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Introduction

▶ Event selection and/or categorization - an
important step in any collider data analysis.

▶ Improves sensitivity by reducing the amount of
“background” and makes data more “signal”
rich.

▶ The “signal is better than background”
heuristic has paved the way for ML techniques
in event selection.
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Introduction

A straight forward ML approach to event selection:
▶ Train a classifier to distinguish between signal

and background events.
▶ Use an appropriately chosen threshold on

classifier output.

𝑝(𝒆) ∼ 𝑠(𝒆)
𝑠(𝒆) + 𝑏(𝒆)

0 ≤ 𝑝 ≤ 1

𝒆 is the feature vector
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Introduction

▶ This approach is not perfectly aligned with the physics goals, namely
▶ improve significance of a potential excess
▶ improve the precision in parameter measurement

(taking into account systematic uncertainties, in both cases)
▶ The presence of such a misalignment is well established.

If you’re not training to optimize physics goals directly, there’s no reason to
believe physics goals will be optimized.

▶ The source of misalignment is not well understood.
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Introduction

Rectifying the misalignment

Previous attempts Our approach

▶ Classify a (mini) batch of training
data → perform analysis.

▶ Use the sensitivity of the analysis
(signal significance or
measurement uncertainty) as
measure of performance of the
classifier used.

▶ Train classifier based on this
performance measure.

This approach has its difficulties.
S. Whiteson and D. Whiteson, 2009

A. Elwood and D. Krücker [1806.00322]

▶ Understand the sources of
misalignment at an
information-theoretic level.

▶ Rectify them and make training
possible within the traditional ML
techniques on an event-by-event
basis.
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Part 1:
Signal discovery

Task: Over all possible event selectors, find the one that maximizes

the expected signal significance (statistical for now)
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Source of misalignment: Intuitive outlook
▶ Cutting based on the event variable 𝒙 doesn’t

help. If anything, we lose sensitivity by losing
bins.

▶ Background needs to be removed “from
below”, using information in 𝒆 complementary
to 𝒙.

▶ 𝑝(𝒆) and 𝒙(𝒆) have overlapping information.
Especially if 𝒙 is a “good” event variable. The
result...

▶ Compromise between gain in sensitivity
from using complementary information in 𝒆
and loss from using non-complementary
information.

▶ Additional effect: Background shaping.
Doesn’t introduce bias, but could worsen the
impact of systematic uncertainties.
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Source of misalignment: Information-theoretic outlook

How/why does event selection/categorization help?

▶ Consider two boxes of phase space, with (𝑆1, 𝐵1) and (𝑆2, 𝐵2) expected sig
and bg events respectively.

▶ The only information we are provided is how many events were observed in
each box.

▶ Some measures of sensitivity of the experiment to the presence of signal:
2∑︁
𝑖=1

𝑆2
𝑖

𝐵𝑖

,

2∑︁
𝑖=1

𝑆2
𝑖

𝑁𝑖

,

2∑︁
𝑖=1

[
−𝑆𝑖 + 𝑁𝑖 ln

(
𝑁𝑖

𝐵𝑖

)]
▶ Let the two boxes be mixed and analyzed together... information loss...

𝑆tot = 𝑆1 + 𝑆2, 𝐵tot = 𝐵1 + 𝐵2

▶
𝑆2tot

𝐵tot
≤

2∑︁
𝑖=1

𝑆2
𝑖

𝐵𝑖

,
𝑆2tot

𝑁tot
≤

2∑︁
𝑖=1

𝑆2
𝑖

𝑁𝑖

,
∑︁
𝑖

[
−𝑆tot + 𝑁tot ln

(
𝑁tot

𝐵tot

)]
≤

2∑︁
𝑖=1

[
−𝑆𝑖 + 𝑁𝑖 ln

(
𝑁𝑖

𝐵𝑖

)]
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Source of misalignment: Information-theoretic outlook
How/why does event selection/categorization help?

▶ Mixing regions of phase-space with different 𝑆/𝐵 (or 𝑆/𝑁) values causes
loss of sensitivity.

▶ Mixing regions of 𝒆 with different values of 𝑝(𝒆) causes loss of sensitivity.
▶ Reducing 𝒆 → 𝒙 causes such a mixing.
▶ Event categorization helps by separating regions of phase-space that

would otherwise be mixed.

𝑆2tot

𝐵tot
→

𝑆21

𝐵1
+
𝑆22

𝐵2

Event selection helps by removing some regions of phase-space that
would otherwise mix with other regions and worsen the sensitivity.

𝑆2tot

𝐵tot
→

𝑆21

𝐵1

▶ Why separate/remove regions that aren’t going to mix in the first place?
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The fix: Bin dependent cut on 𝑝(𝒆)

▶ A cut on 𝑝(𝒆) can be used to maximize
𝑆2

𝐵

(
or

𝑆2

𝑁
, etc

)
. (Neyman–Pearson Lemma)

▶ An 𝒙 dependent cut on 𝑝(𝒆) can be used to
maximize 𝑠2 (𝒙)

𝑏 (𝒙) at each value of 𝒙.

▶ Sensitivity ∼
∫

𝑑𝒙
𝑠2 (𝒙)
𝑏(𝒙) ∼

∑︁
𝑖∈𝒙 bins

𝑠2
𝑖

𝑏𝑖

▶ The cut at a given value of 𝒙 only depends on the
distribution at that value of 𝒙, ensuring
complementarity.

▶ Guiding principle: “Make the most out of each bin.”
▶ How to derive these optimal 𝒙 dependent cuts?

Subject of a longer talk. Short answer...
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ThickBrick https://prasanthcakewalk.gitlab.io/thickbrick/

▶ Input: Training data with 𝑝(𝒆) and 𝑥(𝒆) for each event. 𝑝(𝒆) could be learned
using current ML techniques.

▶ Output: Optimal 𝒙 dependent thresholds on 𝑝(𝒆) to maximize any of the
following performance measures.
Note: None of these can be written as sum of event-wise profit functions.

𝐷Neym𝜒2 =

𝐶∑︁
𝑐=1

∫
𝑑𝒙

𝑠2𝑐 (𝒙)
𝑛𝑐 (𝒙)

𝐷Pear𝜒2 =

𝐶∑︁
𝑐=1

∫
𝑑𝒙

𝑠2𝑐 (𝒙)
𝑏𝑐 (𝒙)

𝐷KL =

𝐶∑︁
𝑐=1

∫
𝑑𝒙

[
−𝑠𝑐 (𝒙) − 𝑛𝑐 (𝒙) ln

[
1 − 𝑠𝑐 (𝒙)

𝑛𝑐 (𝒙)

] ]
𝐷revKL =

𝐶∑︁
𝑐=1

∫
𝑑𝒙

[
𝑠𝑐 (𝒙) + 𝑏𝑐 (𝒙) ln

[
1 − 𝑠𝑐 (𝒙)

𝑛𝑐 (𝒙)

] ]
𝐷J =

𝐶∑︁
𝑐=1

∫
𝑑𝒙

[
−𝑠𝑐 (𝒙) ln

[
1 − 𝑠𝑐 (𝒙)

𝑛𝑐 (𝒙)

] ]
𝐷B =

𝐶∑︁
𝑐=1

∫
𝑑𝒙

[
𝑛𝑐 (𝒙) −

𝑠𝑐 (𝒙)
2

− 𝑛𝑐 (𝒙)

√︄
1 − 𝑠𝑐 (𝒙)

𝑛𝑐 (𝒙)

]
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ThickBrick working

▶ Uses a modified k-means clustering
algorithm that “clusters” data into different
categories.

▶ Uses a (kernel) regression-based approach
to avoid having to work in discrete 𝑥-bins. 10 5 0 5 10
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0.2

0.4

0.6

0.8
Cat 1
Cat 2

Random assignment

Actual clustering done with 1,000,000 data points, only 500 shown.

Converges too fast to see the clustering in action :/
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▶ Uses a modified k-means clustering
algorithm that “clusters” data into different
categories.

▶ Uses a (kernel) regression-based approach
to avoid having to work in discrete 𝑥-bins. 10 5 0 5 10

0.0

0.2

0.4

0.6

0.8
Cat 1
Cat 2

Iter 4: Compute next boundary

Actual clustering done with 1,000,000 data points, only 500 shown.

Converges too fast to see the clustering in action :/

Konstantin T. Matchev, Prasanth Shyamsundar [arXiv:1911.12299] 10/17 Go to end



The toy data we’ve been looking at
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Results: Flat cut selector vs ThickBrick selector using 𝐷Pear𝜒2
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Results: Categorizers using 𝐷Pear𝜒2
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▶ Flat cut in 𝑥𝑐 wasn’t
forced—the algorithm never
saw 𝑥𝑐.

▶ Diminishing returns for
increasing 𝐶... approach the
performance of “direct
inference from ML output”
with just event categorization.

Konstantin T. Matchev, Prasanth Shyamsundar [arXiv:1911.12299] 13/17 Go to end



A teaser for

Part 2:
Parameter measurement

Some signal events can be worse than background
events...
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Sensitivity to parameter

In one bin:

▶ Variation due to parameter value change ∼ 𝑑𝑛

𝑑\

▶ Statistical uncertainty in 𝑛 ∼
√
𝑛

▶ Measurement uncertainty (inverse) ∼ 1

𝑛

(
𝑑𝑛

𝑑\

)2
(
Think

𝑠2

𝑛

)
(Sum or integrate over bins to get Fisher information.)

▶ Background is insensitive to \. So background is
bad.

= 171

= 172

= 173

= 174

= 175
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Phase-space mixing
▶ Signal in red. Bg in blue.
▶ \ dependence in different parts of phase space

being mixed could have opposite signs.
▶ These signal events are worse for sensitivity than

background events!
an extreme example of the misalignment in

parameter measurement case.

▶ Event selection should be based on “score” —
sensitivity of an event’s weight to parameter value.

▶ Estimating score...
▶ MadMiner [J. Brehmer, K. Cranmer, I. Espejo, F. Kling, G. Louppe,

J. Pavez [1906.01578, 1907.10621]]
▶ DCTR [A. Andreassen, B. Nachman [1907.08209]]
▶ + our own hat in the ring in part 2

▶ Event selection using the score to maximize Fisher
information — subject of part 2

= 171
= 172
= 173
= 174
= 175

+

= 175
= 174
= 173
= 172
= 171

=
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▶ These signal events are worse for sensitivity than

background events!
an extreme example of the misalignment in

parameter measurement case.

▶ Event selection should be based on “score” —
sensitivity of an event’s weight to parameter value.

▶ Estimating score...
▶ MadMiner [J. Brehmer, K. Cranmer, I. Espejo, F. Kling, G. Louppe,

J. Pavez [1906.01578, 1907.10621]]
▶ DCTR [A. Andreassen, B. Nachman [1907.08209]]
▶ + our own hat in the ring in part 2

▶ Event selection using the score to maximize Fisher
information — subject of part 2
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Summary and Upcoming

Summary:
▶ We have optimized event selection and categorization

for signal discovery (statistical significance, exactly
specified signal)

Upcoming:
▶ Part 2: Optimal for parameter measurement

(pessimistic: By Apr 2020)
1 2 3 4 5

No. of categories

4.75

5.00

5.25

5.50

5.75

6.00

D
Pe

ar
2

1e 2

Flat threshold selector
ThickBrick selector
ThickBrick categorizer
Theoretical upper-limit

▶ Part 3: “Optimal” over a range of signal parameter values
(pessimistic: By Jul 2020)

▶ Advantage of “event selection followed by event variable based search”: Sensitivity
over a range of signal param, say mass of new particle.

▶ Part 3: “Optimal” incorporating systematic uncertainties!!!
(pessimistic: By Jul 2020)

▶ Using sensitivity of events to nuisance parameter value
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Bonus 1: Decorrelation

The decorrelation properties can have applications in
▶ Mass decorrelation in jet taggers
▶ Decorrelating classifier trained on “naturally mixed

samples” [LLP, CWoLa] from, say, differing underlying
kinematics.

▶ Can do things other than 𝑠2/𝑏, like −
√
𝑠𝑏.

𝐶∑︁
𝑐=1

∫
𝑑𝒙

𝑠2𝑐 (𝒙)
𝑏𝑐 (𝒙)

−
𝐶∑︁
𝑐=1

∫
𝑑𝒙

√︁
𝑠𝑐 (𝒙)𝑏𝑐 (𝒙)
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Bonus 2: A broader ML implication

▶ Training was done in two phases
1. Learn 𝑝(𝒆) using ML
2. Get optimal thresholds on 𝑝(𝒆) iteratively.

▶ But the two steps can be combined.
▶ Original idea did event selection directly based on 𝒆 (iteratively or

stochastically) — temporarily shelved in favor of the two phase approach
for easy adoptability.

Takeaway:
▶ It is possible to train neural networks event-by-event to optimize cost

functions that cannot be written as a sum of an event-wise loss function.
▶ Clues lie in the construction of our method in part 1, for those interested.

(Long, but an easy read)

Questions?

Jump to

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
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