._."=| CERN
1= openlab

Performance Visualization of ROOT
1/0 on HPC Storage Systems

Lightning Talks

Rui Reis

Contextualization

Current state-of-the-art

* |In order to analyse the tremendous amount of data generated from High
Energy Physics (HEP) experiments, CERN uses the ROOT framework.

* Previous versions of ROOT used the TTtree data format, however, it will be
soon replaced in v7 by RNTuple, an efficient columnar storage format
developed by CERN.

 RNTuple also provides a set of metrics for the analysis of data ingestion
performance, users can also add custom metrics, as desired.

ntuple->EnableMetrics();

RNTupleMetrics inner("inner");
ctr = inner.MakeCounter<RNTuplePlainCounter *>("plain",

=¥ CERN o
1= openlab Rui Reis 2

Contextualization

Metrics simplicity

Despite its capability to provide the user with useful insights, current RNTuple
metrics constraint to counter aggregate type metrics, which are too simple in
many scenarios (e.g., when we need to analyse the distribution of a certain

metric)

=" CERN
I+ openlab

RNTupleReader.
RNTupleReader.
RNTupleReader.
RNTupleReader.
RNTupleReader.
RNTupleReader.
RNTupleReader.
RNTupleReader.
RNTupleReader.
RNTupleReader.
RNTupleReader.
RNTupleReader.
RNTupleReader.
RNTupleReader.
RNTupleReader.
RNTupleReader.
RNTupleReader.

RPageSourceFile.
RPageSourceFile.
RPageSourceFile.
RPageSourceFile.
RPageSourceFile.
RPageSourceFile.
RPageSourceFile.
RPageSourceFile.
RPageSourceFile.
RPageSourceFile.
RPageSourceFile.
RPageSourceFile.
RPageSourceFile.
RPageSourceFile.
RPageSourceFile.
RPageSourceFile.
RPageSourcefFile.

nReadV| |number of vector read requests|16

nRead| |number of byte ranges read]|16

szReadPayload|B|volume read from storage (required)|7451486
szReadOverhead|B|volume read from storage (overhead)|3196
szUnzip|B|volume after unzipping|8000000

nClusterLoaded| |number of partial clusters preloaded from storage|16
nPageloaded| |number of pages loaded from storage|110

nPagePopulated| |number of populated pages|110

timeWallRead|ns|wall clock time spent reading|2571172
timeWallUnzip|ns|wall clock time spent decompressing|10002890
timeCpuRead|ns|CPU time spent reading|4325000

timeCpuUnzip|ns|CPU time spent decompressing|11030000

bwRead |MB/s|bandwidth compressed bytes read per second|2899.332289
bwReadUnzip|MB/s|bandwidth uncompressed bytes read per second|3111.421562
bwUnzip|MB/s|decompression bandwidth of uncompressed bytes per second|799.768867
rtReadeEfficiency||ratio of payload over all bytes read|©.999571
rtCompression||ratio of compressed bytes / uncompressed bytes|0.931436

Rui Reis

Challenges

« Current RNTuple metrics are too simple to provide viable information about
the distribution of data.
* Which makes the following questions hard to answer:
« What is the distribution of the size of read requests to load an entire
ntuple cluster?
 How can we know if our ntuple metrics are unevenly distributed?
 How can we detect the existence of outliers in our metrics?
« Possible solutions need to be efficient and be able to construct histograms
on-the-go.

=¥\ CERN S
‘1= openlab Rui Reis 4

Solution #1

User-Provided Set of Intervals

0
Cons:
* Requires knowledge of underlying data
« Unable to detect outliers
* Error-prone
-{:}.gﬁ;*gmb Rui Reis 5

Solution #2

Log Scale

Cons:
« Amplitude of intervals is exponentially large
« Hard to interpret the meaning of histogram output
« Able to detect some outliers, depending on scale

=¥\ CERN S
1= openlab Rui Reis 6

Solution #3

Active Learning Phase

Learning Phase (LP)

adjustment of
min and max
bounds in first
100 samples

histogram of N
bins from min to
max bounds

=" CERN
I+ openlab

underflow
B —

N =4 bins
overflow

min max

Heavily dependant on the distribution of samples in the LP
Occurrence of outliers in LP deeply affects efficiency of

histogram

Can’t effectively separate outliers from real distribution

Rui Reis

-

Solution #4

Fixed Width Bins

width = 100

#1 #2 #3 #4 #5

70 270 370
170

=¥\ CERN S
1= openlab Rui Reis 8

Solution #4

Calculating the bin key (Fill Algorithm)

 Ifanewvalue, N, is greater or equal to the offset, then:
 Key = (N - offset) / width + #{below offset bins} + 1
« Else:
« Key = #{below offset bins} — (offset — N) / width
« Examples, width=100, offset=170:
e« N=178 < key=(178—-170)/100+2+1=3
 N=384 & key=(384-170)/100+2+1=5
« N=105© key=2-(170-105)/100=2
- N=69 < key=2-(170-69)/100=1

=¥\ CERN S
1= openlab Rui Reis 9

Sample #1

ROOT I/O - Tutorial #5

After the desired analysis, the histogram content can be dumped as a CSV and
fed to external plotting utilities for visual analysis.

lower bound,upper bound,count
370000,379999,1 |
400000,409999,1 i '

450000,459999,5
460000,469999,2

490000,499999,7 - . .

=% CERN
I+ openlab

Rui Reis 10

Sample #2

Convert LHC 1 run open data from TTree to RNtuple

=0 . .
44+ openlab Rui Reis 11

Conclusion

« Performance visualization can easily allow a detailed analysis of the
underlying metrics.

« Histogram output format can be easily ingested by external plotting utilities.

« More information can be found on the PR: [ntuple] Performance visualization
improvements by ruipreis - Pull Request #8880 - root-project/root (github.com)

=0 . .
44+ openlab Rui Reis 12

https://github.com/root-project/root/pull/8880

QUESTIONS?

ruipedronetoreisl2@gmail.com

ShLcern
Fesenasb ... RuUiReis

