
Modern programming languages for HEP

1 / 65 S. Ponce - CERN

pyOrC++ UsableCpp perfC++ python3 Conclusion

Modern programming languages for HEP

Sébastien Ponce
sebastien.ponce@cern.ch

CERN

Thematic CERN School of Computing 2021

Modern programming languages for HEP

2 / 65 S. Ponce - CERN

pyOrC++ UsableCpp perfC++ python3 Conclusion

Goal of this course

Make a tour of latest improvements in HEP programming languages

C++and python

Understand

the use cases of each language
the evolution of C++

how this impacts performances

Make a quick tour of python 3 changes

and help migrating

Modern programming languages for HEP

3 / 65 S. Ponce - CERN

pyOrC++ UsableCpp perfC++ python3 Conclusion

Outline
1 Why python and C++

Pros and Cons of each language
Respective usecases

2 C++getting usable
Language “simplifications”
Making bad code harder to write

3 Performant C++

New performance related features
Templates
Avoiding virtuality when possible

4 Migrating from Python 2 to python 3
Tour of python 3 changes
How to support both versions
How to migrate

5 Conclusion

Modern programming languages for HEP

4 / 65 S. Ponce - CERN

pyOrC++ UsableCpp perfC++ python3 Conclusion

ProCons UseCase

Why python and C++

1 Why python and C++

Pros and Cons of each language
Respective usecases

2 C++getting usable

3 Performant C++

4 Migrating from Python 2 to python 3

5 Conclusion

Modern programming languages for HEP

5 / 65 S. Ponce - CERN

pyOrC++ UsableCpp perfC++ python3 Conclusion

ProCons UseCase

Why python and C++

1 Why python and C++

Pros and Cons of each language
Respective usecases

2 C++getting usable

3 Performant C++

4 Migrating from Python 2 to python 3

5 Conclusion

Modern programming languages for HEP

6 / 65 S. Ponce - CERN

pyOrC++ UsableCpp perfC++ python3 Conclusion

ProCons UseCase

C++pros and cons

Adapted to large projects

strongly typed, object oriented

widely used (and taught) with many available libraries

Fast

compiled (unlike Java or C#)

allows to go close to hardware when needed

What we get

the most powerful language

the most complicated one

the most error prone ?

Modern programming languages for HEP

6 / 65 S. Ponce - CERN

pyOrC++ UsableCpp perfC++ python3 Conclusion

ProCons UseCase

C++pros and cons

Adapted to large projects

strongly typed, object oriented

widely used (and taught) with many available libraries

Fast

compiled (unlike Java or C#)

allows to go close to hardware when needed

What we get

the most powerful language

the most complicated one

the most error prone ?

Modern programming languages for HEP

6 / 65 S. Ponce - CERN

pyOrC++ UsableCpp perfC++ python3 Conclusion

ProCons UseCase

C++pros and cons

Adapted to large projects

strongly typed, object oriented

widely used (and taught) with many available libraries

Fast

compiled (unlike Java or C#)

allows to go close to hardware when needed

What we get

the most powerful language

the most complicated one

the most error prone ?

Modern programming languages for HEP

7 / 65 S. Ponce - CERN

pyOrC++ UsableCpp perfC++ python3 Conclusion

ProCons UseCase

python pros and cons

Adapted to large projects

multi-paradigm language (object oriented, functional ...)

widely used (and taught) with many available libraries

Easy to use and ubiquitous

interpreted, supported on all platforms

versatile : usages from ML to web dev or numeric code

smooth learning curve, integrated with online tools (SWAN)

compatible with C++, critical code can be written in C++in the back

The price to pay

not suitable for performance

error prone (no strong typing)

Modern programming languages for HEP

7 / 65 S. Ponce - CERN

pyOrC++ UsableCpp perfC++ python3 Conclusion

ProCons UseCase

python pros and cons

Adapted to large projects

multi-paradigm language (object oriented, functional ...)

widely used (and taught) with many available libraries

Easy to use and ubiquitous

interpreted, supported on all platforms

versatile : usages from ML to web dev or numeric code

smooth learning curve, integrated with online tools (SWAN)

compatible with C++, critical code can be written in C++in the back

The price to pay

not suitable for performance

error prone (no strong typing)

Modern programming languages for HEP

7 / 65 S. Ponce - CERN

pyOrC++ UsableCpp perfC++ python3 Conclusion

ProCons UseCase

python pros and cons

Adapted to large projects

multi-paradigm language (object oriented, functional ...)

widely used (and taught) with many available libraries

Easy to use and ubiquitous

interpreted, supported on all platforms

versatile : usages from ML to web dev or numeric code

smooth learning curve, integrated with online tools (SWAN)

compatible with C++, critical code can be written in C++in the back

The price to pay

not suitable for performance

error prone (no strong typing)

Modern programming languages for HEP

8 / 65 S. Ponce - CERN

pyOrC++ UsableCpp perfC++ python3 Conclusion

ProCons UseCase

Evolving languages

C++got 4 major releases in 10 years

one every 3 years

major changes and improvements

almost a new language

python went to version 3

major, backward
incompatible changes

initial release in 2008

latest release 3.9

widely adopted only in
the last 5 years

Modern programming languages for HEP

9 / 65 S. Ponce - CERN

pyOrC++ UsableCpp perfC++ python3 Conclusion

ProCons UseCase

Why python and C++

1 Why python and C++

Pros and Cons of each language
Respective usecases

2 C++getting usable

3 Performant C++

4 Migrating from Python 2 to python 3

5 Conclusion

Modern programming languages for HEP

10 / 65 S. Ponce - CERN

pyOrC++ UsableCpp perfC++ python3 Conclusion

ProCons UseCase

A language for each task

C++

The definite winner for performance critical code

Also to be used for large, complex frameworks

python

The definite winner for configuration

Also to be used for “glue code”

In general end-user facing code

Modern programming languages for HEP

11 / 65 S. Ponce - CERN

pyOrC++ UsableCpp perfC++ python3 Conclusion

simple banBadCode

C++getting usable

1 Why python and C++

2 C++getting usable
Language “simplifications”
Making bad code harder to write

3 Performant C++

4 Migrating from Python 2 to python 3

5 Conclusion

Modern programming languages for HEP

12 / 65 S. Ponce - CERN

pyOrC++ UsableCpp perfC++ python3 Conclusion

simple banBadCode

C++getting usable

1 Why python and C++

2 C++getting usable
Language “simplifications”
Making bad code harder to write

3 Performant C++

4 Migrating from Python 2 to python 3

5 Conclusion

Modern programming languages for HEP

13 / 65 S. Ponce - CERN

pyOrC++ UsableCpp perfC++ python3 Conclusion

simple banBadCode

C++ is becoming “simpler”

With the C++ conception of “simpler”

new and much nicer ways to write code

backward compatibility insured

so the language is overall (much) more complex

Most noticable features

range based loops

auto keyword

lambdas

ranges

<=>

Modern programming languages for HEP

14 / 65 S. Ponce - CERN

pyOrC++ UsableCpp perfC++ python3 Conclusion

simple banBadCode

Range based loops

Reason of being

simplifies loops tremendously

especially with STL containers

Syntax

for (type iteration_variable : container) {

// body using iteration_variable

}

Example code

std::vector<int> v{1,2,3,4};

int prod = 1;

for (int a : v) { prod *= a; } // pls use std::accumulate

Modern programming languages for HEP

15 / 65 S. Ponce - CERN

pyOrC++ UsableCpp perfC++ python3 Conclusion

simple banBadCode

Auto keyword

Reason of being

many type declarations are redundant

and lead to compiler error if you mess up

std::vector<int> v;

int a = v[3];

int b = v.size(); // bug ? unsigned to signed

Practical usage

std::vector<int> v;

auto a = v[3];

auto b = v.size();

int sum{0};

for (auto n : v) { sum += n; }

Modern programming languages for HEP

15 / 65 S. Ponce - CERN

pyOrC++ UsableCpp perfC++ python3 Conclusion

simple banBadCode

Auto keyword

Reason of being

many type declarations are redundant

and lead to compiler error if you mess up

std::vector<int> v;

int a = v[3];

int b = v.size(); // bug ? unsigned to signed

Practical usage

std::vector<int> v;

auto a = v[3];

auto b = v.size();

int sum{0};

for (auto n : v) { sum += n; }

Modern programming languages for HEP

16 / 65 S. Ponce - CERN

pyOrC++ UsableCpp perfC++ python3 Conclusion

simple banBadCode

Lambdas

Definition

a lambda is a function with no name

Syntax

[captures] (args) -> type { code; }

The type specification is optional

Usage example

int sum = 0, offset = 1;

std::vector<int> data{1,9,3,8,3,7,4,6,5};

for_each(begin(data), end(data),

[&sum, offset](int x) {

sum += x + offset;

});

Modern programming languages for HEP

17 / 65 S. Ponce - CERN

pyOrC++ UsableCpp perfC++ python3 Conclusion

simple banBadCode

Ranges (C++20)

Reason of being

provide easy manipulation of sets of data via views

simplify the horrible iterator syntax

Syntax

Based on Unix like pipes, and used in range based loops

Example code - godbolt

std::vector<int> numbers{...};

auto results =

numbers | filter([](int n){ return n % 2 == 0; })

| transform([](int n){ return n * 2; });

for (auto v: results) std::cout << v << " ";

https://godbolt.org/z/zf7jGcWM4

Modern programming languages for HEP

18 / 65 S. Ponce - CERN

pyOrC++ UsableCpp perfC++ python3 Conclusion

simple banBadCode

So far essentially syntactic sugar

Range based loops

for (int a : v) { sum *= a; }

Translate to iterators

for (auto it = begin(v); it != end(v); it++) {

sum *= *it;

}

Modern programming languages for HEP

19 / 65 S. Ponce - CERN

pyOrC++ UsableCpp perfC++ python3 Conclusion

simple banBadCode

So far essentially syntactic sugar

Lambdas

[&sum, offset](int x) { sum += x + offset; }

Are just functors

struct MyFunc {

int& m_sum;

int m_offset;

MyFunc(int& s, int o) : m_sum(s), m_offset(o) {}

int operator(int x) { m_sum += x + m_offset; }

};

MyFunc(sum, offset)

By the way, as lambdas are functors, they can inherit from each other !

And this can be super useful.

Modern programming languages for HEP

20 / 65 S. Ponce - CERN

pyOrC++ UsableCpp perfC++ python3 Conclusion

simple banBadCode

C++getting usable

1 Why python and C++

2 C++getting usable
Language “simplifications”
Making bad code harder to write

3 Performant C++

4 Migrating from Python 2 to python 3

5 Conclusion

Modern programming languages for HEP

21 / 65 S. Ponce - CERN

pyOrC++ UsableCpp perfC++ python3 Conclusion

simple banBadCode

What makes C++hard ?

The many pitfalls you can fall in

ugly C syntax, inherited

pointers, memory management

thread safety issues

and locking

horrible metaprogramming

lack of modularity

Modern programming languages for HEP

22 / 65 S. Ponce - CERN

pyOrC++ UsableCpp perfC++ python3 Conclusion

simple banBadCode

All this has been corrected

Each pitfall is being “solved”

ugly C syntax → enum class, std::variant, std::any

pointers, memory management → “smart” pointers

thread safety issues → constness

dead locks → “smart” locks

horrible metaprogramming → concepts

bad code modularity → modules

Notes :

constness is covered in next talk

I won’t cover concepts and modules

we would need (much) more time

Modern programming languages for HEP

23 / 65 S. Ponce - CERN

pyOrC++ UsableCpp perfC++ python3 Conclusion

simple banBadCode

enum class, aka scoped enum
Same syntax as enum, with scope

enum class VehicleType { Bus, Car };

VehicleType t = VehicleType::Car;

Only advantages over enums

scoping avoids name clashes

strong typing, no automatic conversion to int

enum VType { Bus, Car }; enum Color { Red, Blue };

VType t = Bus;

if (t == Red) { // We do enter ! }

int a = 5 * Car; // Ok, a = 5

enum class VT { Bus, Car }; enum class Col { Red, Blue };

VT t = VT::Bus;

if (t == Col::Red) { // Compiler error }

int a = t * 5; // Compiler error

Modern programming languages for HEP

23 / 65 S. Ponce - CERN

pyOrC++ UsableCpp perfC++ python3 Conclusion

simple banBadCode

enum class, aka scoped enum
Same syntax as enum, with scope

enum class VehicleType { Bus, Car };

VehicleType t = VehicleType::Car;

Only advantages over enums

scoping avoids name clashes

strong typing, no automatic conversion to int

enum VType { Bus, Car }; enum Color { Red, Blue };

VType t = Bus;

if (t == Red) { // We do enter ! }

int a = 5 * Car; // Ok, a = 5

enum class VT { Bus, Car }; enum class Col { Red, Blue };

VT t = VT::Bus;

if (t == Col::Red) { // Compiler error }

int a = t * 5; // Compiler error

Modern programming languages for HEP

24 / 65 S. Ponce - CERN

pyOrC++ UsableCpp perfC++ python3 Conclusion

simple banBadCode

std::variant, std::any
Purpose

type safe union and “void*”

with visitor pattern

Example code - godbolt

using Message = std::variant<int, std::string>;

Message createMessage(bool error) {

if (error) return "Error"; else return 42;

}

struct Visitor {

void operator()(int n) const {

std::cout << "Int " << n << std::endl;

}

void operator()(const std::string &s) const {

std::cout << "String \"" << s << "\"" << std::endl;

}

};

std::visit(Visitor{}, createMessage(true));

https://godbolt.org/z/Pnqd9PoW5

Modern programming languages for HEP

24 / 65 S. Ponce - CERN

pyOrC++ UsableCpp perfC++ python3 Conclusion

simple banBadCode

std::variant, std::any
Purpose

type safe union and “void*”

with visitor pattern

Example code - godbolt

using Message = std::variant<int, std::string>;

Message createMessage(bool error) {

if (error) return "Error"; else return 42;

}

struct Visitor {

void operator()(int n) const {

std::cout << "Int " << n << std::endl;

}

void operator()(const std::string &s) const {

std::cout << "String \"" << s << "\"" << std::endl;

}

};

std::visit(Visitor{}, createMessage(true));

https://godbolt.org/z/Pnqd9PoW5

Modern programming languages for HEP

25 / 65 S. Ponce - CERN

pyOrC++ UsableCpp perfC++ python3 Conclusion

simple banBadCode

std::variant, std::any
Or you use lambdas and their inheritance - godbolt

template <class ... P> struct Combine : P... {

using P::operator()...;

};

template <class ... F> Combine<F...> combine(F... fs) {

return { fs ... };

}

using Message = std::variant<int, std::string>;

Message createMessage(bool error) {

if (error) return "Error"; else return 42;

}

auto f = combine(

[](int n) { std::cout << "Int " << n << std::endl; },

[](string const &s) {

std::cout << "String \"" << s << "\"" << std::endl;

});

std::visit(f, createMessage(true));

https://godbolt.org/z/4cKv6GnK5

Modern programming languages for HEP

26 / 65 S. Ponce - CERN

pyOrC++ UsableCpp perfC++ python3 Conclusion

simple banBadCode

Pointer management : RAII

Resource Acquisition Is Initialization

Practically

Use object semantic to acquire/release resources (e.g. memory)

wrap the resource inside an object (e.g. a smart pointer)

acquire resource via object constructor (call to new)

release resource in destructor (call to delete)

create this object on the stack so that it is automatically destructed
when leaving the scope, including in case of exception

Modern programming languages for HEP

27 / 65 S. Ponce - CERN

pyOrC++ UsableCpp perfC++ python3 Conclusion

simple banBadCode

RAII in practice
File class

class File {

public:

File(const char* filename) :

m_file_handle(std::fopen(filename, "w+")) {

if (m_file_handle == NULL) { throw ... }

}

~File() { std::fclose(m_file_handle); }

}

private:

FILE* m_file_handle;

};

void foo() {

// file opening, aka resource acquisition

File logfile("logfile.txt") ;

...

// file is automatically closed by the call to

// its destructor, even in case of exception !

}

Modern programming languages for HEP

28 / 65 S. Ponce - CERN

pyOrC++ UsableCpp perfC++ python3 Conclusion

simple banBadCode

std::unique ptr
an RAII pointer

wraps a regular pointer

has move only semantic

the pointer is only owned once

in <memory> header

Usage

void f(std::unique_ptr<Foo> ptr);

{

auto uptr = make_unique<Foo>(); // calling constructor

std::cout << uptr->someMember << std::endl;

std::cout << "Points to : " << uptr.get() << std::endl;

f(std::move(uptr)); // transfer of ownership

// memory is deallocated when f exits

}

Modern programming languages for HEP

28 / 65 S. Ponce - CERN

pyOrC++ UsableCpp perfC++ python3 Conclusion

simple banBadCode

std::unique ptr
an RAII pointer

wraps a regular pointer

has move only semantic

the pointer is only owned once

in <memory> header

Usage

void f(std::unique_ptr<Foo> ptr);

{

auto uptr = make_unique<Foo>(); // calling constructor

std::cout << uptr->someMember << std::endl;

std::cout << "Points to : " << uptr.get() << std::endl;

f(std::move(uptr)); // transfer of ownership

// memory is deallocated when f exits

}

Modern programming languages for HEP

29 / 65 S. Ponce - CERN

pyOrC++ UsableCpp perfC++ python3 Conclusion

simple banBadCode

std::shared ptr

shared ptr : a reference counting pointers

wraps a regular pointer like unique ptr

has move and copy semantic

uses internally reference counting

”Would the last person out, please turn off the lights ?”

is thread safe, thus the reference counting is costly

make shared : creates a shared ptr

{

auto sp = std::make_shared<Foo>(); // #ref = 1

vector.push_back(sp); // #ref = 2

set.insert(sp); // #ref = 3

} // #ref 2

Modern programming languages for HEP

30 / 65 S. Ponce - CERN

pyOrC++ UsableCpp perfC++ python3 Conclusion

simple banBadCode

Modern C++and pointers

Main rules

use references rather than pointers

no more calls to new or delete

only make_unique

exceptionally make_shared

void f(Foo const& arg);

auto p = std::make_unique<Foo>();

f(*p);

Consequences

Forget seg faults due to null pointers

Forget memory leaks

Modern programming languages for HEP

31 / 65 S. Ponce - CERN

pyOrC++ UsableCpp perfC++ python3 Conclusion

simple banBadCode

RAII applied to locking
Wrappers around std::mutex

std::scoped lock for any number of locks

std::lock guard for a single regular lock

lock taken on construction

released on destruction

scoped_lock includes deadlock management

std::unique lock same as lock_guard and can be released/relocked

Practically

int a = 0;

std::mutex m;

void inc() {

std::scoped_lock guard{m};

a++;

}; // Horribly inefficient code !!!

Modern programming languages for HEP

32 / 65 S. Ponce - CERN

pyOrC++ UsableCpp perfC++ python3 Conclusion

features Templates templ

Performant C++

1 Why python and C++

2 C++getting usable

3 Performant C++

New performance related features
Templates
Avoiding virtuality when possible

4 Migrating from Python 2 to python 3

5 Conclusion

Modern programming languages for HEP

33 / 65 S. Ponce - CERN

pyOrC++ UsableCpp perfC++ python3 Conclusion

features Templates templ

Performant C++

1 Why python and C++

2 C++getting usable

3 Performant C++

New performance related features
Templates
Avoiding virtuality when possible

4 Migrating from Python 2 to python 3

5 Conclusion

Modern programming languages for HEP

34 / 65 S. Ponce - CERN

pyOrC++ UsableCpp perfC++ python3 Conclusion

features Templates templ

Features related to performance

Main improvements in C++11 and later

noexcept

around memory allocation

reserve, emplace, ... See next talk

move semantic and copy elision

templating and variadic templating

Modern programming languages for HEP

35 / 65 S. Ponce - CERN

pyOrC++ UsableCpp perfC++ python3 Conclusion

features Templates templ

C++exception support
After a lot of thinking and experiencing, the conclusions of the
community on exception handling are :

Never write an exception specification

Except possibly an empty one

one of the reasons : performance

does not allow compiler optimizations

on the contrary forces extra checks

Introducing noexcept

int f() noexcept;

somehow equivalent to throw()

meaning no exception can go out of the function

but is checked at compile time

thus allowing compiler optimizations

Modern programming languages for HEP

35 / 65 S. Ponce - CERN

pyOrC++ UsableCpp perfC++ python3 Conclusion

features Templates templ

C++exception support
After a lot of thinking and experiencing, the conclusions of the
community on exception handling are :

Never write an exception specification

Except possibly an empty one

one of the reasons : performance

does not allow compiler optimizations

on the contrary forces extra checks

Introducing noexcept

int f() noexcept;

somehow equivalent to throw()

meaning no exception can go out of the function

but is checked at compile time

thus allowing compiler optimizations

Modern programming languages for HEP

35 / 65 S. Ponce - CERN

pyOrC++ UsableCpp perfC++ python3 Conclusion

features Templates templ

C++exception support
After a lot of thinking and experiencing, the conclusions of the
community on exception handling are :

Never write an exception specification

Except possibly an empty one

one of the reasons : performance

does not allow compiler optimizations

on the contrary forces extra checks

Introducing noexcept

int f() noexcept;

somehow equivalent to throw()

meaning no exception can go out of the function

but is checked at compile time

thus allowing compiler optimizations

Modern programming languages for HEP

36 / 65 S. Ponce - CERN

pyOrC++ UsableCpp perfC++ python3 Conclusion

features Templates templ

Impact on generated code - exceptions

struct MyExcept{};

int f(int a); // may throw

int foo() {

try {

int a = 23;

return f(a) + f(-a);

} catch (MyExcept& e) {

return 0;

}

}

Generated code
(godbolt , gcc10, -O3)

https://godbolt.org/z/WbM4xzE8a

Modern programming languages for HEP

37 / 65 S. Ponce - CERN

pyOrC++ UsableCpp perfC++ python3 Conclusion

features Templates templ

Impact on generated code - noexcept

struct MyExcept{};

int f(int a) noexcept;

int foo() {

try {

int a = 23;

return f(a) + f(-a);

} catch (MyExcept& e) {

return 0;

}

}

Generated code
(godbolt , gcc10, -O3)

https://godbolt.org/z/xx75Md7of

Modern programming languages for HEP

38 / 65 S. Ponce - CERN

pyOrC++ UsableCpp perfC++ python3 Conclusion

features Templates templ

Move semantics
The idea

a new type of reference : rvalue references

used for “moving” objects
denoted by &&

2 new members in every class, with move semantic :

a move constructor similar to copy constructor
a move assignment operator similar to assignment operator (now

called copy assignment operator)

used when original object can be reused

Practically

T(const T& other); // copy construction

T(T&& other); // move construction

T& operator=(const T& other); // copy assignment

T& operator=(T&& other); // move assignment

Modern programming languages for HEP

38 / 65 S. Ponce - CERN

pyOrC++ UsableCpp perfC++ python3 Conclusion

features Templates templ

Move semantics
The idea

a new type of reference : rvalue references

used for “moving” objects
denoted by &&

2 new members in every class, with move semantic :

a move constructor similar to copy constructor
a move assignment operator similar to assignment operator (now

called copy assignment operator)

used when original object can be reused

Practically

T(const T& other); // copy construction

T(T&& other); // move construction

T& operator=(const T& other); // copy assignment

T& operator=(T&& other); // move assignment

Modern programming languages for HEP

39 / 65 S. Ponce - CERN

pyOrC++ UsableCpp perfC++ python3 Conclusion

features Templates templ

Move semantics

A few important points concerning move semantic

the whole STL can understand the move semantic

move assignment operator is allowed to destroy source

so do not reuse source afterward

if not implemented, move falls back to copy version

move is called by the compiler whenever possible

e.g. when passing temporary

Practically

T a;

T b = a; // 1. Copy assign

T c = T(2); // 2. Move assign

T d = func(); // 3. Move assign

Modern programming languages for HEP

39 / 65 S. Ponce - CERN

pyOrC++ UsableCpp perfC++ python3 Conclusion

features Templates templ

Move semantics

A few important points concerning move semantic

the whole STL can understand the move semantic

move assignment operator is allowed to destroy source

so do not reuse source afterward

if not implemented, move falls back to copy version

move is called by the compiler whenever possible

e.g. when passing temporary

Practically

T a;

T b = a; // 1. Copy assign

T c = T(2); // 2. Move assign

T d = func(); // 3. Move assign

Modern programming languages for HEP

40 / 65 S. Ponce - CERN

pyOrC++ UsableCpp perfC++ python3 Conclusion

features Templates templ

Move semantics gains

Essentially targetting containers or fat classes

“moving” the content of a vector avoids copying

only copies the underlying pointer to the data

and is thus essentially as efficient as copying an integer !

Zero gain for plain structs

all members still have to be “copied”

move can only help if a member “points” to some other data

Transform

float x,y,z; float rot[9];

TransVec

Transform* trs;

Transform(Transform&& o) :

x(o.x), y(o.y), z(o.z),

rot(o.rot) {}

TransVec(TransVec&& o) :

trs(o.trs) { o.trs = nullptr; }

Modern programming languages for HEP

40 / 65 S. Ponce - CERN

pyOrC++ UsableCpp perfC++ python3 Conclusion

features Templates templ

Move semantics gains

Essentially targetting containers or fat classes

“moving” the content of a vector avoids copying

only copies the underlying pointer to the data

and is thus essentially as efficient as copying an integer !

Zero gain for plain structs

all members still have to be “copied”

move can only help if a member “points” to some other data

Transform

float x,y,z; float rot[9];

TransVec

Transform* trs;

Transform(Transform&& o) :

x(o.x), y(o.y), z(o.z),

rot(o.rot) {}

TransVec(TransVec&& o) :

trs(o.trs) { o.trs = nullptr; }

Modern programming languages for HEP

41 / 65 S. Ponce - CERN

pyOrC++ UsableCpp perfC++ python3 Conclusion

features Templates templ

Guaranteed copy elision
What is copy elision

struct Foo { ... };

Foo f() {

return Foo();

}

int main() {

// compiler was authorised to elude the copy

Foo foo = f();

}

From C++17 on

The elision is guaranteed.

superseeds move semantic in some cases

so do not hesitate anymore to return plain objects in generators

and ban pointers for good

Modern programming languages for HEP

42 / 65 S. Ponce - CERN

pyOrC++ UsableCpp perfC++ python3 Conclusion

features Templates templ

Performant C++

1 Why python and C++

2 C++getting usable

3 Performant C++

New performance related features
Templates
Avoiding virtuality when possible

4 Migrating from Python 2 to python 3

5 Conclusion

Modern programming languages for HEP

43 / 65 S. Ponce - CERN

pyOrC++ UsableCpp perfC++ python3 Conclusion

features Templates templ

Templates

Concept

The C++way to write reusable code

aka macros on steroids

Applicable to functions and objects

template<typename T>

const T & max(const T &A, const T &B) {

return A > B ? A : B;

}

template<typename T>

struct Vector {

int m_len;

T* m_data;

};

Modern programming languages for HEP

44 / 65 S. Ponce - CERN

pyOrC++ UsableCpp perfC++ python3 Conclusion

features Templates templ

Templates

Warning

These are really like macros

they need to be defined before used

so all templated code has to be in headers

they are compiled n times

and thus each version is optimized individually !

template<typename T>

T func(T a) {

return a;

}

int func(int a) {

return a;

}

double func(double a) {

return a;

}

func(3)

func(5.2)

Modern programming languages for HEP

45 / 65 S. Ponce - CERN

pyOrC++ UsableCpp perfC++ python3 Conclusion

features Templates templ

Templates

Specialization

templates can be specialized for given values of their parameter

template<typename F, unsigned int N> struct Polygon {

Polygon(F radius) : m_radius(radius) {}

F perimeter() {return 2*N*sin(PI/N)*m_radius;}

F m_radius;

};

template<typename F>

struct Polygon<F, 6> {

Polygon(F radius) : m_radius(radius) {}

F perimeter() {return 6*m_radius;}

F m_radius;

};

Modern programming languages for HEP

46 / 65 S. Ponce - CERN

pyOrC++ UsableCpp perfC++ python3 Conclusion

features Templates templ

The Standard Template Library

What it is

A library of standard templates

Everything you need, or ever dreamed of

strings, containers, iterators
algorithms, functions, sorters
functors, allocators
...

Portable

Reusable

Efficient

Just use it

and adapt it to your needs, thanks to templates

Modern programming languages for HEP

46 / 65 S. Ponce - CERN

pyOrC++ UsableCpp perfC++ python3 Conclusion

features Templates templ

The Standard Template Library

What it is

A library of standard templates

Everything you need, or ever dreamed of

strings, containers, iterators
algorithms, functions, sorters
functors, allocators
...

Portable

Reusable

Efficient

Just use it

and adapt it to your needs, thanks to templates

Modern programming languages for HEP

47 / 65 S. Ponce - CERN

pyOrC++ UsableCpp perfC++ python3 Conclusion

features Templates templ

Performant C++

1 Why python and C++

2 C++getting usable

3 Performant C++

New performance related features
Templates
Avoiding virtuality when possible

4 Migrating from Python 2 to python 3

5 Conclusion

Modern programming languages for HEP

48 / 65 S. Ponce - CERN

pyOrC++ UsableCpp perfC++ python3 Conclusion

features Templates templ

Virtuality in a nutshell

Principle

a base class (aka interface) declares some method virtual

children can overload these methods (as any other)

for these method, late binding is applied

that is most precise type is used

Polygon p;

p.draw(); // Polygon.draw

Shape & s = p;

s.draw(); // Shape.draw

Shape

void draw();

Polygon

void draw();

Modern programming languages for HEP

48 / 65 S. Ponce - CERN

pyOrC++ UsableCpp perfC++ python3 Conclusion

features Templates templ

Virtuality in a nutshell

Principle

a base class (aka interface) declares some method virtual

children can overload these methods (as any other)

for these method, late binding is applied

that is most precise type is used

Polygon p;

p.draw(); // Polygon.draw

Shape & s = p;

s.draw(); // Shape.draw

Shape

void draw();

Polygon

void draw();

Modern programming languages for HEP

49 / 65 S. Ponce - CERN

pyOrC++ UsableCpp perfC++ python3 Conclusion

features Templates templ

Virtuality in a nutshell

Principle

a base class (aka interface) declares some method virtual

children can overload these methods (as any other)

for these method, late binding is applied

that is most precise type is used

Polygon p;

p.draw(); // Polygon.draw

Shape & s = p;

s.draw(); // Polygon.draw

Shape

virtual void draw() = 0;

Polygon

void draw();

Modern programming languages for HEP

50 / 65 S. Ponce - CERN

pyOrC++ UsableCpp perfC++ python3 Conclusion

features Templates templ

The price of virtuality

Actual implementation

each object has an extra pointer

to a “virtual table” object in memory

where each virtual function points to the right overload

Cost

extra virtual table in memory, per type

each virtual call does

retrieve virtual table pointer
load virtual table into memory
lookup right call
effectively call

and is thus much more costful than standard function call

up to 20% difference in terms of nb of instructions

Modern programming languages for HEP

51 / 65 S. Ponce - CERN

pyOrC++ UsableCpp perfC++ python3 Conclusion

features Templates templ

Actual price of virtuality

Comparison with templates - godbolt / godbolt
struct Interface {

virtual void tick(float n) = 0;

};

struct Counter : Interface {

float sum{0};

void tick(float v) override

{ sum += v; }

};

void foo(Interface& c) {

for (int i = 0; i < 80000; ++i) {

for (int j = 0; j < i; ++j) {

c.tick(j);

}

}

}

int main() {

auto obj = std::make_unique<Counter>();

foo(*obj);

// ... print ...

}

struct Counter {

float sum{0};

void tick(float v) { sum += v; }

};

template<typename CounterType>

void foo(CounterType& c) {

for (int i = 0; i < 80000; ++i) {

for (int j = 0; j < i; ++j) {

c.tick(j);

}

}

}

Timing Time(s) Nb instr(G)

virtual 10.8 35.2

templ 2.97 12.0

measured on EPYC 7552, with gcc 9.1 and perf

https://godbolt.org/z/ETEneP8K7

Modern programming languages for HEP

51 / 65 S. Ponce - CERN

pyOrC++ UsableCpp perfC++ python3 Conclusion

features Templates templ

Actual price of virtuality

Comparison with templates - godbolt / godbolt
struct Interface {

virtual void tick(float n) = 0;

};

struct Counter : Interface {

float sum{0};

void tick(float v) override

{ sum += v; }

};

void foo(Interface& c) {

for (int i = 0; i < 80000; ++i) {

for (int j = 0; j < i; ++j) {

c.tick(j);

}

}

}

int main() {

auto obj = std::make_unique<Counter>();

foo(*obj);

// ... print ...

}

struct Counter {

float sum{0};

void tick(float v) { sum += v; }

};

template<typename CounterType>

void foo(CounterType& c) {

for (int i = 0; i < 80000; ++i) {

for (int j = 0; j < i; ++j) {

c.tick(j);

}

}

}

Timing Time(s) Nb instr(G)

virtual 10.8 35.2

templ 2.97 12.0

measured on EPYC 7552, with gcc 9.1 and perf

https://godbolt.org/z/ETEneP8K7

Modern programming languages for HEP

52 / 65 S. Ponce - CERN

pyOrC++ UsableCpp perfC++ python3 Conclusion

features Templates templ

A few explanations

Some consequences of virtuality

more branching, killing the pipeline

here 6.4M vs 0.8M branches !
as virtual calls are branches

lack of inlining possibilities

lack of optimizations after inlining

e.g. auto vectorization

Note that the compiler is trying hard to help

when it can, when it knows so give it all the knowledge !

typical on my example

declare obj on the stack and the compiler will “drop” virtuality

again : drop pointers !

gcc 10 does much better : 22G instructions and 3s

Modern programming languages for HEP

52 / 65 S. Ponce - CERN

pyOrC++ UsableCpp perfC++ python3 Conclusion

features Templates templ

A few explanations

Some consequences of virtuality

more branching, killing the pipeline

here 6.4M vs 0.8M branches !
as virtual calls are branches

lack of inlining possibilities

lack of optimizations after inlining

e.g. auto vectorization

Note that the compiler is trying hard to help

when it can, when it knows so give it all the knowledge !

typical on my example
declare obj on the stack and the compiler will “drop” virtuality

again : drop pointers !

gcc 10 does much better : 22G instructions and 3s

Modern programming languages for HEP

53 / 65 S. Ponce - CERN

pyOrC++ UsableCpp perfC++ python3 Conclusion

features Templates templ

Should I use virtuality ?
Yes, when you cannot know anything at compile time

Typical cases

you have no knowledge of the implementations of an interface

new ones may even be loaded dynamically via shared libraries

you mix various implementations in a container

e.g. std::vector<MyInterface>

and there is no predefined set of implementations

Typical alternatives

templates when everything is compile time

allows full optimization of each case
and even static polymorphism through CRTP

Curiously recurring template pattern

std::variant, std::any and visitor

when type definitions are known at compile type
but not necessary their usage

https://en.wikipedia.org/wiki/Curiously_recurring_template_pattern

Modern programming languages for HEP

53 / 65 S. Ponce - CERN

pyOrC++ UsableCpp perfC++ python3 Conclusion

features Templates templ

Should I use virtuality ?
Yes, when you cannot know anything at compile time

Typical cases

you have no knowledge of the implementations of an interface

new ones may even be loaded dynamically via shared libraries

you mix various implementations in a container

e.g. std::vector<MyInterface>

and there is no predefined set of implementations

Typical alternatives

templates when everything is compile time

allows full optimization of each case
and even static polymorphism through CRTP

Curiously recurring template pattern

std::variant, std::any and visitor

when type definitions are known at compile type
but not necessary their usage

https://en.wikipedia.org/wiki/Curiously_recurring_template_pattern

Modern programming languages for HEP

54 / 65 S. Ponce - CERN

pyOrC++ UsableCpp perfC++ python3 Conclusion

features Templates templ

A Visitor example - godbolt
struct Point { virtual float getR() = 0; };

struct XYZPoint : Point {

float x, y, z;

float getR() override { return std::sqrt(x*x+y*y+z*z); }; };

struct RTPPoint : Point {

float r, theta, phi;

float getR() override { return r; } };

float sumR(std::vector<std::unique_ptr<Point>>& v) {

return std::accumulate(begin(v), end(v), 0.0f,

[&](float s, std::unique_ptr<Point>& p) { return s + p->getR();});

}

struct XYZPoint { float x,y,z; }; struct RTPPoint { float r, theta, phi; };

using Point=std::variant<XYZPoint, RTPPoint>;

float sumR(std::vector<Point>& v) {

auto getR = combine(

[](XYZPoint& p) { return std::sqrt(p.x*p.x+p.y*p.y+p.z*p.z); },

[](RTPPoint& p) { return p.r; });

return std::accumulate(begin(v), end(v), 0.0f,

[&](float s, Point& p) { return s + std::visit(getR, p);});

}

took 3500µ
s

took 2050µ
s

https://godbolt.org/z/W4jGP4nYd

Modern programming languages for HEP

54 / 65 S. Ponce - CERN

pyOrC++ UsableCpp perfC++ python3 Conclusion

features Templates templ

A Visitor example - godbolt
struct Point { virtual float getR() = 0; };

struct XYZPoint : Point {

float x, y, z;

float getR() override { return std::sqrt(x*x+y*y+z*z); }; };

struct RTPPoint : Point {

float r, theta, phi;

float getR() override { return r; } };

float sumR(std::vector<std::unique_ptr<Point>>& v) {

return std::accumulate(begin(v), end(v), 0.0f,

[&](float s, std::unique_ptr<Point>& p) { return s + p->getR();});

}

struct XYZPoint { float x,y,z; }; struct RTPPoint { float r, theta, phi; };

using Point=std::variant<XYZPoint, RTPPoint>;

float sumR(std::vector<Point>& v) {

auto getR = combine(

[](XYZPoint& p) { return std::sqrt(p.x*p.x+p.y*p.y+p.z*p.z); },

[](RTPPoint& p) { return p.r; });

return std::accumulate(begin(v), end(v), 0.0f,

[&](float s, Point& p) { return s + std::visit(getR, p);});

}

took 3500µ
s

took 2050µ
s

https://godbolt.org/z/W4jGP4nYd

Modern programming languages for HEP

55 / 65 S. Ponce - CERN

pyOrC++ UsableCpp perfC++ python3 Conclusion

changes convert convert

Migrating from Python 2 to python 3

1 Why python and C++

2 C++getting usable

3 Performant C++

4 Migrating from Python 2 to python 3
Tour of python 3 changes
How to support both versions
How to migrate

5 Conclusion

Modern programming languages for HEP

56 / 65 S. Ponce - CERN

pyOrC++ UsableCpp perfC++ python3 Conclusion

changes convert convert

Why python 3 ? Should we migrate ?
Reasons for python 3

rectify fundamental design flaws in python2

allow for non backward compatible changes

Reasons to migrate

python3 has clearly taken over

python 2 is no more maintained

official end of life : December 31st 2019

most libraries have dropped support for python2

pip, numpy, matplotlib, jupyter, pytorch, ...

Modern programming languages for HEP

57 / 65 S. Ponce - CERN

pyOrC++ UsableCpp perfC++ python3 Conclusion

changes convert convert

Migrating from Python 2 to python 3

1 Why python and C++

2 C++getting usable

3 Performant C++

4 Migrating from Python 2 to python 3
Tour of python 3 changes
How to support both versions
How to migrate

5 Conclusion

Modern programming languages for HEP

58 / 65 S. Ponce - CERN

pyOrC++ UsableCpp perfC++ python3 Conclusion

changes convert convert

Backward incompatible changes

print statement became a function

python 2

print "this is python", 2

python 3

print("this is python", 3)

integer division has changed

python 2

assert(3 / 2 == 1)

assert(3 // 2 == 1)

python 3

assert(3 / 2 == 1.5)

assert(3 // 2 == 1)

strings are now unicode

python 2

s = 'string, aka str'

bs = b'string, aka str

us = u'unicode object'

python 3

s = 'unicode, aka str'

bs = b'bytes'

us = u'unicode, aka str'

Modern programming languages for HEP

59 / 65 S. Ponce - CERN

pyOrC++ UsableCpp perfC++ python3 Conclusion

changes convert convert

Removed legacy syntax

Exceptions syntax has changed

python 2

try:

raise ValueError, "msg"

except ValueError, e:

...

python 2 or 3

try:

raise ValueError("msg")

except ValueError as e:

...

looping on dictionnary changed

python 2

d = {1:1, 2:2}

for k in d.keys(): ...

python 2 or 3

d = {1:1, 2:2}

for k in d: ...

Many other small points

ranges, metaclasses, backticks, imports, input, ...

Modern programming languages for HEP

60 / 65 S. Ponce - CERN

pyOrC++ UsableCpp perfC++ python3 Conclusion

changes convert convert

Migrating from Python 2 to python 3

1 Why python and C++

2 C++getting usable

3 Performant C++

4 Migrating from Python 2 to python 3
Tour of python 3 changes
How to support both versions
How to migrate

5 Conclusion

Modern programming languages for HEP

61 / 65 S. Ponce - CERN

pyOrC++ UsableCpp perfC++ python3 Conclusion

changes convert convert

Supporting both python2 and python3

Best strategy

migrate to python 3

make python 3 code compatible with python 2, only if needed !
by modernizing code

“modern” python code is compatible with both 2 and 3

by extending python2 so that it understands python3 constructs
through the use of __future__

Practically

valid both in python 2 and 3

from __future__ import division, print_function

a = 3 / 2

print(a)

outputs 1.5

Modern programming languages for HEP

62 / 65 S. Ponce - CERN

pyOrC++ UsableCpp perfC++ python3 Conclusion

changes convert convert

Migrating from Python 2 to python 3

1 Why python and C++

2 C++getting usable

3 Performant C++

4 Migrating from Python 2 to python 3
Tour of python 3 changes
How to support both versions
How to migrate

5 Conclusion

Modern programming languages for HEP

63 / 65 S. Ponce - CERN

pyOrC++ UsableCpp perfC++ python3 Conclusion

changes convert convert

Migrating code

Use 2to3 or futurize tool

provided in python3 distribution

“turns code into valid Python 3 code, and then adds __future__

and future package imports to re-enable compatibility with Python 2”

Revalidate every single line by hand...

very often generated code is too verbose

from time to time, it does not work

and python lose type checking does not help

The essential point

Have a damn good test suite with high coverage

Modern programming languages for HEP

64 / 65 S. Ponce - CERN

pyOrC++ UsableCpp perfC++ python3 Conclusion

Conclusion

1 Why python and C++

2 C++getting usable

3 Performant C++

4 Migrating from Python 2 to python 3

5 Conclusion

Modern programming languages for HEP

65 / 65 S. Ponce - CERN

pyOrC++ UsableCpp perfC++ python3 Conclusion

Conclusion

Key messages of the day

C++and python are complementary and compatible

together they allow for full performance and easiness of use
they are both evolving

When looking for performance, C++is a must

and some latest features are key

python 3 is now the de factor standard

convert your code is not yet done

	Why python and C++
	Pros and Cons of each language
	Respective usecases

	C++getting usable
	Language ``simplifications''
	Making bad code harder to write

	Performant C++
	New performance related features
	Templates
	Avoiding virtuality when possible

	Migrating from Python 2 to python 3
	Tour of python 3 changes
	How to support both versions
	How to migrate

	Conclusion

