
Danilo Piparo – CERN, EP-SFT and CMS

Writing Parallel Software

1

Writing Parallel Software

Danilo Piparo – CERN, EP-SFT and CMS

Writing Parallel Software

2

This Lecture

The outline:

§ Parallel software design: an introduction

§ Threads and parallelism in C++

§ Threads and data races: synchronisation issues

§ Useful design principles

§ Replication, atomics, transactions and locks

Danilo Piparo – CERN, EP-SFT and CMS

Writing Parallel Software

3

Asynchronous Execution

Danilo Piparo – CERN, EP-SFT and CMS

Writing Parallel Software

4

Asynchronous Task Execution

§ Problem: a long calculation, the result of which is not
immediately needed

§ Possible solution: asynchronous execution of the
calculation, retrieval of the result at a later stage

§ Nuances: result may or may not be needed later depending
on the control flow steering the application
§ Lazy evaluation?

Main “line of work”

Long calculation

Time

Danilo Piparo – CERN, EP-SFT and CMS

Writing Parallel Software

5

std::async

§ A solution is provided by the standard library natively: std::async
§ #include <future>

§ Execute a function concurrently in a separate thread or on demand
when the result is needed (lazily)

§ Result is a std::future: a “bridge” between the two locations:
§ std::future “Transports” results and exceptions from thread

to thread

§ In orther words, code to be executed is passed around

Danilo Piparo – CERN, EP-SFT and CMS

Writing Parallel Software

6

std::async in Action

#include <future>
#include <iostream>

int lenghtyCalculation(){ […] };
void doOtherStuff(){ […] };

int main(){
std::future<int> myAnswer = std::async(lenghtyCalculation);

doOtherStuff();
std::cout << “The result is: ” << myAnswer.get() << std::endl;
}

Header for async
and future

“Launch” the
calculation

Retreive result

Danilo Piparo – CERN, EP-SFT and CMS

Writing Parallel Software

7

std::async in Action

Main “line of work”

Long calculation

Time

std::future<int> myAnswer = std::async(lenghtyCalculation);

myAnswer.get()

Danilo Piparo – CERN, EP-SFT and CMS

Writing Parallel Software

8

std::async in Action

Main “line of work”

Long calculation

Time

std::future<int> myAnswer = std::async(lenghtyCalculation);

myAnswer.get()

It’s easy after all, isn’t it?

Danilo Piparo – CERN, EP-SFT and CMS

Writing Parallel Software

9

Well, to be Honest… No.
§ Unfortunately scientifically relevant / potentially lucrative real life use

cases are complex
§ Cannot be solved simply throwing threads at them

§ In addition, many existing high-quality sequential large software
packages are in production
§ Starting fresh may not be always possible

§ Example: software stack of an LHC experiment
§ Tens of (large) packages integrated
§ O(102) shared libraries
§ Experiment specific code
§ à Millions of nicely working lines of code

Need to think parallel
• Evolve the existing systems
• Be disruptive and think to the future

Unity of opposites J

Danilo Piparo – CERN, EP-SFT and CMS

Writing Parallel Software

10

Parallel Software Design:
an Introduction

Danilo Piparo – CERN, EP-SFT and CMS

Writing Parallel Software

11

First Step: Finding Concurrency

What can be executed concurrently?

Two techniques to figure this out:

§ Data decomposition
§ The partition of the data domain
§ Achieve data parallelism

§ Task decomposition
§ Split according to logical tasks
§ Achieve task parallelism

This step takes place in front of a whiteboard

DIVIDE ET
IMPERA

Danilo Piparo – CERN, EP-SFT and CMS

Writing Parallel Software

12

Data Parallelism

Definition: parallelism achieved through the application of the same
transformation to multiple pieces of data

An illustration: multiplication of an array of values

Data parallelism
implies wise design of
the data structures to
be used!

Danilo Piparo – CERN, EP-SFT and CMS

Writing Parallel Software

13

Data Parallelism: Examples

Increase floating point throughput acting on mathematical functions:

§ Math functions account for a significant portion of many scientific
applications

§ Decompose the functions in simple vectorisable FP operations, at the heart
of which there can be some sort of polynomial evaluation

§ Calculate math functions on independent inputs in parallel
§ For example using vectorisation techniques

§ “Seen in real life”: Intel MKL, VDT, libraries.

Danilo Piparo – CERN, EP-SFT and CMS

Writing Parallel Software

14

Task Parallelism

Definition: parallelism achieved through the partition of load into “baskets of
work” consumed by a pool of resources.

An illustration: calculate mean, binary OR, minimum and average of a set of
numbers

A bit too simple: no
dependency
between tasks!

Danilo Piparo – CERN, EP-SFT and CMS

Writing Parallel Software

15

Task Parallelism: An example

HEP data processing frameworks

§ Run in a certain order algorithms on collision
events
§ In a nutshell: transform data from detector

readout electronics into particle kinematics
in steps

§ For decades, one algorithm executed at the
time, one event processed at the time

§ Evolving to accommodate parallelism, also
outside the single algorithms

§ One of the key ideas: schedule algorithms in
parallel according to their data
dependencies, also keeping N events in
memory

Sequential Execution

A possible parallel
execution graph

Danilo Piparo – CERN, EP-SFT and CMS

Writing Parallel Software

16

Pure Task/Data parallelism

§ We do not need to “choose” to approach a problem with a task or data
parallelism based solution

§ Actually, pure task/data parallelism is rare!

§ Combining the two is the key

Danilo Piparo – CERN, EP-SFT and CMS

Writing Parallel Software

17

Is Parallelisation Worth It?

§ Whenever thinking about parallelisation, one should spend
some thoughts on whether the effort is worth it
§ The total cost of ownership of one additional box might be

smaller than the design-implementation-maintenance costs

§ What is the performance gain we can expect?

Danilo Piparo – CERN, EP-SFT and CMS

Writing Parallel Software

18

Need for Speed(up)

§ We parallelise because we want to run our application faster

§ Speedup: how much faster does my code run after
parallelising it?
§ Indicator of scalability

parallel

serial

Time
TimeSpeedup =

From E. Tejedor

Danilo Piparo – CERN, EP-SFT and CMS

Writing Parallel Software

19

n
pp

Speedup
+-

=
)1(

1

n: number of cores
p: parallel portion

“… the effort expended on achieving high parallel
processing rates is wasted unless it is accompanied by
achievements in sequential processing rates of very
nearly the same magnitude.” - 1967

§ It predicts the maximum
speedup achievable given a
problem of fixed size

Amdahl’s Law
C

C
 B

Y-SA
3.0 https://en.w

ikipedia.org/w
iki/A

m
dahl's_law

From E. Tejedor

Danilo Piparo – CERN, EP-SFT and CMS

Writing Parallel Software

20

Threads
and C++

Danilo Piparo – CERN, EP-SFT and CMS

Writing Parallel Software

21

Let’s change gears: Threads

§ From the operating system point of view:
§ Process: isolated instance of a program, with its own space in (virtual)

memory, can have multiple threads
§ Thread: light-weight process within process, sharing the memory with the

other threads living in the same process

§ The kernel manages the existing threads, scheduling them to the
available resources (CPUs)*
§ There can be more threads in a single process than cores in the machine!

* Actually mapping user threads to kernel threads, but this simplification ok in first order!

Danilo Piparo – CERN, EP-SFT and CMS

Writing Parallel Software

22

Interlude: A Program in Memory
§ Text Segment: code to be

executed.

§ Initialized Data Segment:
global variables initialized by
the programmer.

§ Uninitialized Data Segment:
This segment contains
uninitialized global variables.

§ The stack: The stack is a
collection of stack frames. It
grows whenever a new
function is called. “Thread
private”.

§ The heap: Dynamic memory
(e.g. requested with “new”).

HEP: depth
of ~50 not
seldom
reached

Danilo Piparo – CERN, EP-SFT and CMS

Writing Parallel Software

23

Interlude: A Program in Memory
§ Text Segment: code to be

executed.

§ Initialized Data Segment:
global variables initialized by
the programmer.

§ Uninitialized Data Segment:
This segment contains
uninitialized global variables.

§ The stack: The stack is a
collection of stack frames. It
grows whenever a new
function is called. “Thread
private”.

§ The heap: Dynamic memory
(e.g. requested with “new”).

HEP: depth
of ~50 not
seldom
reached

Terminology:
Threads have their own stack, but they share a common heap

Danilo Piparo – CERN, EP-SFT and CMS

Writing Parallel Software

24

Processes and Threads: Pricetags
Process:

Isolated (different address spaces)

Easy to manage

Communication between them possible but pricey

Price to switch among them

Threads:

Sharing memory (communication is a memory access)

Lower overhead for creation, lower coding effort

Fit well many-cores architectures

Ideal for a task-based programming model

Danilo Piparo – CERN, EP-SFT and CMS

Writing Parallel Software

25

Threads or Processes?

Some additional elements to consider for the decision:

§ Amount of legacy code and resources available to make it thread-safe

§ Duration of tasks wrt the overhead of the forking process

§ Presence of shared states and their behaviour in presence of contention
§ E.g. Disk I/O, DB I/O, common data structures (e.g. “HEP event”)

Danilo Piparo – CERN, EP-SFT and CMS

Writing Parallel Software

26

Threads in C++

§ C++ offers a construct to represent a thread: std::thread

§ Interfaced to the underlying backend provided by the OS – 100% portable:

§ A function (a callable in general) can be executed within a thread
asynchronously

§ Many more possibilities than the simple std::async execution
§ Full control on the thread!

Danilo Piparo – CERN, EP-SFT and CMS

Writing Parallel Software

27

#include <thread>
#include <iostream>

int main(){
std::thread t([]{std::cout << “Hello Concurrent World!\n”; });
t.join();

}

Threads example
Header for
std::thread

Lambda function
Create and start a thread

Wait for the thread to finish its job

§ In general, it is possible that the thread does not need to be joined
§ A “daemon thread”: the method to use is std::thread::detach()
§ Once detached, the thread cannot be joined anymore!

§ Possible usecases: I/O, monitor filesystems, clean caches…

Danilo Piparo – CERN, EP-SFT and CMS

Writing Parallel Software

28

#include <thread>
#include <vector>
#include <iostream>

void printThreadID(int i){
printf("thread num %d – id %2x\v”, i,std::this_thread::get_id);
}

int main(){
std::vector<std::thread> myThreads; myThreads.reserve(10);
for (int i=0; i<10; i++)

myThreads.emplace_back(printThreadID, i);

for (auto& t : myThreads)
t.join();

}

A possible prototype backend
behind task oriented programming!
A possible prototype backend
behind task oriented programming!

A First Abstraction

Identify the thread

The first step towards
automating the management
of threads in the application!

Limitation: cannot
retrieve the return value.

Danilo Piparo – CERN, EP-SFT and CMS

Writing Parallel Software

29

#include <thread>
#include <vector>
#include <iostream>

void printThreadID(int i){
printf("thread num %d – id %2x\v”, i,std::this_thread::get_id);
}

int main(){
std::vector<std::thread> myThreads; myThreads.reserve(10);
for (int i=0; i<10; i++)

myThreads.emplace_back(printThreadID, i);

for (auto& t : myThreads)
t.join();

}

A possible prototype backend
behind task oriented programming!
A possible prototype backend
behind task oriented programming!

A First Abstraction

Identify the thread

The first step towards
automating the management
of threads in the application!

Limitation: cannot
retrieve the return value.

-> g++ –std=c++17 –lpthread -o myTest myTest.cpp
-> ./myTest
thread num 0 - id 139708894000896
thread num 5 - id 139708852037376
thread num 3 - id 139708868822784
thread num 2 - id 139708877215488
thread num 4 - id 139708860430080
thread num 8 - id 139708826859264
thread num 1 - id 139708885608192
thread num 7 - id 139708835251968
thread num 6 - id 139708843644672
thread num 9 - id 139708818466560

When dealing with
concurrency,
asynchronous
events are daily
business!

Danilo Piparo – CERN, EP-SFT and CMS

Writing Parallel Software

30

The Thread Pool Model
§ Thread pool: ensemble of worker threads which are …

§ Initialised once, consuming work from …

§ .. A work queue …

§ .. to which elements of work (lambdas, tasks, …) can be added

Hard to program in an optimised and general way!
(usually provided by 3rd part libraries)

Danilo Piparo – CERN, EP-SFT and CMS

Writing Parallel Software

31

Processes in Python/C++
Python

§ Handy multiprocessing module

C++

§ Nothing in the STL

§ Some alternative libraries, e.g.
ROOT* TProcessExecutor

* root.cern.ch

from multiprocessing import Process, Pool

def f(name):
print('hello', name)

def g(x):
return x*x

p = Process(target=f, args=('bob',))
p.start()

p.join()

p = Pool(5)
p.map(g, [1, 2, 3])

§ No memory shared: need to serialise objects to communicte

§ Natural in Python, advanced in C++: needs serialisation!
J

Danilo Piparo – CERN, EP-SFT and CMS

Writing Parallel Software

32

Threads and Data Races:
Synchronisation Issues

Danilo Piparo – CERN, EP-SFT and CMS

Writing Parallel Software

33

The Problem
§ Fastest way to share data: access the same memory region

§ One of the advantages of threads

§ Parallel memory access: delicate issue - race conditions
§ I.e. behaviour of the system depends on the sequence of events

which are intrinsically asynchronous

§ Consequences, in order of increasing severity
§ Catastrophic terminations: segfaults, crashes
§ Non-reproducible, intermittent bugs
§ Apparently sane execution but data corruption: e.g. wrong value of a

variable or of a result

Operative definition: An entity which cannot run w/o issues linked to parallel
execution is said to be thread-unsafe (the contrary is thread-safe)

Danilo Piparo – CERN, EP-SFT and CMS

Writing Parallel Software

34

To Be Precise: Data Race

Standard language rules, §1.10/4 and /21:

• Two expression evaluations conflict if one of them
modifies a memory location (1.7) and the other one
accesses or modifies the same memory location.

• The execution of a program contains a data race if it
contains two conflicting actions in different threads, at least
one of which is not atomic, and neither happens before
the other. Any such data race results in undefined behaviour.

Danilo Piparo – CERN, EP-SFT and CMS

Writing Parallel Software

35

Simple Example
Concurrency can compromise correctness
§ Two threads: A and B, a variable X (44)
§ A adds 10 to a variable X
§ B subtracts 12 to a variable X

Danilo Piparo – CERN, EP-SFT and CMS

Writing Parallel Software

36

What is not Thread Safe?
Everything, unless explicitly stated!

In four words: Shared States Among Threads

Examples:

§ Static non const variables

§ STL containers
§ Some operations are thread safe, but useful to assume none is!
§ Very well documented (e.g. http://www.cplusplus.com/reference)

§ Many random number generators (the stateful ones)

§ Calls like: strtok, strerror, asctime, gmtime, ctime …

§ Some math libraries (statics used as cache for speed in serial execution…)

§ Const casts, singletons with state: indication of unsafe policies

It sounds depressing. But there are several ways to protect thread unsafe
resources!

Danilo Piparo – CERN, EP-SFT and CMS

Writing Parallel Software

37

Useful Design Principles

Danilo Piparo – CERN, EP-SFT and CMS

Writing Parallel Software

38

Minimise Contention

§ Designing and implementing software for the serial case to
make it parallel afterwards
§ Not exactly a winning strategy

§ Rather think parallel right from the start
§ Advice not straightforward to put in place
§ Needs careful planning and thinking

§ Depends on the problem being studied
§ Understand what you are doing!

Danilo Piparo – CERN, EP-SFT and CMS

Writing Parallel Software

39

Ex. Functional Programming Style
Operative definition: computation as evaluation of functions the result of
which depends only on the input values and not the program state.

§ Functions: no side effects, no input modification, return new values

Example of 3 functional languages: Haskell, Erlang, Lisp.

C++: building blocks to implement functional programming. E.g.

§ Move semantics: can return entities w/o overhead

§ Lambdas & algorithms: map a list of values to another list of values.

§ Decompose operations in functions, percolate the information through
their arguments

Without becoming purists, functional programming principles
can avoid lots of headaches typical of parallel programming

Danilo Piparo – CERN, EP-SFT and CMS

Writing Parallel Software

40

Replication, Atomics,
Transactions and Locks

Danilo Piparo – CERN, EP-SFT and CMS

Writing Parallel Software

41

Why so many strategies?

§ There is no silver bullet to solve the issue of “resource
protection”
§ Complex problem

§ Case by case investigation needed
§ Better to be aware of many strategies

§ Best solution: often a trade-off
§ The lightest in the serial case?
§ The lightest in presence of high contention?

Danilo Piparo – CERN, EP-SFT and CMS

Writing Parallel Software

42

One copy of the data per Thread
§ Sometimes it can be useful to have thread local variables

§ A “private heap” common to all functions executed in one thread

§ Thread Local Storage (TLS)

§ Replicate per thread some information
§ C++ keyword thread_local

§ E.g.: build “smart-thread-local pointers”
§ Deference: provide the right content for the current thread

§ Not to “one size fits them all” solution
§ Memory usage
§ Overhead of the implementation, also memory allocation strategy
§ Cannot clutter the code with thread_local storage specifiers

Danilo Piparo – CERN, EP-SFT and CMS

Writing Parallel Software

43

TLS in Action
#include <thread>
#include <mutex>
#include <vector>
#include <iostream>

thread_local unsigned int tlIndex(0);

std::mutex myMutex;
void IncrAndPrint(const char* tName,unsigned int i){
tlIndex+=i;
std::lock_guard<std::mutex> myLock(myMutex);
std::cout << tName << " - Thread loc. Index " << tlIndex

<< std::endl;
};

int main(){
auto t1 = std::thread(IncrAndPrint,"t1",1);

auto t2 = std::thread(IncrAndPrint,"t2",2);
IncrAndPrint("main",0);

t1.join(); t2.join();
}

One private copy per thread
will exist

Thread 1, 2 and main thread
(de facto just “threads” for the OS)

Be patient for a moment ;-)

Danilo Piparo – CERN, EP-SFT and CMS

Writing Parallel Software

44

TLS in Action
#include <thread>
#include <mutex>
#include <vector>
#include <iostream>

thread_local unsigned int tlIndex=0;

std::mutex myMutex;
void IncrAndPrint(const char* tName,unsigned int i){
tlIndex+=i;
std::lock_guard<std::mutex> myLock(myMutex);
std::cout << tName << " - Thread loc. Index " << tlIndex

<< std::endl;
};

int main(){
auto t1 = std::thread(IncrAndPrint,"t1",1);
auto t2 = std::thread(IncrAndPrint,"t2",2);
IncrAndPrint("main",0);
t1.join(); t2.join();
}

One private copy per thread
will exist

Thread 1, 2 and main thread
(de facto just “threads” for the OS)

Possible output w/o tls (not correct!):
main - Thread loc. Index 0
t2 - Thread loc. Index 3
t1 - Thread loc. Index 3

Be patient for a moment ;-) Possible output:
main - Thread loc. Index 0
t2 - Thread loc. Index 2
t1 - Thread loc. Index 1

Danilo Piparo – CERN, EP-SFT and CMS

Writing Parallel Software

45

Atomic Operations
§ Building block of thread safety: an atomic operation is an operation

seen as non-splitable by other threads
§ Other real life examples: finance, database transactions
§ Either entirely successful (subtract from A, add to B) or rolled back

§ C++ offers support for atomic types
§ #include <atomic>

§ Usage: std::atomic<T>

§ Operations supported natively vary according to T
§ Subtleties present: e.g. cannot instantiate atomic<MyClass> under

all circumstances (must be trivially copyable)

§ For example:
§ boolean, integer types. E.g. std::atomic<unsigned long>
§ Pointer to any type. E.g. std::atomic<MyClass*>

Danilo Piparo – CERN, EP-SFT and CMS

Writing Parallel Software

46

Atomic Counter

3 observations:
• Atomics allow highly granular

resources protection.
• Real life example: incorrect

reference counting leads to
double frees!

• Bugs in multithreaded code can
have extremely subtle effects and
are in general not-reproducible!

#include <atomic> …

std::atomic<int> gACounter;
int gCounter;

void f(){ //increment both
gCounter++;gACounter++;}

int main(){
std::vector<std::thread> v;
v.reserve(10);

for (int i=0;i<10;++i)
v.emplace_back(std::thread(f));

for (auto& t:v) t.join();

std::cout << "Atomic Counter: "
<< gACounter << std::endl
<< "Counter: "
<< gCounter << std::endl;

}

$ g++ -o atomic atomic.cpp -std=c++14 –lpthread
$./atomic
Atomic Counter: 10
Counter: 9
$./atomic
Atomic Counter: 10
Counter: 10

Danilo Piparo – CERN, EP-SFT and CMS

Writing Parallel Software

47

Locks and Mutexes
§ Make a section of the code executable by one thread at the time

§ Locks should be avoided, but yet known
§ They are a blocking synchronisation mechanisms
§ They can suffer pathologies
§ … they could be present in existing code: use your common sense

and a grain of salt!

Terminology:

§ Before the section, the thread is said to acquire a lock on a mutex

§ After that, no other thread can acquire the lock
§ After the section, the thread is said to release the lock

Danilo Piparo – CERN, EP-SFT and CMS

Writing Parallel Software

48

Lock Classification

A lock can be …

§ a spin lock: if it makes a task spin while waiting (“busy wait”)
§ Short tasks: spin is better (putting a thread to sleep costs cycles)

§ Big implications also in terms of power consumption

§ Scalable: cannot perform worse than serial execution

§ Fair: it lets threads through in the order the they arrive

§ Recursive: it can be acquired multiple times by the same thread

Each attribute comes with a pricetag: an unfair, non-scalable, non-reentrant
lock might be ideal in some situations if faster than others!

Danilo Piparo – CERN, EP-SFT and CMS

Writing Parallel Software

49

A first Lock Example

[…]
std::mutex gMutex;
void g(){
std::lock(gMutex);
doWork();
std::unlock(gMutex);
}

[…]

Only one thread at the
time can access this
sectionAcquire/release

lock on the
mutex

Danilo Piparo – CERN, EP-SFT and CMS

Writing Parallel Software

50

A first Lock Example

[…]
std::mutex gMutex;
void g(){
std::lock(gMutex);
doWork();
std::unlock(gMutex);
}

[…]

Only one thread at the
time can access this
sectionAcquire/release

lock on the
mutex

§ Potential issue: doWork() throws an exception

§ The lock is never released: the program will stall forever

§ A possible solution: a scoped lock (seen in the previous slides!)

Danilo Piparo – CERN, EP-SFT and CMS

Writing Parallel Software

51

Scoped Locks: the Proper Way

[…]
std::mutex gMutex;
void g(){
std::lock_guard<std::mutex> lg(gMutex);
doWork();

}
[…]

Instance of a
class, locks the
scope!

§ Construct an object which lives in the scope to be locked

§ C++ provides a class to ease this: std::lock_guard<T>(T&)

§ When the scope is left, the object destroyed and the lock released

§ Application of the RAII idiom (Resource Acquisition Is Initialisation)

§ RAII: “bread and butter” in modern and performant C++

Danilo Piparo – CERN, EP-SFT and CMS

Writing Parallel Software

52

Pathologic Behaviours of Locks

Deadlock: Two tasks are waiting for each other to finish in order to proceed.

§ One task tries to acquire a lock it already acquired and the mutex is not
recursive

Convoying: A thread holding a lock is interrupted, delayed (by the OS, to
do some I/O). Other threads wait that it resumes and releases the lock.

Priority inversion: A low priority thread holds a lock and makes a high
priority one wait.

Lock based entities do not compose: the combination of correct
components may be ill behaved.

Danilo Piparo – CERN, EP-SFT and CMS

Writing Parallel Software

53

Good Practices with Locks

§ Don’t use them if possible

§ … Really, don’t!

§ Hold locks for the smallest amount of time possible

§ Avoid nested locks

§ Avoid calling user/library code you don’t control which holds
locks

§ Acquire locks in a fixed order

Danilo Piparo – CERN, EP-SFT and CMS

Writing Parallel Software

54

n
pp

Speedup
+-

=
)1(

1

n: number of cores
p: parallel portion

“… the effort expended on achieving high parallel
processing rates is wasted unless it is accompanied by
achievements in sequential processing rates of very
nearly the same magnitude.” - 1967

§ It predicts the maximum
speedup achievable given a
problem of fixed size

Amdahl’s Law
C

C
 B

Y-SA
3.0 https://en.w

ikipedia.org/w
iki/A

m
dahl's_law

From E. Tejedor

Danilo Piparo – CERN, EP-SFT and CMS

Writing Parallel Software

55

Take Away Messages
§ Choose designs that follow principles such as data and task parallelism

§ They lead to scalable and performant applications
§ Focus on algorithms and data structures!

§ Asynchronous execution and non-determinism permeate concurrent
applications:
§ Paradigm shift needed to understand and design parallel software solution

§ Abstraction needed: e.g. thread pool
§ Do not forget the basics: ownership, OS, hardware

§ Choose from the start a design which helps avoiding data races:
§ Understand your problem: no silver bullet
§ Prefer approaches w/o global states (e.g. functional)

§ Choose non blocking mechanisms whenever possible
§ E.g. atomics and transactions
§ Locks can be present in existing software
§ Use a grain of salt

