
Operational Intelligence @ Glasgow

Dr. Emanuele Simili GridPP46 1st September 2021

• Glasgow Tier2 site

• Cluster Monitoring & Logging

• Visualization & Querying

• Alerts & Automation

• Latest Addition: auto-update

ScotGrid Glasgow:

Emanuele Simili, Gordon Stewart, Samuel Skipsey, David Britton

Outline

At present *, ScotGrid Glasgow consists of:
• ~13’000 CPU cores
• ~12 PB physical storage (CEPH + DPM)
• 40 Gb/s internal network bandwidth

For a total under-estimated at about 61 KHS06 #

ScotGrid Glasgow Site

AuthN / AuthZ

Job Requests

Authorised Jobs

H
T
C
o
n
d
o
r

ARC-CE

SCHEDD

ARC-CE

ce01

SCHEDD

ARC-CE

ce01

SCHEDD

ARC-CE

ce01

SCHEDD

ARC-CE

ce01

NEGOTIATOR

COLLECTOR

cassowary

CVMFS

COLLECTOR

wn001

CVMFS

COLLECTOR

wn001

CVMFS

COLLECTOR

wn001

CVMFS

COLLECTOR

wn001

CVMFS

COLLECTOR

wn001

CVMFS

COLLECTOR

wn001

CVMFS

COLLECTOR

wn001

CVMFS

STARTD

wn001

VACD

vac001

VACD

vac001

VACD

vac001

VACD

vac001

VACD

vac001

VPN

ARGUS

chocobox

Job Requests

SQUID

biscotti

SQUID

biscotti

NAT

stroop

NAT

stroop

W.A.N.

Certification

Authority

cephs01cephs01cephs01

cephs01cephs01cephc01

C
E
P
H

 S
E

CEPH

cephd01

CEPH

cephd01

CEPH

cephd01

CEPH

cephd01

CEPH

cephd01

CEPH

cephd01

CEPH

cephd01

CEPH

cephd01

- We have a standard ARC + HTCondor job submission system,

- We had ~20 nodes dedicated to VAC, which are being

decommissioned (as of Sep. 2021).

Cluster Map

As a site of significant size, we use many sys-admin empowering tools:

• A network provisioning system (PPE PiXiE)

• A remote management tool (Ansible)

• A central monitoring & logging system (PLG) … which I will talk about

Automation Tools

We have invested quite some time in preparing such environments because,

in the long run, it has saved us more time than we spent making it.

Our system is built on Prometheus, Loki and Grafana (PLG)

• Metrics are exported by node_exporter (installed on nodes) and
collected by a central Prometheus instance

• Logs are exported by PromTail (nodes) and collected by Loki (central)

• Data visualization and querying is done by Grafana, which pulls data
from both Prometheus and Loki

• Alert are sent out by AlertManager, installed on the Prometheus
server, and received by AM-Executor, installed on the configuration
management server (which also runs Ansible)

• Long term storage of metrics is done by VictoriaMetrics, installed on
the same server as Loki to take full advantage of the large storage

Monitoring & Logging (1)

other servers

PromTail

node_exporter

other servers

PromTail

node_exporter

victoria

M: 24 cores, 16Gb RAM, 50Tb HD

VictoriaMetrics

Loki

speculaas

VM: 2cores, 4Gb RAM

Grafana

gingersnap

VM: 6cores, 40Gb RAM, 500 Gb HD

Prometheus

AlertManager

W
o
rk

e
rN

o
d
e
s

&
 V

A
C
s

S
e
rv

e
rs

logs

metrics

PromTail

node_exporter

ce01

PromTail

node_exporter

ce01

PromTail

node_exporter

ce01

PromTail

node_exporter

ce01

others

PromTail

node_exporter

logs

metrics

PromTail

node_exporter

ce01

PromTail

node_exporter

ce01

PromTail

node_exporter

ce01

PromTail

node_exporter

wn001

PromTail

node_exporter

ce01

PromTail

node_exporter

ce01

PromTail

node_exporter

ce01

PromTail

node_exporter

wn001

PromTail

node_exporter

ce01

PromTail

node_exporter

ce01

PromTail

node_exporter

ce01

PromTail

node_exporter

PromTail

node_exporter

vac001

alerts

storage

S logs

S metricsfoithong VM

AM-Executor

Ansible

Monitoring & Logging (2)

Metric Purpose Tool

Temperature HD check for overheat S.M.A.R.T. tools

Temperature CPU check for overheat IPMI tools

HTCondor jobs stats check the status and ownership of running jobs condor_status

VAC jobs stats check the number and status of virtual machines check-vacd

Running processes runtime and resource usage ps + grep

Number of Reboots static counter to keep track of unexpected restarts cron job

Static info check for unexpected changes in hardware (e.g.,

memory bank fail)

lscpu, vmstat , lsblk

Exported Metrics

Metrics produced with any script must be written in a properly formatted text file
and placed in a folder where node_exporter can scrape them:

node_exporter_dir: "/var/lib/node_exporter/textfile_collector"

node_exporter produces by default a large set of metrics (e.g., CPU
load, network activity, disk I/O, system info) and it can be further
customised with ad-hoc metrics:

PromTail tails the content of local logs and sends it to a central Loki.

We have chosen this tool (instead than the widely spread ElasticStearch)

because:

• it well integrates with Grafana

• it is very easy to set-up …

Logs to scrapes are specified in the

configuration (we scrape default system

logs* and specific service logs)

* we do not export the journal because it clogs the system

Exported Logs

With a few custom dashboards and over 100+ graphs, it is easy to check the correct
functioning of all machines from remote and to quickly identify potential issues.

Visualization (1)

Cluster Overview

dashboard

WorkerNode

dashboard

Grafana issue #18785

Visualization (2)

Example query:

rate of HTCondor error messages from all workernodes

Logs DB

Alerts are generated according to the outcome of conditional tests involving

metrics or queries against certain criteria. Both Prometheus and Loki* can

be configured to trigger alerts when a custom set of conditions is met.

Alerts are handled and sent out by the

AlertManager …

… and are received by the AM-Executor,

which performs some pre-encoded actions.

* Loki’s alert system is new in v2.0 and uses a specific
plug-in (ruler), which in turns calls AlertManager …

Alerts & Automation (1)

victoria

M: 24 cores, 16Gb RAM, 50Tb HD

VictoriaMetrics

Loki

gingersnap

VM: 6cores, 40Gb RAM, 500 Gb HD

Prometheus

AlertManager

alertsfoithong

AM-Executor

Ansible

actions

Prometheus

Loki

AlertManager

Ruler

AM-Executor SMS

expressions

conditions

queries

web-hooks

scripts

@ Sys-Admin

Ansible

logs

metrics

actions

MatterMost

email

In summary, these are the stages of an alert:

0) Prometheus or Loki verify a test condition and triggers AlertManager

1) An alert messages is generated by AlertManager and sent as a web-hook

2) AM-Executor is an HTTP server that listens for alerts, parses their content, and

triggers custom commands matching the alert type and source

3) By running AM-Executor on the same management server that runs Ansible, we

can harness the full power of Ansible remote management, with a variety of play-books

prepared beforehand

Alerts & Automation (2)

case-switch to assign an action
case $AM_ALERTNAME in

InstanceFull) ansible-playbook -l $AM_NODE /etc/ansible/playbooks/do_cvmfsclean.yml -b
echo "> ansible-playbook -l $AM_NODE do_cvmfsclean.yml -b" >> $AM_LOGFILE
;;

CpuHot) ansible-playbook -l $AM_NODE /etc/ansible/playbooks/do_shutdown.yml -b
echo "> ansible-playbook -l $AM_NODE do_shutdown.yml -b" >> $AM_LOGFILE
;;

HdHot) ansible-playbook -l $AM_NODE /etc/ansible/playbooks/do_shutdown.yml -b
echo "> ansible-playbook -l $AM_NODE do_shutdown.yml -b" >> $AM_LOGFILE
;;

NodeLazy) ansible-playbook -l $AM_NODE /etc/ansible/playbooks/do_clean-enable.yml -b
echo "> ansible-playbook -l $AM_NODE do_clean-enable.yml -b" >> $AM_LOGFILE
;;

NodeDrain) ansible-playbook -l $AM_NODE /etc/ansible/playbooks/do_update.yml -b
echo "> ansible-playbook -l $AM_NODE do_update.yml -b" >> $AM_LOGFILE

;;

WayTooHot) ansible-playbook /etc/ansible/playbooks/do_shutdown.yml -b
echo "> ansible-playbook do_shutdown.yml -b" >> $AM_LOGFILE
;;

TooHot) . /etc/am-executor/send_sms_alert.sh
echo "> . /etc/am-executor/send_sms_alert.sh" >> $AM_LOGFILE
;;

*) echo "Alert not recognised: $AM_ALERTNAME !" >> $AM_LOGFILE
;;

esac

AM-Executor
AM-Executor is configured with a custom script that defines the action to

be taken based on the alert:

- Actions implemented in a case-switch

- Multiple alerts handled in a for loop

- The script can call an Ansible play-

book or trigger another script (SMS)

- Privileges for Ansible remote

management are set by a

password-less SSH key *

* This is not the best practice, but so far

it has been an ok solution

New addition: jobs draining, (wait),

custom update and reboot

Alert Conditions

Example (InstanceFull alert):

Prometheuswn001

filesystem_free = 0.5 Gb
filesystem_size = 50 Tb

filesystem_free / filesystem_size < 0.02

AlertManager

InstanceFull{“wn001”}

AM-Executor

ansible-playbook -l wn001 cvmfsclean.yml

Ansible

So far, only a limited

number of alert-

cases have been

implemented:

~20 min

+ NodeDrain …

Example Alert & Solution
See the InstanceFull Alert being generated and automatically resolved:

MatterMost messages (ClusterComms channel):

Ansible Logs

Some maintenance tasks, such as HTCondor updates, Kernel updates or other
CVE patches, do require the node to be rebooted.

In order not to loose running job, this is normally done in two steps:

- first the node is drained (HTCondor stops accepting new jobs)

- when all running jobs are finished (~24h), the node can be updated,
rebooted and then put back online.

Leveraging the existing Alert system, this can be easily automated:

Patching & Updating

Update steps and reboot
instruction are encoded in
an Ansible play-book

Prometheuswn001

condor_disable node_condor_enabled = 0
&& node_condor_jobs = 0

AlertManager

NodeDrain{“wn001”}

AM-Executor

ansible-playbook -l wn001 do_update.yml

~24h ~10 m

The system is being evaluated since Jan. 2021 and it seems well-behaved *:

 The alerting system can identify issues and send Alerts to site admins via
dashboard/emails/SMS/chat.

 In a few, well known cases, it can trigger simple recovery actions that run
automatically (clean HD, reboot, ...)

 The system can be exploited to cover maintenance tasks, such as installing
patches and updates that require the node to be drained and rebooted

 It was presented at vCHEP and shared with CERN Operational Intelligence #

 Can be extended to identify complex alerts based on combinations of metrics
and multi-step recovery actions (e.g., re-provisioning)

‽ Next idea: use Prometheus metrics for Anomaly Detection …

‽ To be added: Networking metrics (sFlow) …

Conclusions & Outlook

* It is well known that giving full control to the machines without proper evaluation will eventually lead to

Skynet

Thanks.

Dr. Emanuele Simili GridPP46 1st September 2021

ElasticFlow
We did some experimenting with ElasticSearch modules to analyze network flows from
switches (sFlow)

… but this is another story.

Create a new workernodes (assuming the node is cabled and plugged in):

 Fill in MAC, IP and HostName (in Ansible), then run the play-book to update the network

vi roles/dhcp/files/hosts.conf roles/dnsmasq/files/10.0.0.0_8

ansible-playbook update_networking.yml

 Create a PXE system profile, then boot the machine to install OS

vi systems/nodes/wn00x.yml

systemctl restart pxecli

 Finally run ansible to install the software and configure the workernode

ansible-playbook -l wn00x workernodes.yml

Add a new VO to the standard job submission system:

 Fill in the VO coordinates in a proper Ansible role, then run it

cp -r roles/vo-template roles/vo-xxx

vi roles/vo-xxx/files/xxx.grid-mapfile

ansible-playbook add_vo.yml -extra-vars “vo=xxx”

Clean CVMFS cache and re-enable node 00x:

 Just run the ansible play-book

ansible-playbook -l wn00x cleanCVMFS.yml

Example Procedures

Occasional Kernel or HTCondor update (needing a reboot):

 Drain jobs (24h), custom play-book , reboot, re-enable …

Example Logging

HTCondor logs:

/var/log/condor/

As an example, these are the bits in the PromTail configuration
(promtail.yml) that export general and HTCondor logs:

General Logs (system messages)

Alert Pending

Alert Firing

MatterMost Alerts

Ansible repository on our internal Git:

~70 Ansible roles

~50 Ansible play-books (incl. maintenance)

Git & Wiki

Internal wiki with

detailed procedures

and code snippets

for cluster built:

~50 pages

