	0%	86.65%	61.73%	87.99%	81.66%
Thailand	80.69%	0%	0%	0%	80.69%
Russian Federation	64.54%	92.21%	68.72%	97.39%	79.95%
Taiwan	0%	89.58%	70.4%	0%	79.42%
Belgium	0%	0%	77.89%	0%	77.89%
"Korea, Republic of"	0%	0%	77.35%	0%	77.35%
Romania	69.1%	84.91%	0%	94.76%	77.33%
India	82.27%	0%	67.6%	0%	76.44%
Sweden	53.73%	91.14%	0%	0%	75.93%
United States	39.37%	86.88%	70.29%	97.53%	75.68%
Hong Kong SAR	0%	75.62%	0%	0%	75.62%
Hungary	72.71%	0%	75.25%	0%	73.93%
Italy	77.96%	90.3%	58.33%	63.44%	73.91%
Ukraine	94.04%	0%	68.69%	0%	68.79%
Brazil	0%	0%	66.67%	0%	66.66%
Finland	0%	0%	64.32%	0%	64.32%

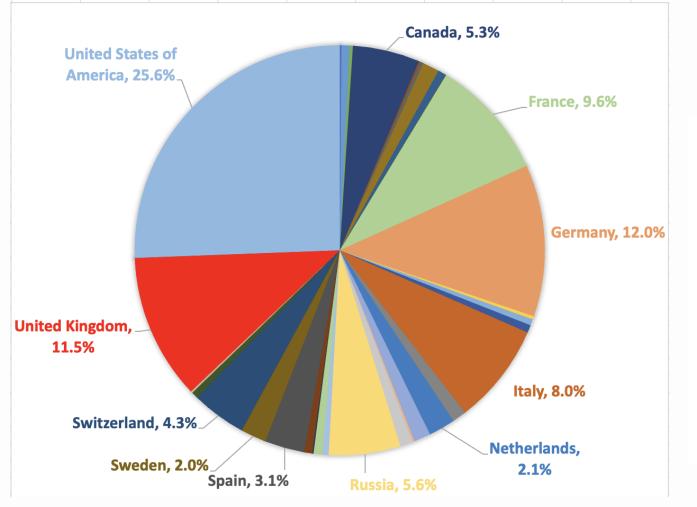
Faster than light...

Resource Centre UKI-SCOTGRID-GLASGOW — CPU Efficiency (%) by VO and Quarter (LHC VOs)

	VO	Aug 2020 — Oct 2020	Nov 2020 — Jan 2021	Feb 2021 — Apr 2021	May 2021 — Jul 2021	Tot
atlas		87.27%	90%	90.73%	86.15%	88.189
cms		19.05%	88.79%	61.02%	61.48%	62.879
lhcb		98.75%	98.64%	98.06%	96.72%	98.05%
ſotal		89.25%	90.82%	87.42%	82.62%	86.29%
Resource Ce	entre UK	I-NORTHGRID-N	1AN-HEP — CPU	Efficiency (%) by	y VO and Quarter	(LHC VOs)
	VO	Aug 2020 — Oct 2020	Nov 2020 — Jan 2021	Feb 2021 — Apr 2021	May 2021 — Jul 2021	Tot
atlas		88.15%	91.43%	88.2%	90.45%	89.639
hcb		12.29%	32.36%	94.48%	95.4%	64.27%
Total	_	65.52%	76.48%	89.07%	92.1%	82.75
	ntre UKI				^{92.1%} by VO and Quarte	
ded too di	ntre UKI vo					r (LHC VOs)
Resource Cen		-NORTHGRID-LA	NCS-HEP — CPU	J Efficiency (%) I	oy VO and Quarte	r (LHC VOs) Tota
		-NORTHGRID-LA Aug 2020 — Oct 2020	NCS-HEP — CPU Nov 2020 — Jan 2021	J Efficiency (%) I Feb 2021 — Apr 2021	by VO and Quarte May 2021 — Jul 2021	82.75% r (LHC VOs) Tota 92.09% 88.56%
atlas heb		-NORTHGRID-LA Aug 2020 — Oct 2020 89.87% 97.84%	NCS-HEP — CPU Nov 2020 — Jan 2021 92.51%	J Efficiency (%) E Feb 2021 — Apr 2021 93.61% 57.96%	Dy VO and Quarte May 2021 — Jul 2021 92,36% 81.22%	r (LHC VOs) Totz 92.09% 88.56%
Resource Cen		-NORTHGRID-LA Aug 2020 — Oct 2020 89.87%	NCS-HEP — CPU Nov 2020 — Jan 2021 92.51%	J Efficiency (%) Feb 2021 — Apr 2021 93.61%	by VO and Quarte May 2021 — Jul 2021 92.36%	r (LHC VOs) Tota 92.09%
ttlas hcb	VO	-NORTHGRID-LA Aug 2020 — Oct 2020 89.87% 97.84% 92.95%	NCS-HEP — CPU Nov 2020 — Jan 2021 92.51% 95.12%	J Efficiency (%) E Feb 2021 — Apr 2021 93.61% 57.96% 89.82%	Dy VO and Quarte May 2021 — Jul 2021 92,36% 81.22%	r (LHC VOs) Tota 92.099 88.569 90.999
atlas hcb	VO	-NORTHGRID-LA Aug 2020 — Oct 2020 89.87% 97.84% 92.95%	NCS-HEP — CPU Nov 2020 — Jan 2021 92.51% 95.12%	J Efficiency (%) E Feb 2021 — Apr 2021 93.61% 57.96% 89.82%	by VO and Quarte May 2021 — Jul 2021 92.36% 81.22% 88.42%	r (LHC VOs) Tota 92.099 88.569 90.999

	10	Aug 2020 - Oct 2020	NUV 2020 — Jali 2021	160 2021 — Apr 2021	may 2021 — Jul 2021	TULA
atlas		96.54%	95.91%	97.71%	97.47%	97.08%
cms		73.45%	69.99%	67.63%	69.55%	70.04%
lhcb		98.03%	98.28%	98.1%	96.55%	97.75%
Total		81%	77.19%	76.64%	78.47%	78.23%
1 - 3 of 3 results					$_{<\ 1}$ $_{>}$ Number of rows per pa	ge 30 🗸

Resource Centre UKI-LT2-QMUL — CPU Efficiency (%) by VO and Quarter (LHC VOs)


	VO	Aug 2020 — Oct 2020	Nov 2020 — Jan 2021	Feb 2021 — Apr 2021	May 2021 — Jul 2021	Total
atlas		107.35%	107.51%	106.15%	106.85%	106.93%
cms		105.78%	104.69%	103.86%	103.74%	104.47%
lhcb		100.76%	107.43%	106.5%	108.09%	106.37%

David Britton, University of Glasgow

LHC: Overall UK

Sum CPU Work* (HS06) by country for LHC VOs. August 2020 - July 2021

UK pledge is 10.3% for 2021.

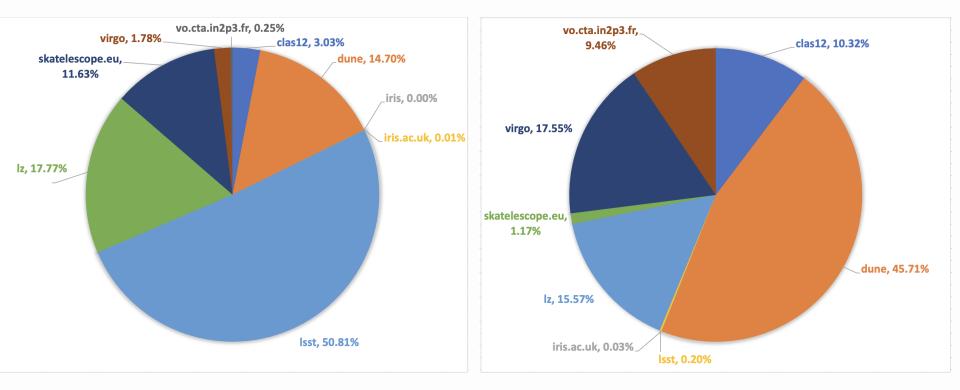
*This now includes the efficiency factor - i.e. despite lower efficiency, the actual delivered cycles are above pledge from the UK as a whole.

GridPP and IRIS

- GridPP provides resources to IRIS VOs in return for funding. Some IRIS VOs were already non-LHC GridPP users before IRIS existed.
- IRIS VOs (roughly):

Dune, LSST, LZ, EUCLID, SKA, CLAS12, VIRGO, CTA, JINTRAC, CCFE

- The commitment to deliver resources is formally from "GridPP" and not from the individual site that receives IRIS funds... though of course, the funds have been distributed with certain (and sometimes very explicit) expectations.
- We have a brief (1.5 page) policy document that covers this.
- There is a GridPP IRIS MoU.
- GridPP tries not to micro-manage sites: Once funds are allocated then it's up to the site to spend them in a way that best allows the site to:
 - Help meet contributions to WLCG MoU commitments (circulated each Autumn)
 - Help meet commitments to IRIS (specific and general)
 - Contributions to other non-LHC non-IRIS VOs (the notional 10%)
 - Contributions to site-specific priorities.



IRIS MOU										
CPU expectations in tern	ns of CORES D	DELIVERED, as	summing hyp	erthreading f	actor of 1.6x	physical cores	; 4-year lifeti	me; and 90%	allocatable fra	action
Year of Resource Delivery	FY18	FY19	FY20	FY21	FY22	FY23	FY24	FY25	FY26	FY27
UKT0 2017	1536	1536	1536	1536						
IRIS 4x4 Year-1		1664	1664	1664	1664					
IRIS 4x4 Year-2			3992	3992	3992	3992				
IRIS 4x4 Year-3/WCL				4100	4100	4100	4100			
IRIS 4x4 Year-4					3000	3000	3000	3000		
Insert Row										
RAW CORES	1536	3200	7192	11292	12756	11092	7100	3000	0	0
ALLOCATABLE CORES	1382	2880	6473	10163	11480	9983	6390	2700	0	0
DISK expectations in TB a	ssuming 90%	allocatable a	nd a 4-vear li	fatima						
Year of Resource Delivery				letime						
	FY18	FY19	FY20	FY21	FY22	FY23	FY24	FY25	FY26	FY27
UKTO 2017	FY18 1000	FY19 1000			FY22	FY23	FY24	FY25	FY26	FY27
UKTO 2017 IRIS 4x4 Year-1			FY20	FY21	FY22 2326	FY23	FY24	FY25	FY26	FY27
		1000	FY20 1000	FY21 1000 2326		FY23 2250	FY24	FY25	FY26	FY27
IRIS 4x4 Year-1		1000	FY20 1000 2326	FY21 1000 2326	2326		FY24 4000	FY25	FY26	FY27
IRIS 4x4 Year-1 IRIS 4x4 Year-2		1000	FY20 1000 2326	FY21 1000 2326 2250	2326 2250	2250		FY25	FY26	FY27
IRIS 4x4 Year-1 IRIS 4x4 Year-2 IRIS 4x4 Year-3/WCL		1000	FY20 1000 2326	FY21 1000 2326 2250	2326 2250 4000	2250 4000	4000		FY26	FY27
IRIS 4x4 Year-1 IRIS 4x4 Year-2 IRIS 4x4 Year-3/WCL IRIS 4x4 Year-4		1000	FY20 1000 2326	FY21 1000 2326 2250 4000	2326 2250 4000	2250 4000	4000		FY26	FY27

Historically, IRIS VOs have not always fully used these resources. We need to start keeping a slightly closer eye on this to ensure its "didn't use" and not "couldn't use".

IRIS Usage

2019: 115% of MoU commitment used

2020: 23% of MoU commitment used

And what about Storage?

... that chapter is for another day!

- LHC Run-3 is on-track to start in the new year.
- GridPP continues to operate as an integral part of a complex and evolving national and international context.
- Our capital funding situation is much improved, and we can be reasonably confident of meeting pledges for remainder of GridPP6.
- We are, overall, delivering resources to WLCG at the appropriate level, though we would like to improve the Tier-1 efficiency.
- We support IRIS VOs and deliver resources to them as required but we should perhaps monitor this more closely.