
1

Performance Visualization of ROOT

I/O on HPC Storage Systems

Lightning Talks

06/09/2021

Rui Reis

2

Contextualization

• In order to analyse the tremendous amount of data generated from High

Energy Physics (HEP) experiments, CERN uses the ROOT framework.

• Previous versions of ROOT used the TTtree data format, however, it will be

soon replaced in v7 by RNTuple, an efficient columnar storage format

developed by CERN.

• RNTuple also provides a set of metrics for the analysis of data ingestion

performance, users can also add custom metrics, as desired.

Current state-of-the-art

Rui Reis

3

Contextualization

Despite its capability to provide the user with useful insights, current RNTuple

metrics constraint to counter aggregate type metrics, which are too simple in

many scenarios (e.g., when we need to analyse the distribution of a certain

metric)

Metrics simplicity

Rui Reis

4

Challenges

• Current RNTuple metrics are too simple to provide viable information about

the distribution of data.

• Which makes the following questions hard to answer:

• What is the distribution of the size of read requests to load an entire

ntuple cluster?

• How can we know if our ntuple metrics are unevenly distributed?

• How can we detect the existence of outliers in our metrics?

• Possible solutions need to be efficient and be able to construct histograms

on-the-go.

Rui Reis

5

Solution #1

Cons:

• Requires knowledge of underlying data

• Unable to detect outliers

• Error-prone

User-Provided Set of Intervals

Rui Reis

6

Solution #2

Log Scale

Rui Reis

Cons:

• Amplitude of intervals is exponentially large

• Hard to interpret the meaning of histogram output

• Able to detect some outliers, depending on scale

7

Solution #3

Active Learning Phase

Rui Reis

Cons:

• Heavily dependant on the distribution of samples in the LP

• Occurrence of outliers in LP deeply affects efficiency of

histogram

• Can’t effectively separate outliers from real distribution

8

Solution #4

Fixed Width Bins

Rui Reis

9

Solution #4

• If a new value, N, is greater or equal to the offset, then:

• Key = (N – offset) / width + #{below offset bins} + 1

• Else:

• Key = #{below offset bins} – (offset – N) / width

• Examples, width=100, offset=170:

• N = 178  key = (178 – 170) / 100 + 2 + 1 = 3

• N = 384  key = (384 – 170) / 100 + 2 + 1 = 5

• N = 105  key = 2 – (170 – 105) / 100 = 2

• N = 69  key = 2 – (170 – 69) / 100 = 1

Calculating the bin key (Fill Algorithm)

Rui Reis

10

Sample #1

After the desired analysis, the histogram content can be dumped as a CSV and

fed to external plotting utilities for visual analysis.

ROOT I/O - Tutorial #5

Rui Reis

11

Sample #2

Convert LHC 1 run open data from TTree to RNtuple

Rui Reis

12

Conclusion

• Performance visualization can easily allow a detailed analysis of the

underlying metrics.

• Histogram output format can be easily ingested by external plotting utilities.
• More information can be found on the PR: [ntuple] Performance visualization

improvements by ruipreis · Pull Request #8880 · root-project/root (github.com)

Rui Reis

https://github.com/root-project/root/pull/8880

13

QUESTIONS?

ruipedronetoreis12@gmail.com

Rui Reis

