

Tier-1 Job Efficiency

Alastair Dewhurst

Introduction

Accounting

Network Upgrade

Batch Farm Updates

Storage Improvements

Accounting

Measuring CPU Efficiency Accurately

Accounting

- The Tier-1 has struggled to provide accurate accounting information this year.
- This has been due to a variety of issues, which have often appeared after performing an upgrade.
 - Accounting problems often take time to be observable.
- Two outstanding issues:
 - Some job numbers are reported twice in May.
 - CPU Efficiency is wrong since April because many jobs are not reporting CPU usage (so it gets entered as 0).

Historical CPU Efficiency

CPU Efficiency at the RAL Tier-1

Historically CMS have had lower efficiency, although there is a clear drop since July 2020.

ALICE have more erratic efficiency in the last few years. They are running a wider variety of jobs which include more reads from both Echo and offsite.

Efficiency

Calculation

Incorrect

Accounting

- We have some manual calculations of efficiency in the last few months.
 - Most VOs in line with previous months.
 - Improvement in CMS (~50% efficiency)

Tier-1 Monitoring from April to July

EGI monitoring for last 6 months

Resource Centre RAL-LCG2 — CPU Efficiency (%) by VO and Month (LHC VOs)

VC	Jan 2021	Feb 2021	Mar 2021	Apr 2021	May 2021	Jun 2021
alice	45.1%	55.43%	54.73%	67.04%	38.33%	26.31%
atlas	73.53%	81.16%	80.36%	85.62%	43.58%	27.78%
cms	26.03%	28.55%	26.61%	31.42%	24.49%	14.48%
lheb	87.89%	81.27%	89.05%	92.52%	54.47%	31.45%
Total	63.89%	64.81%	73.89%	75.43%	39.29%	24.45%

Improvements

- We are still trying to understand the cause of the failure to report CPU usage.
 - RAL does run jobs in docker containers which is less common among sites.
- We will review if we had significant numbers of 0 CPU usage jobs in the past.
 - Some months we were scratching our heads as to why efficiency was lower.
- Monthly Tier-1 meeting has been restarted to sanity check all accounting numbers.
- Test jobs to be run that:
 - Sleep (~0% CPU Efficiency).
 - Run a CPU intense process (~100% CPU Efficiency).
 - Request 2 cores and run a CPU intense process on one (~50% CPU Efficiency).

Network Upgrade

Spoilers Look away now if you don't want to know the conclusion to Katy's talk.

CMS Efficiency

- If CMS are pulling data from Offsite the job efficiency is lower.
- In the last few weeks, the 40Gb/s link that CMS-AAA traffic is routed via has been saturated.

CMS job efficiency as a function of location

CMS AAA traffic at RAL

Designing a new Tier-1 Network

- We decided to build a new network for the RAL Tier-1 with a Spine / Leaf topology.
 - New CTA Tape system is on a separate network pod.
- Wanted to provide a uniform experience for end users:
 - Dual Stack everywhere.
 - All machines accessible to the outside world will be on the LHCOPN and LHCONE.
- We choose a single vendor (Mellanox) with the Cumulus OS for all systems.
 - Also required storage and CPU nodes to come with Mellanox NICs.
- Hardware purchased in the last two years can be easily added to new network:
 - Review other hardware on case by case basis.

Tier-1 Network Architecture

Tier-1 Network Progress

Super Spine New Legacy Tier-1 CTA Tier-1 80Gb/s to JANET 400Gb/s to Site Core Storage Nodes 80Gb/s to CERN 100Gb/s to CERN 200Gb/s to JANET Worker 40Gb/s to Site Core Nodes Tier-1 Exit Router

Firewall upgrade

- From July 2020 April 2021, due to everyone working from home there was significant load on the firewall affecting download speeds.
- Firewall upgrade completed in April 2021.
 - No obvious difference observed between IPv4 and IPv6

Network upgrade

- How did our network get into this state?
 - We are about 3 years behind other Tier-1s.
- How do we ensure this doesn't happen again?
 - -£900k investment in network over last 2 years.
 - CHEP paper with design out to 2031.
 - Jonathan Churchill is SCD network architect

Network Backward Look

Batch farm updates

Batch farm

- Since ~April 2021 Tom Birkett has been the batch farm manager.
- Several upgrades have been performed, including:
 - ARC-CEs
 - HTCondor
 - Docker
- Several performance tweaks as well, to balance the load with the capability of the nodes.

WN Download speeds from Echo

Facilities Council

WN Load

- I/O contention on WN is one reason why transfers can be slow.
 - All non-SSD generations show some contention.
- Reducing number of jobs run on older generations to reduce I/O contention.

Scheduling Issues

- Chris Brew created a test job to test CPU efficiency.
 - He ran a test on an empty 2017 WN (64 job slots total)

Processes	Efficiency
8	95.6
16	90.8
32	59.5
64	26.4

- Our batch farm is configured to reserve some nodes for multi-core only jobs.
 - This concentrates CMS (high I/O jobs) on to certain nodes.
- Even though SSD nodes currently appear to remove any I/O contention, the more we can spread load the better.

Storage improvements

XRootD 5.X

- In April 2021 a stable version of XrootD 5 was released.
 - We had tested and rolled it out within 6 weeks.
- XrootD 5 contained many improvements for Echo.
 - XRootD 5.2.0 introduced strict checksumming by default which reduced performance. This has been disabled.
 - Cache settings have been re-tuned.
 - TPC now works and we are waiting scale tests from ATLAS

Performance tuning

Vector Reads

- When Echo was first deployed it was assumed that it would be faster at transferring entire objects.
- XCaches were deployed on WN to fetch blocks of data.
 - This also protects against pathological jobs.
- Analysis found that XCaches worked well but if it is busy it can "pass through" the request.
- Vector reads appear to trigger job failures.

Future work

- Sarah Byrne (no relation) is starting in September to work with lan Johnson on improving code base.
- Will be working on consolidating code.
- Will remove strict locking of files for reads.

XCache

XrdCeph

LibradosStriper

