

ATLAS: Optimising ATLAS throughput on GridPP

J. Walder GridPP46, Ambleside - September 2021

Timeline

Mode	GPDs	LHCb	ALICE
p-p	i I hU/Th	25-30/fb (~50/fb by LS4)	200/pb

Computing throughput on GridPP

- UK average of 483k HS06 over last year.
- 430k (for first 3 months),
- 520k (last 3 months)
- Peaks nowrunning above 600k HS06
- Major activities:
 - MC reco.
 - MC evgen.
 - Simulation
 - Group prod.
 - User analysis

Federation	Avg. HS06	2020 pledge	
UK-T1-RAL	~156 K	156k	173k
UK- NorthGrid	136 K	51k	50k
UK-ScotGrid	91.9 K	33k	45k
UK-London- Tier2	79.4 K	40k	43k
UK- SouthGrid	37.9 K	21k	22k

UK Contributions

- Relative to T1/2 at other clouds (excl. Cern) in last 12 months:
 - ~13% of completed jobs and ~10% of running slots.

- Very similar job success rates cf whole T1/T2 sites
- Main failure modes relate to stage-in / out failures or failures during direct-IO reading

Job completion status

Job failure modes UK T1/T2

CPU Efficiencies

- Broad range of CPU efficiencies for various job types:
- ~ 60% average CPU efficiency for IO intensive (e.g. MC merge) computations for UK sites
- Usual average metrics hide broad distributions in many job types

CPU efficiencies at UK (T1/2) sites for given job types in last year

Average CPU Efficiency Good jobs

GridPP Storage

- Site -> site transfers
 - ALL (excl. UK) -> UK
 - 63 PB transfers
 - UK->ALL (excl. UK)
 - 58 PB transfers
 - UK->UK
 - 12 PB transfers
- Intra-site transfers (or from remote SE for storageless sites) for inputs for batch Jobs:
 - 270 PB data transferred in.
- Regular deletion campaigns performed
 - Obsolete datasets (e.g superseded by more recent processings)
 - Analysers request exceptions for needed datasets.
 - Lifetime-based removal of untouched datasets
- 90PB of Deletions (over 150M objects) during this period.

Date

Date

Federation	Disk	Pledge
UK-London-Tier2	4635 TB	4046 TB
UK-NorthGrid	7797 TB	6730 TB
UK-ScotGrid	3946 TB	3094 TB
UK-SouthGrid	691 TB	690 TB
UK-T1-RAL	15540 TB	15540 TB

Other milestones

- Currently UK holds almost 30PB of data (in DATADISK),
 - Half contained at T2 sites
- ~30PB on TAPE at RAL
 - (17PB for MC, 13 PB for Data).
- During the last year, completion of number of major storage tasks:
- Glasgow:
 - Decommissioning of DPM storage (for ATLAS)
 - Completed Ceph commissioning; moved to production
- Oxford:
 - Migration to a storage-less site:
 - RAL operating as endpoint;
 - investigating XCache
- Note; storage decommissioning is O(3-6) month operation.

Data throughput

- Data throughput into Tier-2 sites over last year (averaged over 1 hour intervals):
 - Bottom left plot: Transfers via FTS / TPC (e.g writing into DATADISK)
 - Bottom right plot: Including writing of data to local disk (or direct IO) for jobs
 - Right; Transfers from RAL to Oxford Xcache (max 9.6 Gb/s, top 25% of transfers around 4+ Gb/s.

0.7

2.4

3.9

5.5

9.6

Moving to WebDav

- GridFTP transfers ~ deprecated;
 - WebDav protocol to be used for WAN and (ideally) LAN transfers
- dCache, DPM, Storm technologies all enabled
 - XrootD, main functionality provided with 5.2
- Echo / XrootD+Ceph functionally available, not yet deployed into production
 - Tuning of block / buffer sizes may provide throughput optimisation.

https download speed vs cache pagesize for RAL dev machine

Data Carousel

- Data Carousel:
 - Provide orchestration between workflow management (ProdSys2 and PanDA), DDM (Rucio) and tape endpoints
 - Enable large (bulk) processing campaigns by staging a fraction (e.g sliding window) of data to disk at any one time.
- iDDS (Intelligent Data Delivery Service) introduced:
 Interacts between Rucio and JEDI
 (Job Execution and Definition Interface) to release tasks (jobs) for partially staged datasets
 - Decouples (asynchronously)
 - data pre-processing, delivery, and main processing
 - Also being exploited for Hyper-parameter tuning tasks and in non HEP fields.

Streaming over WAN+Xcache Grid site Cold Storage transfer Disk Disk Tape RUCIO Send msg Reactor staging PandaDB request submit task PanDA prodsys

- Data Carousel in use for some time now for production.
- ATLAS moving to larger file sizes stored on Tape, O(5–10)GB.

Reconstruction Updates

- Athena reconstruction in release 22
 - new for run-3 and upcoming run-2 reprocessing
 - Move from MP (Multi-Processing) to (MT) Multi-Threaded model.
 - Plot (right) illustrating better sharing of memory from MT
- Throughput (plot bottom right), showing gains between r21 and r22:
 - improvements in track selection / optimisations contributing.
- On a ~ typically 8 core job with 16 GB allocation MT allows for better utilisation of resources:
 - e.g in r21 a 6-worker
 MP job just fits into the footprint.
 - 8 thread MT in 21 yields ~ 70% improvement in throughput.

ATL-SOFT-PUB-2021-002

Simulation updates

- Hard-scatter (process of interest) is superimposed on number of underlying 'pile-up' events in same collision process.
 - Up-to ~ 70 additional interactions during run-2 data-taking
 - (Even more complex as events in pre- and postbunch-crossing may impact trigger response, etc.
- Current simulation

- Min bias and hard-scatter combined at HITS level for digitisation
- MC+MC overlay approach:
 - Large sample of already digitised mixed min. bias events overlaid on hard scatter event.

- - Mean Number of Interactions per Crossing
- Reduction of CPU by 20% anticipated
- RDO (minbias) step performed at sites capable of higher resource requirements,
- Overlay step somewhat simpler on resources: Smaller Minbias files and with sequential read access;
 - Can be performed on larger set of sites, with prestaging of data

Derivation format and Workflow updates

- Primary analysis format (AOD) too large for general analysis:
- Run-2; O(100) formats of derived AODs of O(1%) initial volume.
- For Run-3:
 - Aim for single format, appropriate for most analyses, and prototype run-4 super-condensed format.
 - Unskimmed, but some reduction of information (e.g removed tracks below given pT).
 - Lossy compression potentially available for truncation of floating point bits in certain observables.
- DAOD_PHYS:
 - ~ 50kB/evt
- DAOD_PHYSLITE:
 - ~15kB/evt
 - Containing calibrated objects only
 - Potential for better hit rates in Xcaches, or whole years at single sites.
- Current DAOD formats
 - May exist for a while, while analyses complete
 - Some specialised DAOD formats will remain, for CP groups, and physics groups not able to utilise standard selections.
- AODs:
 - Available primarily on TAPE, with coordinated campaigns for new DAOD productions

Format	Event Size [kB]	Nominal total size / collision year / version
AOD	600	
DAOD_XYZ	40-450	
DAOD_PHYS	30–50	O(1.3) PB
DAOD_PHYSLITE	10–15	O(0.5) PB

Summary

- Run-3 rapidly approaching;
 - Number of Data challenge-type tests to begin (See talk from Alessandra Forti)
 - Full Run-2 reprocessing shortly to get underway
 - MC generation campaigns for run-3 to start ~ End-of-year.
- Transition to tokens;
 - VOMS deprecation during run-3
 - Token-capable services should generally be in place for start of run-3
 - Discussions are still active on tokens management and workflows
- Heterogeneous computing; ATLAS exploring and utilising various workflows (eg. Commercial Cloud, HPC, GPUs for hyper-parameter optimisations, etc.)
- New data formats for reduced analysis data-size footprint for run-3 (and run-4 prep. developed).
- Updates to reconstruction software and MC min-bias overlay; reduction CPU, IO consumption
- Feasibility of exploiting 'unreliable' storage and QoS under study (See talk from Rob Currie)
- Increased usage of TAPE for AOD storage (with Data carousel model)
 - Disk space will remain at a premium going into HL-LHC

14