Bayesian analysis in heavy-ion collisions: bulk physics, July 28-29

JETSCAPE Online Summer School 2021

Weiyao Ke 1,2 and Dan Liyanage 3

¹University of California Berkeley

²Lawrence Berkeley National Laboratory

³The Ohio State University

Schedule

July 28 (Weiyao Ke)

- Hands-on exercises for the Gaussian emulator.
- Apply emulator-assisted Bayesian analysis to a toy model of bulk physics + pseudodata.

July 29 (Dan Liyanage)

- Application to JETSCAPE medium simulations + pseudodata.
- Application to JETSCAPE simulations + real data (homework).

Goals:

- Training and assessing the quality of emulators.
- · Understand the importance of validation.
- Handle multi-dimensional model input / output and how to understand high-dimensional posterior.

1

Recap the Bayes theorem

The problem:

- 1. A model \mathcal{M} : predict observables \mathbf{y} at given input parameters \mathbf{x} .
- 2. A prior belief of the distribution of true values of \mathbf{x} : $P_0(\mathbf{x}_{\text{true}})$
- 3. Make the measurement y_{exp} , and update the knowledge: $P_0 o P(x_{true})$.

Bayes' theorem:
$$\underbrace{\underbrace{P(x_{\rm true}|\mathcal{M},y_{\rm exp})}_{\rm Posterior}} = \underbrace{\underbrace{\frac{L(y_{\rm exp}|\mathcal{M},x_{\rm true})}{L(x)P_0(x)dx}}_{\rm Normalization \ (evidence)}$$

L is often unknown. Commonly assumed to take the form of a multivariate Gaussian:

$$\ln L = \frac{N}{2} \ln(2\pi) - \frac{1}{2} \ln|\Sigma| - \frac{1}{2} \Delta y \Sigma^{-1} \Delta y^{\mathsf{T}}, \quad \Delta y = y_{\mathsf{exp}} - y(x; \mathcal{M})$$

2

For simple models that y(x) is easy to compute:

For computationally intensive model, such as those for heavy-ion collisions

For computational intensive models + high-dimensional output

Finally, the workflow of the emulator-assisted Bayesian analysis

