
Bayesian analysis in heavy-ion collisions: bulk physics, July
28-29
JETSCAPE Online Summer School 2021

Weiyao Ke 1,2 and Dan Liyanage 3

1University of California Berkeley

2Lawrence Berkeley National Laboratory

3The Ohio State University



Schedule

July 28 (Weiyao Ke)

• Hands-on exercises for the Gaussian emulator. Notebook

• Apply emulator-assisted Bayesian analysis to a toy model of bulk physics +
pseudodata. Notebook

July 29 (Dan Liyanage)

• Application to JETSCAPE medium simulations + pseudodata. Notebook

• Application to JETSCAPE simulations + real data (homework). Notebook

Goals:

• Training and assessing the quality of emulators.
• Understand the importance of validation.
• Handle multi-dimensional model input / output and how to understand
high-dimensional posterior.
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https://github.com/JETSCAPE/SummerSchool2021/blob/master/Jul28_29_BayesianSoftExample/SimpleGaussianProcess.ipynb
https://github.com/JETSCAPE/SummerSchool2021/blob/master/Jul28_29_BayesianSoftExample/BayesForSimpleModel.ipynb
https://github.com/JETSCAPE/SummerSchool2021/blob/master/Jul28_29_BayesianSoftExample/BayesianParameterEstimationForRelativisticHeavyIonPhysics-JS21.ipynb
https://github.com/JETSCAPE/SummerSchool2021/blob/master/Jul28_29_BayesianSoftExample/BayesianParameterEstimationForRelativisticHeavyIonPhysics-JS21.ipynb


Recap the Bayes theorem

The problem:

1. A modelM: predict observables y at given input parameters x.
2. A prior belief of the distribution of true values of x: P0(xtrue)

3. Make the measurement yexp, and update the knowledge: P0 → P(xtrue).

Bayes’ theorem: P(xtrue|M, yexp)︸ ︷︷ ︸
Posterior

=

Likelihood︷ ︸︸ ︷
L(yexp|M, xtrue)

Prior︷ ︸︸ ︷
P0(xtrue)∫

L(x)P0(x)dx︸ ︷︷ ︸
Normalization (evidence)

L is often unknown. Commonly assumed to take the form of a multivariate Gaussian:

ln L = N
2 ln(2π)− 1

2 ln |Σ| −
1
2∆yΣ

−1∆yT, ∆y = yexp − y(x;M)
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For simple models that y(x) is easy to compute:

Parameter space (x)
(with prior knowledge)

Model

Prediction y(x)

Bayes theorem
Posterior ∝ Likilihood × Prior

Experiments

Posterior
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For computationally intensive model, such as those for heavy-ion collisions

Parameter space (x)
(with prior knowledge)

Emulator: fast prediction of y
given “arbitrary” x by training
on finite dataset {xi, y(xi)} A finite set of model

prediction {xi, y(xi)}

Prediction

Bayes theorem
Posterior ∝ Likilihood × Prior

Experiments

Posterior
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For computational intensive models + high-dimensional output

Parameter space
(x) (with prior
knowledge)

Emulator: fast prediction of y
given “arbitrary” x by training
on finite dataset {xi, z(xi)}

Dimension reduction:
z(x) ↔ y(x), z is a new represen-
tation of y, but dimz ≪ dim y.

A finite set of model
prediction {xi, y(xi)}

Prediction

Bayes theorem
Posterior ∝ Likilihood × Prior

Experiments

Posterior
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Finally, the workflow of the emulator-assisted Bayesian analysis

Parameter space
(x) (with prior
knowledge)

Emulator: fast prediction of y
given “arbitrary” x by training
on finite dataset {xi, z(xi)}

Inverse transforma-
tion from z(x) to y(x)

A finite set of model
prediction {xi, y(xi)}

Prediction

Bayes theorem
Posterior ∝ Likilihood × Prior

Experiments

Posterior

6


