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Schedule

July 28 (Weiyao Ke)

- Hands-on exercises for the Gaussian emulator.

- Apply emulator-assisted Bayesian analysis to a toy model of bulk physics +
pseudodata.

July 29 (Dan Liyanage)

- Application to JETSCAPE medium simulations + pseudodata.
- Application to JETSCAPE simulations + real data (homework).

Goals:

- Training and assessing the quality of emulators.
- Understand the importance of validation.

- Handle multi-dimensional model input / output and how to understand
high-dimensional posterior.


https://github.com/JETSCAPE/SummerSchool2021/blob/master/Jul28_29_BayesianSoftExample/SimpleGaussianProcess.ipynb
https://github.com/JETSCAPE/SummerSchool2021/blob/master/Jul28_29_BayesianSoftExample/BayesForSimpleModel.ipynb
https://github.com/JETSCAPE/SummerSchool2021/blob/master/Jul28_29_BayesianSoftExample/BayesianParameterEstimationForRelativisticHeavyIonPhysics-JS21.ipynb
https://github.com/JETSCAPE/SummerSchool2021/blob/master/Jul28_29_BayesianSoftExample/BayesianParameterEstimationForRelativisticHeavyIonPhysics-JS21.ipynb

Recap the Bayes theorem

The problem:

1. A model M: predict observables y at given input parameters x.
2. A prior belief of the distribution of true values of x: Po(X¢rue)
3. Make the measurement ye,,, and update the knowledge: Py — P(Xrue)-

Likelihood Prior
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L(Vex s Xtrue) Po(Xerue
Bayes’ theorem:  P(Xirue| M, Yexp) = YVexp| M Xtrue) Po(Xirue)
Posterior / L(X)PO (X)dX
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Normalization (evidence)
L is often unknown. Commonly assumed to take the form of a multivariate Gaussian:

InL= g In(27) — %In |=| — %AyZ_WAyT, AY = Yexp — Y(X; M)



For simple models that y(x) is easy to compute:
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For computationally intensive model, such as those for heavy-ion collisions
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For computational intensive models + high-dimensional output
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Finally, the workflow of the emulator-assisted Bayesian analysis

Parameter space

Emulator: fast prediction of y (x) (with prior Experiments
S
J

given “arbitrary” x by training L knowledge)
on finite dataset {x;,z(x;)}

~
J

Y

Inverse transforma- [ e ]
tion from z(x) to y(x) Pre 'CUOH\‘

Bayes theorem
Posterior o< Likilihood x Prior

Posterior



