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Plan for 
this session

Today:

• 1-hour general introduction to 
Bayesian Inference and workflow

• 2-hour hands-on session 
(Jupyter Notebook)

• Ask questions in #jul27-bayes-
overview

2

Matthew Heffernan | McGill University



Big Picture

• We have a model of some 
physical process, say a relativistic 
heavy ion collision

• We have experimental 
measurements of what we believe 
to be the same process
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How can we learn 
about the physics by 

using a model?

Initial stage Hydrodynamics Particlization SMASH
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Big Picture

• We have a model of some 
physical process, say a relativistic 
heavy ion collision

• We have experimental 
measurements of what we believe 
to be the same process
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Constrain 

model parameters

via measurements

Initial stage Hydrodynamics Particlization SMASH
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Big picture: 
Hands on session

• Heavy ion collisions: computationally 
expensive and theoretically complex

• In this session: a 1 parameter, 1 observable 
problem

• Familiar physics: The simple pendulum

• Can we infer gravitational 
acceleration given the period?

• Use this example to demonstrate how to 
approach Bayesian modeling

• Ensure robust, trustworthy analysis
5
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Questions I hope 
to answer

• Haven’t we all been comparing models 

with data all our lives? Why do I 

suddenly need Bayesian methods?

• How do I input my theoretical knowledge 

into a Bayesian study?

• What is a workflow and why do I need it?

• How does this work in practice?

• Where can I find more details?

6
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What is
Bayesian 
inference?
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The Forward Problem

Modelling has three main ingredients:

1. A model: Theoretical description of 
the relevant process(es)

2. Model parameter(s): Quantities 

poorly constrained by theory, but contain 

information and can be used to fit model 
predictions to measurements

3. Model output(s) or observable(s):

Prediction(s) for the result of a process 
that can be compared to measurements
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Generally well-defined:

Given a set of model 

parameters, what are the 

model outputs?
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The Inverse Problem

9

Generally ill-defined:

What are the model 

parameters that result 

in given set of model 

outputs?
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Modelling has three main ingredients:

1. A model: Theoretical description of 
the relevant process(es)

2. Model parameter(s): Quantities 

poorly constrained by theory, but contain 

information and can be used to fit model 
predictions to measurements

3. Model output(s) or observable(s):

Prediction(s) for the result of a process 
that can be compared to measurements
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Inverse Problem: 
Mapping Observables to 
Parameters

Generally ill-defined:

What are the model parameters that 

result in given set of model outputs?
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Inverse Problem:
Mapping an observed probability 
distribution to a distribution of 
parameters

Observables are not known exactly:
probability distributions

Can use Bayes’ Theorem to infer this 
mapping

Bayes' Theorem is a way to solve 
probabilistic inverse problems
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Introduction to 
Bayesian 
inference
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Bayes' Theorem:
Connecting the Forward and 
Inverse Problems

Components of Bayes Theorem

• Posterior (Inverse): Probability of the hypothesis 
“H” posterior to comparison with data “d”

• Likelihood (Forward): Probability of the data “d” 
given the hypothesis “H”

• Prior: Probability of H prior to comparison with
the data "d", only informed by 
other expectations we have, e.g. theoretical 
constraints on the quantity “H”

• Bayes’ Evidence: Probability of data given the 
model. Often treated as a 
normalization constant, is key used in model 
selection and averaging.

13

• Notation:
• p(A): Probability of, or degree 

of belief in, A
• A and B: Propositions or 

statements
• |: Conditionality, i.e. 

A|B,C means “A given (B and 
C)”

• I: Other information, can 
include theoretical 
expectations such as the 
model
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Bayes' Theorem:
Connecting the Forward and 
Inverse Problems

Components of Bayes Theorem:
Posterior (Inverse Problem)

● Posterior (Inverse): Probability of the 
hypothesis “H” posterior to 
comparison with data “d”

● Hypothesis: a particular set of parameters

● Represents what we know about the 
hypotheses after (posterior to) 
comparison of the model outputs to data

14

Matthew Heffernan | McGill University

• Notation:
• p(A): Probability of, or degree 

of belief in, A
• A and B: Propositions or 

statements
• |: Conditionality, i.e. 

A|B,C means “A given (B and 
C)”

• I: Other information, can 
include theoretical 
expectations such as the 
model



Bayes' Theorem:
Connecting the Forward and 
Inverse Problems

Components of Bayes Theorem:
Likelihood (Forward Problem)

● Likelihood: Probability of the data “d” 
given the hypothesis “H”

● Calculates how likely the data is based on 
the model prediction, model uncertainty, 
and data uncertainty.

● Gaussian likelihood assumes the errors are 
normally distributed in both model and 
data (may not be the case).

15
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• Notation:
• p(A): Probability of, or degree 

of belief in, A
• A and B: Propositions or 

statements
• |: Conditionality, i.e. 

A|B,C means “A given (B and 
C)”

• I: Other information, can 
include theoretical 
expectations such as the 
model



Bayes' Theorem:
Connecting the Forward and 
Inverse Problems

Components of Bayes Theorem:
Likelihood (Forward Problem)

● Likelihood: Probability of the data “d” 
given the hypothesis “H”

● Calculates how likely the data is based on 
the model prediction, model uncertainty, 
and data uncertainty.

● Ymodel is the model prediction of the 
observables

16
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Bayes' Theorem:
Connecting the Forward and 
Inverse Problems

Components of Bayes Theorem:
Likelihood (Forward Problem)

● Likelihood: Probability of the data “d” 
given the hypothesis “H”

● Generalizing to higher dimensions is 
straightforward

● Because this involves model calculations, 
the likelihood is the most computationally 
expensive component to calculate: a 
variety of methods exist to help

17
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Bayes' Theorem:
Connecting the Forward and 
Inverse Problems

Components of Bayes Theorem:
Prior

● Prior: Probability of H prior to 
comparison with the data "d", only 
informed by other expectations

● This represents what we know before 
(prior to) comparison with data

● Examples: A parameter must be positive 
definite; is unlikely to be outside of a 
certain range

18
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• Notation:
• p(A): Probability of, or degree 

of belief in, A
• A and B: Propositions or 

statements
• |: Conditionality, i.e. 

A|B,C means “A given (B and 
C)”

• I: Other information, can 
include theoretical 
expectations such as the 
model



Bayes' Theorem:
Connecting the Forward and 
Inverse Problems

Components of Bayes Theorem:
Bayes’ Evidence

● Bayes’ Evidence: Probability of data given 
the model. Often treated as a 
normalization constant, key to model 
selection and averaging.

● Large normalization constant is needed 
when the likelihood is large, 
small normalization constant is needed 
when the likelihood is small

19
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• Notation:
• p(A): Probability of, or degree 

of belief in, A
• A and B: Propositions or 

statements
• |: Conditionality, i.e. 

A|B,C means “A given (B and 
C)”

• I: Other information, can 
include theoretical 
expectations such as the 
model



Bayes' Theorem:
A Simple Example

A Cloudy Day

● In JETSCAPEville, 40% of all rainy days 
have cloudy mornings. 

● 30% of all mornings in JETSCAPEville are 
cloudy and in July, it has typically rained in 
JETSCAPEville on 5 out of 31 days 
(~16.13%).

● Today in July in JETSCAPEville, the morning 
was cloudy. Based on this information, 
what is the probability of rain today?

20
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Questions?

21
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When is it 
reasonable 

to use 
Bayesian 

inference?

Ideally suited to the 
problem when:
• An accurate quantification of 

uncertainty is critical to the result

• Theoretical expectations add constraint

• Models with many parameters are 
constrained with many measurements

• Comparing complex models

• Making broad statements about models 
that aren’t justified by first-principles 
theory, e.g. “No model of type X can 
reproduce the data”

• Advanced: No single model is best suited 
to data (Bayesian model mixing and 
averaging) 22
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Why is this 
better than 

more familiar 
Frequentist 

methods?

Bayesian techniques:
• Are more intuitively interpreted - it's 

how most scientists already interpet 
plots

• Are simpler and easier to teach, turn 
around, and immediately apply in 
research

• Do not rely on complicated formula

• Make assumptions explicit and clear 
without hiding them in mathematical 
abstraction

23
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What 
Bayesian 
Inference is 
and what it 
isn’t

24

Bayesian inference is:

• A method to systematically 
compare a model to data

• A method to quantify 
uncertainty

• Reliable with rigorous 
validation

• Trustworthy with reporting 
diagnostics

Bayesian inference 
isn’t:

• A simple best-fit answer
• A way to drive uncertainties 

to 0
• Reliable without rigorous 

validation
• Trustworthy without 

reporting diagnostics

Fig. ref: Wikimedia

Avoid sacrificing 

accuracy for 

precision
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Measurements
and 
predictions as 
probability 
distributions

25

Data are often averages 
over ensembles:

• mean value

• statistical uncertainty on this 
mean;

• additional systematic 
uncertainties (not normally 
distributed)

Models have uncertainty:

• Statistical: e.g. averaging over 
collisions, finite number of 
particles

• Numerical: e.g. interpolation 
uncertainty

• Systematic: e.g. Approximations

Fig. ref: Wikimedia

Crude simplifying 
assumption:
all uncertainties are 
normally distributed
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Markov Chain Monte Carlo:
A forgetful walk through 
parameter space

• “Walkers” step through the parameter 

space

• Probability of accepting the next step:

p(next location) / p(current location)

● After enough steps, walkers forget 

where they started

• Distribution of steps corresponds to 

samples drawn from distribution of 

interest (“target distribution”)

• Distribution of samples can be used to 

estimate properties of the underlying 

target distribution
26

Fig. ref: Gelman, Bayesian Data Analyis

Models take in specific parameter values, not 
distributions: how do we connect these?

For a more detailed introduction: https://github.com/mrhheffernan/bayes-

tutorial/blob/master/mcmc/MCMC-intro-and-diagnostics.ipynb

MCMC
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1. Start off and explore

2. Forget starting location

3. Walk according to target



Questions?
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Introduction to 
Bayesian 
Modeling 
Workflow

28

and why 

you need 

one

Matthew Heffernan | McGill University



What is a 
Bayesian 
Modeling 

Workflow?

Workflow: A repeatable 
pattern of steps to 
complete a task

In complex modeling environments, a 

workflow ensures a rigorous, repeatable 

set of steps has been taken to 

ensure reliable development and 

analysis

A workflow helps bullet-proofs the 

analysis

Goal: Trustworthy Inference 29
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Bayesian 
Modeling 
Workflow

Step 1: Choose initial model
Goal: Explicitly define the model and prior state of 
knowledge

Step 2: Prior Predictive checks
Goal: Critically evaluate if the model+prior are 
consistent with domain knowledge

Step 3: Model validation via fake data simulation
Goal 1: Critically evaluate if the model+prior can 
recover known inputs
Goal 2: Inspect tools to ensure output is reliable

Step 4: Fitting the Model - Inference with Data
Goal: Extract state of knowledge posterior to 
comparison with data
Safety Check: Inspect tools using available diagnostics

Step 5: Posterior predictive check
Goal: Evaluate if model+posterior is consistent with 
data and domain knowledge

30
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Bayesian Workflow
Step 1 | Choosing an initial model

Choose an initial model

• Either develop a model or 
motivate the choice of an existing 
model

• 1.1. Define principled 
priors motivated by knowledge of 
the model and the system

• Justify specific choices and 
why they are reasonable

31

Step 1
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Pendulum hands-on preview:

• Model: Exact formula for the period
• Prior: g on Eath is 99% likely to be 

between g on the Moon and g on Jupiter



Bayesian Workflow
Step 2 | Prior Predictive Checks

Prior Predictive checks
• Are predictions made by 

the model+prior consistent with 
domain knowledge?

• If yes: Provisionally accept 
model+prior.

• If no: Identify specific 
contradictions and rectify.

32

Step 2
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Pendulum hands-on preview:

• Good coverage of a reasonable range 
for periods and g



Bayesian Workflow
Step 3 | Model Validation

Model validation via fake data simulation 
(a.k.a. Closure tests, Empirical coverage tests)

• 3.1. Can the model and prior recover a known value 
in idealized data using the available tools? Do 
diagnostics indicate that the numerics are reliable?

• If yes: Provisionally accept computation and 
proceed.

• If no: Identify specific issues with input recovery 
and rectify by modifying priors or model. If 
modifying priors or the model, return to step 1.

• 3.2. Posterior predictive check: Does the fake data 
posterior produce predictions consistent with the fake 
data?

• If yes: Provisionally accept computation and 
proceed.

• If no: Identify source of discrepancy and rectify. 33

Step 3
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Pendulum hands-on preview:

• Fake data generated with g on Mars
• Recovers the result!



Bayesian Workflow
Step 4 | Inference with Data

Fitting the Model - Inference with Data

• Do the model+prior clearly recover a 
value consistent with domain 
knowledge?

• Do diagnostics indicate that the 
numerics have converged?

• If yes: Provisionally accept 
computation and proceed.

• If no: Modify priors, model, 
investigate deficiencies in 
numerical tools 34

Step 4
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Pendulum hands-on preview:

• Inference doesn't recover g=9.80665 
m/s 2̂ on Earth with 68% interval, but 
the diagnostics are trustworthy



Bayesian Workflow
Step 5 | Posterior Predictive Checks

• Does the posterior produce predictions 
consistent with the data? Are any 
deficiencies interpretable or expected 
given the model?

• If yes: Accept computation. If within 
scope, improve model and repeat.

• If no: Identify source of discrepancy 
and rectify. Investigate why this was 
not caught in model validation.

35

Step 5
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Pendulum hands-on preview:

• Posterior predictive explains data well
• Most of the constraint comes from the 

likelihood



Questions?
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Note on 
Priors

Some priors are commonly called “non-
informative” or “weakly-informative”

• These statements are not 
general and can only be understood in 
comparison with the likelihood

• A prior is weakly-informative when 
most of the constraint is from the 
likelihood. If the likelihood gives little 
constraint, even a maximum entropy 
prior can be highly informative.

37
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Note on 
Priors

38

• What about uniform (flat) priors? Aren’t these the most 
agnostic?

• Can be parametrization-dependent: May not be weakly 
informative when transformed

• Should be used when their features fit the application:

• Often not a faithful description of prior knowledge

• Sharp cutoffs can be unrealistic

• Maximum Entropy motivations should be well-fit to the 
specific problem

• Ways to accurately communicate constraint:

• Plot prior and posterior together

• Example: Grey background

• Good place to put them: Marginal distributions

• Calculate information gain

• Be careful, clear, and precise

More guidance: https://github.com/stan-dev/stan/wiki/Prior-Choice-Recommendations

Matthew Heffernan | McGill University

https://github.com/stan-dev/stan/wiki/Prior-Choice-Recommendations


Summary

39
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Summary: 
Bayesian 
Inference

• “Forward problem”: Model outputs from parameters; straightforward
• “Inverse problem”: Parameters from the model outputs; challenging

Bayesian inference:

○ Is a method for solving the inverse problem

○ Systematically compares experimental measurements with 
model calculations

○ Quantifies uncertainties AND incorporates domain knowledge

● Can handle:

○ non-linearity in model

○ any number of observables

○ complex experimental uncertainties

○ complex theoretical uncertainties

○ additional theoretical input through priors

• Gives constraints with quantified uncertainty

• Quantifying uncertainty is a goal: inaccurate arbitrary 
precision is not

40
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Summary: 
Bayesian 
Workflow

• Workflows are an algorithm to ensure reliable, robust, and 
reproducible inference

• Complex modeling means that without a workflow, there are 
many opportunities for things to fall through the cracks

• Get ahead of this and be critical and cautious!

• Workflow results in:

• A well-motivated, self-contained, reproducible study

• A clear method for improving models

• Experience with modeling that builds toward a result

• Demonstration of familiarity and mastery with tools

• Many intermediary results:

• Catch problems long before the end

• Convince the audience you’re right

41
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Outlook:
After this 

session

42

Know and have examples of:
• when to use Bayesian parameter 

estimation
• how to construct a reasonable prior
• how to produce predictive distributions
• how to validate a model and how to 

determine observable sensitivity to 
parameters

• how to use a common MCMC package
• some easy MCMC diagnostics
• how to decide that it is time to compare to 

real data
• how to use posterior predictive 

distributions
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Practical 
aspect: 
emulators
with particular thanks to Jean-François Paquet

44
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What if the 
model is 
slow?
“Y(p)” is our model outputs as a function of 
parameters p.
For a multi-observable model, think of “Y(p)” 
as a vector containing all the observables

In practice, the model should have a 
(relatively) smooth dependence on the 
parameters

Solution: emulators

Recall that we already view the prediction of 
the model “Y(p)” as a probability distribution 
(which includes theoretical uncertainties)

45
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Emulators

Emulators are probability distributions that 
mimic the model outputs’ dependence on 
the parameters

Constrained by the model at “design 
points”

Good emulators, like Gaussian process 
emulators, can estimate the interpolation 
uncertainty: extremely important!

Gaussian Process emulators (GPs) are 
just one example: design points are used 
train GP hyperparameters

46
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Emulators: 
important 
additional 

information

• Parameter space: 
Range of parameters over which the emulator can mimic 
the output of the model
(the parameter space is sampled with the Latin hypercube 
algorithm)

• The emulator is not for the model itself, 
but for the model outputs (the observables: 𝑣2, 𝑑𝑁/
𝑑𝑦, 𝑅𝐴𝐴, …)

• For practical reasons, it’s not even the model observables 
that are emulated: 
It is linear combinations of model parameters
(identified through principal component analysis)

• An independent Gaussian process emulator describes 
each major linear combinations of observables (“principal 
components”)

47

Click to add text

Matthew Heffernan | McGill University



Gaussian 
process 

emulators: 
more 

information

• Jake Coleman lecturing at the 2018 JETSCAPE 
School in Berkeley
https://indico.bnl.gov/event/3958/
https://sites.google.com/a/lbl.gov/jetscape2018/hom
e/school-material/school-preparation

• Weiyao Ke lecturing at the 2019 JETSCAPE School in 
Texas A&M
https://indico.bnl.gov/event/5031/page/115-school-
material (“School preparation - Statistical Analysis”)
https://github.com/JETSCAPE/STAT/blob/master/WS_Th
eory_Exercises.pdf
https://github.com/keweiyao/BayesExample/blob/maste
r/example.ipynb

48

Excellent material from previous JETSCAPE Schools by
Jake Coleman and Weiyao Ke
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