
Engineering APIs for
Accelerator Controls Software

Bartek Urbaniec BE-CSS-CSA (with special thanks to Anti Asko and Lukasz Burdzanowski)

02/12/2021 https://indico.cern.ch/event/1054892

• Introduction to APIs

• APIs in the Accelerator Control System

• APIs in more depth – what, why and how?

• Use-case study: CCDA, the Controls Configuration Data API

• Practical APIs:

security, monitoring, alerting, tracing

• Operational experiences:

performance, reliability, availability, testing, to cache or not to cache,…

• Outlook for Controls APIs

Agenda

02 December 2021 Bartek Urbaniec | Engineering APIs for Accelerator Controls Software 2

Introduction to APIs

02 December 2021 Bartek Urbaniec | Engineering APIs for Accelerator Controls Software 3

• An API is a connection between software components. It is a type of software interface,

offering a service to other pieces of software.[wikipedia]

• APIs can be implemented using a variety of technologies e.g. RMI, WinCC OA, CORBA,

OPC-UA, REST, SOAP, gRPC

• In the presentation I will mainly refer to REST APIs implemented in Java and used in the

Accelerator Control System

Basic Introduction to APIs

02 December 2021 Bartek Urbaniec | Engineering APIs for Accelerator Controls Software 4

API stands for Application Programming Interface

https://en.wikipedia.org/wiki/API

Web applications

(CCDE, TIMBER, AFT….)

Services

(CCS, NXCALS,

LSA…)

Front-end Tier
Real time control and acquisition

Business Tier
General purpose & business specific services

Presentation Tier
Graphical applications

02 December 2021 Bartek Urbaniec | Engineering APIs for Accelerator Controls Software 5

APIs in the Accelerator Control System

RDA3

RMI/JMS

REST/WebSocket/

SSE/gRPC

The main purpose of the Controls Configuration

Service (CCS) is to unite and centralize all the

information relevant to the Control systems (CS)

in such a way that integration between various

Control sub-systems is consistent and efficient.

Controls

Configuration

Data

Life-cycle

REST REST

LSA

NXCALS
REST

Controls Configuration Data APIControls Configuration Data Editor

Controls REST-based APIs in practice

02 December 2021 Bartek Urbaniec | Engineering APIs for Accelerator Controls Software 6

Controls APIs are sets of defined rules that describe how software communicates with each another.

The API is an intermediary layer, between a Controls service (Server) and its Clients to exchange data &

commands

Base client-server workflow:

1. A client initiates an API call - request

2. If request is valid, the API makes a call to external program - server

3. The server sends response to the API

4. The API transfers data to the client

The API is a contract between server and client

• To expose system data and functionalites to clients

• To allow the clients to program specific complex use cases → “script” the service

• To enable and to improve integration between systems and services → “translate” data structure/etc.

• Internally, API can increase quality of code (and product) by breaking large monoliths into smaller

functional services → low coupling, high-cohesion – OOD principles

Why we need an API

02 December 2021 Bartek Urbaniec | Engineering APIs for Accelerator Controls Software 7

OBD2 (On-board

diagnostics) interface which

allows to access car data.

i.e. PID 0D – car speed

Typing “CERN” in YouTube search

will execute a query like below

YouTube.Search.list(‘id,snippet',

{q: 'CERN', maxResults: 25});

• Public API
open to all clients – any client (authenticated/authorised) may use it

• Partner API
dedicated for agreed clients – available only to some clients, often via dedicated gateways

• Internal API
not for external clients – inside internal network or between internal processes

• Composite API (Proxy API)
used to combine several APIs into one

Kinds of APIs

02 December 2021 Bartek Urbaniec | Engineering APIs for Accelerator Controls Software 8

By Usage

POST /order

{

"order-request": [

{

"path": "/client”. "ref": "client", "body": {"name": "Bartek"}

},

{

"path": "/order",

"body": {"customer": "@{client.id}", order: {"name": "My new book"}}

}

]

}

Typical kinds of APIs for the Web

02 December 2021 Bartek Urbaniec | Engineering APIs for Accelerator Controls Software 9

• RPC (Remote Procedure Call)
request-response protocol (XML-RPC, JSON-RPC)

• SOAP (Simple Object Access Protocol)
messaging protocol with XML as exchange format

• REST (REpresentational State Transfer)
set of architectural constraints, not a protocol or a standard.

• Client/server architecture

• Stateless

• Cacheable

• Uniform interface

• Layered system

• gRPC* (Google)
based on HTTP2.0, uses Protocol Buffer to serialise data to binary format
* yes, technically gRPC generates stubs for any client, abstracting HTTP2.0

• GraphQL (Facebook)
based on HTTP, allows clients to structure data

By Technology

POST /getAccelerator HTTP/1.1
HOST: ccda
Content-Type: application/json
{"name": "LHC"}

JSON-RPC

<?xml version="1.0"?>
<soap:Envelope (..)>
<soap:Body>
<m:GetAcceleratorDetails xmlns:m="https://ccda/accelerators">

<m:Name>LHC</m:Name>
</m:GetAcceleratorDetails>

</soap:Body>
</soap:Envelope> SOAP

GET /api/core/accelerators/LHC HTTP/2.0
Host: ccda
Connection: keep-alive
Accept: text/html,application/json
Accept-Encoding: gzip, deflate, br REST

:method POST
:path /Accelerators/getAccelerator

(encoded message using protocol buffers) gRPC

Request:
{
accelerator {

name
}

}
Response:
{ "accelerator": {

"name": ”LHC"
}

} GraphQL

02 December 2021 Bartek Urbaniec | Engineering APIs for Accelerator Controls Software 10

API Technology Trends

Worldwide interest over last 12months (Source: Google Trends)

REST SOAP gRPC GraphQL RPC

• Make it easy to work with – should be intutive to the users

• Make it stable – limit breaking changes to bare minimum
no changes/API versioning/EOLs

• Make it fast and performant
number of requests should not significantly impact the API

• Make it technology agnostic when justified – driven by users needs
API should be accessible from as many technologies (languages) as it is possible

API – Goals & Challenges

02 December 2021 Bartek Urbaniec | Engineering APIs for Accelerator Controls Software 11

APIs in practice

02 December 2021 Bartek Urbaniec | Engineering APIs for Accelerator Controls Software 12

CCS APIs – how we do it – real-life examples

02 December 2021 Bartek Urbaniec | Engineering APIs for Accelerator Controls Software 13

JSON representationCCDA object-model (Java)Relational DB model of Controls Device Classes *

Complex

DB model

Simple and

intuitive model

Language

independent

* Controls Device Class – an abstraction

of physical equipment or a process/service,

used to interact with the machines

(acquisition, settings, commands).

The classic 3-tier architecture

02 December 2021 Bartek Urbaniec | Engineering APIs for Accelerator Controls Software 14

Java Client libraries and

language independent

access for all our users

OpenFeign

Ribbon

Clients

Client-side load

balancing and resiliency

ReST

System entry-point

HTTP routing

Spring Gateway

Server nodes

Stand-alone embedded

Java HTTP servers

Spring Boot

Controls Configuration

Database

Oracle 19C

Traffic telemetry, metrics, …

ELK (BE-CSS Tracing)

Load-balancing

Server-side load

balancing and

health-checks

Eureka

Oracle Connection Pool

using FAN* with RAC*

Client Server Database

Yes, We want to containerize server

side and horizontally scale it…

* Oracle Real Application Clusters

(Oracle RAC) runs on Oracle

Clusterware, which provides a highly

available (HA) application framework.

* Fast Application Notification (FAN)

is a notification mechanism used to

notify other processes about cluster

configuration and service-level

information.

API in action

02 December 2021 Bartek Urbaniec | Engineering APIs for Accelerator Controls Software 15

Spring JPA in practice (with Hibernate) – an entity mapped to a table

Client Server Database

Lombok – reduce boilerplate code – e.g. auto generated getters/setters

Jackson – high performance JSON processor for Java

How to protect the API

02 December 2021 Bartek Urbaniec | Engineering APIs for Accelerator Controls Software 16

Authentication Authorization

Authentication verifies client/user identity Authorization determines client/user access to data

Common Authentication Methods:

• password (what you know)

• token/digital id card (what you posses)

• finger print/face recognition (what you are)

• location (where you are, e.g.: all connections from CCC)

Common Authorization Methods:

• RBAC - Role-based access control
• with a specific role (OP-Expert) you may control accelerator

equipment

• ABAC – Attribute-based access control
• with a specific attributes (time, location, role) you may control

accelerator equipment only at a given time and from a given

location

Authentication and authorisation
basic workflow

02 December 2021 Bartek Urbaniec | Engineering APIs for Accelerator Controls Software 17

Client

Authentication and

authorization server

Resources server

Login and password

User token

Request + user token

Requested data

Persisted data

Persistance server

Server will authenticate a user if

credentials are correct

Server will provide resources if user is

authenticated and authorised to obtain a data

HTTP 401: Unauthorized incorrect user/password

JAVA REST based Web server

protected by Spring Security

Oracle DB

User token as a cookie or request header

SSO Keycloak based on OpenID/SAML and OAuth2

HTTP 401: Unauthorized user is not authorized

HTTP 403: Forbidden user doesn't have privileges

Monitoring:

• shows that all process (servers) are up and running

• gives base information about processes condition

Monitoring, alerting and tracing

02 December 2021 Bartek Urbaniec | Engineering APIs for Accelerator Controls Software 18

Telemetry with HTTP Load balancer
based on HAProxy

02 December 2021 Bartek Urbaniec | Engineering APIs for Accelerator Controls Software 19

Free and open source high availability load balancer for TCP and HTTP based applications

On 64-core ARM server HAProxy is able to

handle more than 2 million requests per second.

Number of

waiting sessions
Number of new

session per second

Number of current

and total sessions
Traffic that was generated

by the application
Statistics about the

application uptime

Number of non OK

responses

after HAProxy Team analysis

Alerting

• notifies us about all anomalies – helps to prevent system downtime

• allows to improve quality of service – problems are fixed before users spot them

Monitoring, alerting and tracing

02 December 2021 Bartek Urbaniec | Engineering APIs for Accelerator Controls Software 20

Tracing:

• informs us about usage of our API – who, how, when

• allows us to analyse and discover anomalies of a running system

Monitoring, alerting and tracing

02 December 2021 Bartek Urbaniec | Engineering APIs for Accelerator Controls Software 21

02 December 2021 Bartek Urbaniec | Engineering APIs for Accelerator Controls Software 22

Tracing - Grafana

Availability vs Reliability

02 December 2021 Bartek Urbaniec | Engineering APIs for Accelerator Controls Software 23

Availability Reliability

The percentage of time when

system or service is operational

from point of view of its clients

The probability that system will meet

designed performance standards and

produce correct output for a specific time

Service is available for

99%
No more than 5

failures per day

Mean Time Between Failure (MTBF): total time in service / number of failures

Failure Rate (λ): number of failures / total time in service.

{

"status": 404,

"errorType": "PATH_NOT_FOUND",

"message": "Current path

'/api/core/accelerators/LHC' was not found",

"timestamp": "2021-11-19T10:52:00.578311Z”

}

GET '/api/core/accelerators/LHC'

{

"name": "CPS",

"description": "Cern Proton Synchrotron and beam transfer lines",

"acceleratorZones": [

{"name": "F63","defaultZone": false},

{"name": "T08","defaultZone": false},

Highly-available system: “zero-downtime” operations, including rolling-upgrades

Performance metrics

02 December 2021 Bartek Urbaniec | Engineering APIs for Accelerator Controls Software 24

Computer performance is the amount of useful work accomplished by a computer system.

Performance can be estimated in terms of accuracy, efficiency and speed of execution.

We can measure this with various metrics:

• Technical (hardware) – health of the system
Memory, CPU, disk space, number of running processes, networking etc

• Performance – Indicator of the problem
Mean/Max response time, latency, throughput, errors rate

• Implementation specific – JVM metrics, Spring Actuator
GC configurations (type of GC), number of threads (running, waiting, blocked), process memory

* containers bring another layer of HW abstraction, and own metrics

• Unit, integration, regression tests – availability and reliability

• Stress testing – performance

How to verify our system - testing

02 December 2021 Bartek Urbaniec | Engineering APIs for Accelerator Controls Software 25

Improving API throughput

02 December 2021 Bartek Urbaniec | Engineering APIs for Accelerator Controls Software 26

• Horizontal scaling
adds resources to handle more client requests

• Client throttling (e.g. Leaky bucket algorithm)
limits misbehaving clients by rejecting requests

• Circuit breaker
stops requests in case of consecutive errors

• Caching mechanism
reduces time needed to get data

Benefits:

• limits unnecessary IOs → in many systems, physical IOs are the slowest operations

• load on the server and related services is reduced to minimum → output/data is processed only once

Drawbacks:

• increased complexity of the system (embedded cache vs standalone)

• eviction strategy* – especially difficult for complex system with mutable data

• challenge of consistency in distributed systems – every client should see the same state of cached data
→ there are solutions: e.g.: distributed cache like Apache Ignite, Redis

To cache or not to cache

02 December 2021 Bartek Urbaniec | Engineering APIs for Accelerator Controls Software 27

The premise of a cache - to store and provide already processed data

Caching is not a silver bullet for performance issues

Cache eviction strategies:

- by time, e.g.: after n-seconds (TTL)

- by access frequency, e.g.: after 10k cache reads

- on-demand, e.g.: explicit cache purge

- by size, e.g.: max no. of elements in the cache

Summary and outlook for Controls APIs

02 December 2021 Bartek Urbaniec | Engineering APIs for Accelerator Controls Software 28

Designing any API is a real challenge:

• Intuitive, easy to use, without unnecessary complexity, consistent with existing API.

• Requires understanding of current needs and be open to follow the future needs

Development work of hundreds of people is based on Controls APIs

• Services, applications, scripts – all are based on our APIs

As software technology evolves, our APIs must follow, whilst remaining as stable as possible

• Technology obsolesce of Java RMI is reason to renovate to more modern solutions like ReST

• The renovation must limit any negative impact on our existing users, yet it is an opportunity to:

• Facilitate programming technology-agnostic access for clients using other languages (e.g. Python)

• Increase consistency across our multitude of client APIs

